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A stochastic optimal control problem

minimize  E) .+ g:(us, Xt, 0¢)
HOs-- s T —1

subject to Xi41 = At((gt)Xt + Bt(ét)ut + Wt((st) VteT (1)

ur = pe(x0, .., xe) EUr YV EET

teT :={0,..., T — 1} indexes discrete time

states x; are perfectly observed

control constraint sets U; are closed, nonempty, convex
stage costs (u, x) — g¢(u, x, 0) are convex for all 0¢
random vectors d; contain all uncertain influences on system

samples can be generated from the (arbitrary, possibly
unknown) distributions of the J;



What about state constraints?

e conspicuously absent: P {x; € X:(d¢)} > 1 — oy
e but penalties on deviations of x; from X;(d;) are allowed
e justification:
© in practice, constraints are often softened to avoid infeasibility
© in some applications, x; ¢ X:(d;) is not catastrophic
¢ but large deviations may be significantly worse than small ones
(chance constraints do not capture this)
¢ scenario approximations of chance constraints are well
understood (Calafiore '12, '13; Prandini '12; Matusko '12;
Schildbach '12, '14)
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Problem (1) is intractable in general

e optimization variables y; are (infinite dimensional) functions
e control horizon may be very long

e expectation integrals may be ill-defined or hard to
compute/approximate
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Stochastic MPC

choose MPC horizon K (define K :={0,...,K —1})

1. measure x;

2. solve

minimize  E ", - g1k (Ukje, Xk|es Oxle)
gty UK -1t
subject to  Xpp1t = Arrk(Ok|e)Xk|e + Bk (One) tnje + Werk(Ok|e)
Vkek

Ut € Uik Vkek

* *
for (u0|t, ce “K—1|t)
3. set uy = uat, increment t, repeat

(still intractable)



Sample-average MPC

choose MPC horizon K, sample size N (define N := {1,...,N})

1. measure x;

2. sample iid scenarios ((%\v ce 5;1(71“), ce (5(1)\\17:7 . 6%71“)

3. solve

minimize  (1/N) >\ kex 8tk (Ukles x,ilt, 5{(“)

gty UKk -1t

X%‘ t”‘"'.’X%lﬂt
subject to x4, = At+k(5;(‘t)x,’(|t + Bt+k(6;(|t)uk‘t + Wt+k(5;(‘t)
Vkek, ieN
Ut EUk V k€K
for (“5|t7 . u;_m,xll‘*t, .. ,x}(*'t, . ,x{\"t*, ... ,X,Q’r;)

4. set up = uat, increment t, repeat



Related work

e SAMPC has been proposed by Batina '01, Nolde '08,
Blackmore '10, Schildbach '14, Verrilli '16 (MoA22.4)

e justification typically involves (pointwise) convergence of
SAMPC objective function to stochastic MPC objective
function as N — oo

e but do SAMPC costs and controls necessarily converge to
those of stochastic MPC?

e if so, how quickly do they converge?

Our contributions:
e translation of statistical results from the stochastic
programming literature into an MPC context (see paper)
e an exponential convergence theorem for the full control
trajectory



Main convergence result
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Subproblem reformulations

e define u; ‘= (U0|t, ey UK—1|t)v (St = (50|ta ce 75K—1|t)r
Ut = Z/{t X o+ X ut+K,1

e iteratively apply dynamics to eliminate state variables
e appropriately define ‘lifted’ objective function v,

then at stage t, the stochastic MPC subproblem can be written as

minimize  ¢¢(ut) ;= E¢(uy, d¢)

ug

subject to u; € U;

and the SAMPC subproblem as

minj‘ft“ize O (ur) == (1/N) ZII'V:I e(ur, 84)
subject to u; € U;
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Theorem (SAMPC trajectory convergence)

suppose
1. 1 is 'not too variable’ (in a certain precise sense)

2. each U, is polyhedral, each (-, d;) is piecewise affine for
every d;, each d; has finite support

3. each stochastic MPC subproblem has a unique minimizer
then

e the probability that the SAMPC and stochastic MPC control
trajectories differ decays exponentially quickly as N increases

e that probability reaches zero for some finite N

(proof relies heavily on a result by Shapiro '09)
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Example: efficiently heating an apartment
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Problem statement

minimize
e (linear) energy cost + (piecewise affine) discomfort cost
subject to
e SISO temperature dynamics (identified from nonlinear model)
e heater nonnegativity and capacity constraints
under uncertainty from
e occupant-specified temperature reference
e multiplicative and additive model error

e weather

(convergence theorem conditions are almost, but not quite, met)
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Occupant behavior

® occupant wants

¢ at least 21 °C when home and awake
¢ at least 16 °C when away or asleep

e wake, depart, return and sleep times are random
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Indoor temperature in a typical Monte Carlo run
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e CE means certainty-equivalent MPC
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Increasing N improves comfort, uses more energy
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e costs are averaged over 100 Monte Carlo runs

e zero discomfort cost for all N > 80
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Performance and computer time
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e cost, computer time are averaged over 100 Monte Carlo runs
e 15 minute time steps, 4 hour MPC horizon (K = 16)

e optimization in Gurobi on a 2 GHz Intel Core 2 Duo processor
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