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A stochastic optimal control problem

minimize
µ0,...,µT−1

E
∑

t∈T gt(ut , xt , δt)

subject to xt+1 = At(δt)xt + Bt(δt)ut + wt(δt) ∀ t ∈ T
ut = µt(x0, . . . , xt) ∈ Ut ∀ t ∈ T

(1)

• t ∈ T := {0, . . . ,T − 1} indexes discrete time

• states xt are perfectly observed

• control constraint sets Ut are closed, nonempty, convex

• stage costs (u, x) 7→ gt(u, x , δt) are convex for all δt

• random vectors δt contain all uncertain influences on system

• samples can be generated from the (arbitrary, possibly
unknown) distributions of the δt
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What about state constraints?

• conspicuously absent: P {xt ∈ Xt(δt)} ≥ 1− αt

• but penalties on deviations of xt from Xt(δt) are allowed

• justification:

� in practice, constraints are often softened to avoid infeasibility
� in some applications, xt /∈ Xt(δt) is not catastrophic
� but large deviations may be significantly worse than small ones

(chance constraints do not capture this)
� scenario approximations of chance constraints are well

understood (Calafiore ’12, ’13; Prandini ’12; Matusko ’12;
Schildbach ’12, ’14)
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Problem (1) is intractable in general

• optimization variables µt are (infinite dimensional) functions

• control horizon may be very long

• expectation integrals may be ill-defined or hard to
compute/approximate
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Stochastic MPC

choose MPC horizon K (define K := {0, . . . ,K − 1})

1. measure xt

2. solve

minimize
u0|t ,...,uK−1|t

E
∑

k∈K gt+k(uk|t , xk|t , δk|t)

subject to xk+1|t = At+k(δk|t)xk|t + Bt+k(δk|t)uk|t + wt+k(δk|t)
∀ k ∈ K

uk|t ∈ Ut+k ∀ k ∈ K

for (u?0|t , . . . , u
?
K−1|t)

3. set ut = u?0|t , increment t, repeat

(still intractable)
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Sample-average MPC

choose MPC horizon K , sample size N (define N := {1, . . . ,N})

1. measure xt

2. sample iid scenarios (δ10|t , . . . , δ
1
K−1|t), . . . , (δ

N
0|t , . . . , δ

N
K−1|t)

3. solve

minimize
u0|t ,...,uK−1|t
x1
1|t ,...,x

1
K |t...

xN
1|t ,...,x

N
K |t

(1/N)
∑

i∈N
∑

k∈K gt+k(uk|t , x
i
k|t , δ

i
k|t)

subject to x ik+1|t = At+k(δik|t)x
i
k|t + Bt+k(δik|t)uk|t + wt+k(δik|t)

∀ k ∈ K, i ∈ N
uk|t ∈ Ut+k ∀ k ∈ K

for (u?0|t , . . . , u
?
K−1|t , x

1?
1|t , . . . , x

1?
K |t , . . . , x

N?
1|t , . . . , x

N?
K |t)

4. set ut = u?0|t , increment t, repeat
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Related work

• SAMPC has been proposed by Batina ’01, Nolde ’08,
Blackmore ’10, Schildbach ’14, Verrilli ’16 (MoA22.4)

• justification typically involves (pointwise) convergence of
SAMPC objective function to stochastic MPC objective
function as N →∞
• but do SAMPC costs and controls necessarily converge to

those of stochastic MPC?

• if so, how quickly do they converge?

Our contributions:

• translation of statistical results from the stochastic
programming literature into an MPC context (see paper)

• an exponential convergence theorem for the full control
trajectory
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Subproblem reformulations

• define ut := (u0|t , . . . , uK−1|t), δt := (δ0|t , . . . , δK−1|t),
U t := Ut × · · · × Ut+K−1

• iteratively apply dynamics to eliminate state variables

• appropriately define ‘lifted’ objective function ψt

then at stage t, the stochastic MPC subproblem can be written as

minimize
ut

φt(ut) := Eψt(ut , δt)

subject to ut ∈ U t

and the SAMPC subproblem as

minimize
ut

φ̂Nt (ut) := (1/N)
∑N

i=1 ψt(ut , δ
i
t)

subject to ut ∈ U t
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Theorem (SAMPC trajectory convergence)

suppose

1. ψt is ‘not too variable’ (in a certain precise sense)

2. each U t is polyhedral, each ψt(·, δt) is piecewise affine for
every δt , each δt has finite support

3. each stochastic MPC subproblem has a unique minimizer

then

• the probability that the SAMPC and stochastic MPC control
trajectories differ decays exponentially quickly as N increases

• that probability reaches zero for some finite N

(proof relies heavily on a result by Shapiro ’09)
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Problem statement

minimize

• (linear) energy cost + (piecewise affine) discomfort cost

subject to

• SISO temperature dynamics (identified from nonlinear model)

• heater nonnegativity and capacity constraints

under uncertainty from

• occupant-specified temperature reference

• multiplicative and additive model error

• weather

(convergence theorem conditions are almost, but not quite, met)
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Occupant behavior

• occupant wants

� at least 21 ◦C when home and awake
� at least 16 ◦C when away or asleep

• wake, depart, return and sleep times are random
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Indoor temperature in a typical Monte Carlo run
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• CE means certainty-equivalent MPC
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Increasing N improves comfort, uses more energy
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• costs are averaged over 100 Monte Carlo runs

• zero discomfort cost for all N ≥ 80
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Performance and computer time

0

10

20

30

40
T
o
ta
l
co

st
($
)

10 20 30 40 50 60 70 80
0

1

2

3

4

C
o
m
p
u
te
r
ti
m
e
(m

in
)

N

• cost, computer time are averaged over 100 Monte Carlo runs

• 15 minute time steps, 4 hour MPC horizon (K = 16)

• optimization in Gurobi on a 2 GHz Intel Core 2 Duo processor
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