Reducing greenhouse gas emissions by optimizing room temperature set-points
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Abstract

We design a learning and optimization frame-
work to mitigate greenhouse gas emissions as-
sociated with heating and cooling buildings. The
framework optimizes room temperature set-points
based on forecasts of weather, occupancy, and the
greenhouse gas intensity of electricity. We com-
pare two approaches: the first one combines a
linear load forecasting model with convex opti-
mization that offers a globally optimal solution,
whereas the second one combines a nonlinear load
forecasting model with nonconvex optimization
that offers a locally optimal solution. The project
explores the two approaches with a simulation
testbed in EnergyPlus and experiments in build-
ings on a university campus.

1. Introduction

Building energy consumption represents one-third of the
United States’ greenhouse gas (GHG) emissions, the largest
of any sector (EPA, 2021). The Biden administration has
set a target of a 50% reduction in 2005 GHG emissions by
2030 and net zero emissions by 2050 (White-House, 2021).
Achieving these targets will require deep decarbonization
across all sectors. This is particularly challenging in the
building sector given that the existing building stock is large
and there is relatively low turnover. Thus, to achieve such
deep decarbonization targets the US must simultaneously
create energy-efficient new buildings while lowering energy
consumption in existing buildings.

A significant fraction of the GHG emissions in buildings
is due to heating and air conditioning. In residential build-
ings they represent about one-third of energy consumption,
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which is the largest end-use type (EIA, 2021b). In commer-
cial buildings they represent 17%, which is also the largest
end-use type (EIA, 2021a). Many energy systems and build-
ing envelope technologies are being implemented to reduce
heating and cooling demands. While these are important,
they are also capital intensive.

An alternative approach is to adjust building temperature
set-points to lower energy consumption and GHG emis-
sions. The mechanism has two components. First, energy
consumption can be reduced by limiting heating or cooling
when a space is unoccupied, by learning behavioral patterns.
Second, electricity-derived heating or cooling can be timed
to coincide with low GHG emissions from the electrical
grid and avoided during times of high emissions. Adjust-
ing building temperature set-points requires little capital
investment. Depending on the energy system being used, it
may only require changes to software and/or thermostats,
as opposed to changes in the much more expensive heating
and cooling systems.

Numerous smart thermostats for residential buildings that
rely on machine learning algorithms have been developed
and are deployed in homes. Given that US residential
and commercial GHG emissions are nearly the same (EPA,
2021), there is a significant opportunity to implement build-
ing temperature set-point machine learning algorithms for
commercial buildings as well. This is a challenging task
due to the scale and complexity of commercial buildings
and the complicated management systems used to regulate
temperatures.

The application of machine learning methods to commer-
cial building heating and cooling systems is a well-studied
field. In the review paper (Rolnick et al., 2019), these ap-
plications are broadly categorized as (a) building energy
modeling and (b) optimizing energy use. The review paper
(Esrafilian-Najafabadi & Haghighat, 2021) adds a further
category (c), occupancy prediction. The project proposed
here will eventually span all three categories, though this
paper focuses on (a) and (b). Relative to existing research,
the primary contribution of the project proposed here will
be experimental validation in a real building, which we have
instrumented with energy submeters, people counters, and
other sensors. A secondary contribution will be optimizing
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for GHG emissions, rather than more common performance
criteria such as energy consumption and operating costs. In
(Esrafilian-Najafabadi & Haghighat, 2021), both experimen-
tal validation and new performance criteria are identified as
important areas for future research.

2. Methods

Figure 2 illustrates the proposed GHG minimization frame-
work. It involves two steps: (1) learning a model to predict
energy consumption based on temperature set-points and
other features, and (2) using the learned model and daily pre-
dictions of occupancy and the GHG intensity of electricity
to decide set-point profiles that minimize GHG emissions.
Specifically, we have developed an EnergyPlus model of
the room we will control, then simulated operations un-
der a wide variety of weather, occupancy, and temperature
set-point conditions. This provided a larger and richer set
of data than we could obtain from direct measurements of
the room. We then applied linear and nonlinear machine
learning algorithms to predict the load profile, using the sim-
ulated load as training and validation data. Finally, we are
developing convex and nonconvex optimization algorithms
that use the trained models to minimize GHG emissions.
The resulting set-point profiles will be fed into EnergyPlus
for validation. Once performance in the simulation test-bed
is satisfactory, we will demonstrate the framework experi-

mentally in the real building.
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Figure 1. Information flow in the proposed framework.

2.1. EnergyPlus Simulation Testbed

EnergyPlus, a whole building energy simulation program
developed by the U.S. Department of Energy, was used to
model a medium-sized campus classroom in Cambridge,
MA. EnergyPlus makes it possible to model new and com-
plex building technologies which cannot be modeled by
other whole building energy simulation programs and it can
model a large number of zones and buildings that could be
used to scale the results for the entire campus.

The current EnergyPlus model was designed to match the
room’s physical and geometric properties to the best of our
knowledge. The corresponding modeled outputs provided
information about the load behavior under steady-state and
transient conditions. The methodology used in the project

has the following steps: (1) data collection in the class-
room, (2) preparation of schedules for occupancy and heat-
ing/cooling using actual data, (3) development of a detailed
classroom energy simulation model in EnergyPlus, (4) mod-
ification of weather data file required for simulation using
on-site measurements, and (5) comparison of results derived
from the EnergyPlus simulation program with the utility
data measured in the classroom, using the same time step
and period for measured and simulated data.

2.2. Machine Learning Model Exploration

The problem of predicting energy consumption based on
temperature set-points and other features is a time-series
learning task. We have experimented with several model
structures, such as ARIMA, the Prophet model developed
by Facebook (Taylor & Letham, 2018), and multilayer per-
ceptron.

2.2.1. MODEL FEATURES AND TARGET

The forecasting target is the hourly heating load. Although
the simulation output includes a large number of modeling
parameters that are important for load forecasting, we se-
lected only the following, typically available features: the
ambient dry-bulb temperature (7,;), the room temperature
set-point (1), the time-difference of the temperature set-
point (dTset(t) = Tset(t) — Tset(t — 1)), and functions of
the time of day.

The temperatures 7Ty, and T, are scaled to standard nor-
mal distributions to ensure model convergence. Due to occu-
pant behavior, building schedule, and seasonality, the build-
ing load demonstrates daily, weekly and seasonal trends.
Consequently, we applied a sine and cosine embedding to
all temporal information, as is discussed in (Gonzalez &
Zamarreno, 2005). For example, to represent time of day,
we used [sin (7(h)/12), cos (m(h)/12)] to represent a 24
hour cyclic nature explicitly in the learning problem. In the
case of the simulation dataset, we only encode time of day
as a temporal feature.

2.2.2. AUTOREGRESSIVE WITH EXOGENOUS
REGRESSORS (ARX)

Variations of the ARIMA model have been explored.
Specifically, we compared AR, ARIMA, ARX, SARIMA
(ARIMA with seasonality), and SARIMAX and found that
including integration, moving average or seasonality only
marginally improves model performance. Considering the
trade-off between model complexity and performance, we
selected ARX(6) as the preferred model. The autoregres-
sive component includes the previous 6-hour load, and the
exogenous regressors are the current T4, Tser, d1setr, and
time of day. The RMSE of ARX model forecast on the test
set is 4.25 MJ.
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Table 1. RMSE comparison in the test data, in units of MJ.

ARX PROPHET MLP
4.25 4.04 1.77

2.2.3. PROPHET MODEL

Although ARX models are interpretable and have strong
forecasting performance when the lags parameters are
trained well, they cannot capture the nonlinearities in the
time-series trends. To address those challenges, we leverage
the Prophet model (Taylor & Letham, 2018) to forecast the
hourly heating load with 7},,,; and T, as regressors. The
Prophet model is an adaptation of a decomposable time se-
ries model (Harvey & Peters, 1990) with three time-series
components: trend, seasonality, and holidays. We found the
model to be best trained when the change-point prior scale
is tuned to 0.95. The model produces an RMSE of 4.04
M]J on the 24-hour forecast horizon, which is slightly better
than the ARX model.

2.2.4. MULTILAYER PERCEPTRON (MLP)

To encode the time series properties embedded in the dataset,
we decided to reuse the structure of an ARX model with
nonlinear relations between each input by applying a ReLU
activation function. The MLP takes in historical 24-hour
load and current Ty, Tset, dTset, and time of day as inputs
and forecasts the load conditions for the next 12 hours. It is
clear that the MLP nonlinear model outperforms the ARX
and Prophet model by providing an RMSE of 1.77 MJ,
which reduces approximately 60% RMSE.
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Figure 2. Model performance comparison on a 24-hour forecasting
horizon from the test set. Black solid line represents true load,
and the dashed orange, red and blue lines are from Prophet, ARX,
and MLP models respectively. Compared to Prophet and ARX,
MLP can better capture extreme load conditions such as peaks.
Nonetheless, Prophet and ARX correctly forecast general load
trend.

3. Options for Set-point Optimization

The project to date has focused on training an ensemble
of models to predict energy use based on temperature set-
points and other features. In the next phase, we plan to
embed an energy prediction model in an optimization frame-
work that will generate daily temperature set-point profiles
that minimize GHG emissions.

The problem of minimizing cumulative GHG emissions
takes the following general form:

min {p"y |y = f(@)}. (1)

The decision variable x € R™ (°C) contains the temperature
set-points at each of the n time steps in the control horizon,
X C R™ is a convex set of feasible temperature set-point
profiles, 1 € R"™ (kg/kWh) contains the predicted GHG
intensity of electricity at each time step, y € R™ (kWh)
contains the predicted energy consumption at each time
step, and f : R™ — R™ is the energy prediction model. In
this representation, the structure of f includes the exogenous
features and the trained model parameters. Similarly, the
set X depends on the predicted occupancy, as temperature
constraints are stricter when the space is occupied.

If the prediction model is linear in the temperature set-points,
then the objective function in Problem (1) is linear in z. In
this case, Problem (1) is convex, as the set X is convex
by assumption. Therefore, the problem can be solved to
global optimality in polynomial time using, e.g., interior-
point methods. In our applications, the set X can usually
be described by a system of linear inequality constraints, in
which case Problem (1) reduces to a linear program that can
be solved efficiently and reliably by off-the-shelf software.

Unfortunately, our experience so far indicates that for our
energy prediction applications, linear models are signifi-
cantly less accurate than nonlinear alternatives. It is not
clear that optimizing temperature set-points with a relatively
inaccurate, linear energy prediction model will give accept-
able performance. For this reason, we are considering a
two-stage approach that uses both linear and nonlinear en-
ergy prediction models. The first stage of this approach
involves solving a convex version of Problem (1) with a
linear energy prediction model f(*) to generate a solution
x® € X. The second stage involves solving a nonconvex
version of Problem (1), with the linear model f©) replaced
by a nonlinear model f(™), to generate a solution z(™ € X.

While there are no guarantees that the second-stage problem
can be solved to global optimality, it can be solved locally
by various gradient descent algorithms. These algorithms
can be warm-started with the first-stage solution z(©). Given
that warm-start, running gradient descent on the second-
stage problem should generate a solution (™) that is at least
as good as (), and possibly significantly better. In other
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words, we should find that z " f) (2(™) < p 7 f) (2(9).
However, solving the second-stage problem will likely re-
quire coding our own local optimization routine and, in
particular, computing derivatives of the nonlinear energy
prediction model f(™). This is our next area of work, and
we are currently exploring options for how to proceed.
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