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Chapter 1

Basic theory
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1.1 Preliminaries

This section lays out some definitions and notation, following §1.1 of [1] and Appendix A
of [2]. The setting is a Euclidean space E, i.e., a real vector space with finite-dimensional
elements, inner product 〈x,y〉, and norm ‖x‖ =

√
〈x,x〉. Without loss of generality, we

could set E = Rn and 〈x,y〉 = xTy, but the coordinate-free notation allows one framework
to handle a variety of optimization problems. For example, in semidefinite programming
E = Sn ≡

{
X ∈ Rn×n

∣∣ XT = X
}

and 〈X, Y 〉 = tr(XY ).
Unless otherwise noted, all vectors and sets lie in E.

1.1.1 Sets

The sum of sets S1 and S2 is

S1 + S2 = {x1 + x2 | x1 ∈ S1,x2 ∈ S2}

with S1 − S2 defined similarly. The sum of a point x0 and set S is

x0 + S = {x0 + x | x ∈ S} .

The product of sets Λ ⊆ R and S is

ΛS = {λx | λ ∈ Λ,x ∈ S} .

For a scalar λ ∈ R and set S,
λS = {λx | x ∈ S} .

Definition 1 (Unit ball) The unit ball is the set

B = {x | ‖x‖ ≤ 1} .

Definition 2 (Interior) The interior of a set S, denoted intS, is the set of all points x for
which x + εB ⊂ S for some ε > 0.

If x ∈ intS, we call S a neighborhood of x.

Definition 3 (Limit) A point x is the limit of the sequence of points x1,x2, . . ., written
xi → x, if ‖xi − x‖ → 0 as i→∞.

Definition 4 (Closure) The closure of S, written clS, is the set of limits of sequences of
points in S.

Equivalently, x ∈ clS if for all ε > 0, there exists a y ∈ S such that y ∈ x + εB.
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Definition 5 (Boundary) The boundary of S is the set

bdS = clS \ intS.

Equivalently, x ∈ bdS if for all ε > 0, there exist a y ∈ S and z /∈ S such that y, z ∈ x+ εB.

Definition 6 (Open) A set S is open if intS = S.

Equivalently, S is open if S ∩ bdS = ∅.

Definition 7 (Closed) A set S is closed if clS = S.

Equivalently, S is closed if bdS ⊆ S, or if E \ S is open. The intersection of any family of
closed sets is closed. The union of any family of finitely many closed sets is closed.

Definition 8 (Bounded) A set S is bounded if S ⊂ kB for some k > 0.

A closed and bounded set is called compact.

1.1.2 Functions

A simple but very useful trick in convex analysis is to allow functions to take on values on
the extended real line,

R = R ∪ {−∞,+∞} .

Arithmetic on the extended real line works like it does on the real line, except that we define
+∞+ (−∞) = +∞ and 0(±∞) = (±∞)0 = 0.

For sets other than the extended reals, the notation f : S1 → S2 follows the standard
mathematical conventions. It means that f maps each element of S1 to some element of
S2. The domain of f is S1, and the range of f is a subset of S2. For example, a function
f : E→ R is defined on all of E.

For the extended reals, the notation f : S → R means that f maps every element of S to
some element of R (possibly ±∞). For functions that map to the extended reals, we define
the domain as follows.

Definition 9 (Domain) The domain of f : E→ R is the set

dom f = {x | f(x) < +∞} .

Definition 10 (Continuous) A function f : E → F is continuous at x̄ ∈ E if for any
ε > 0, there exists a δ > 0 such that for all x,

‖x− x̄‖ ≤ δ =⇒ ‖f(x)− f(x̄)‖ ≤ ε.

A function f : S → R is continuous at x ∈ S if f(xi)→ f(x) for any sequence xi → x in S.
If f is continuous at every x ∈ S, we say f is continuous on S.
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1.1.3 Suprema and infima

For a finite set S ⊆ R (meaning a set containing a finite number of real numbers), maxS
is the largest element of S and minS is the smallest. The supremum supS and infimum
inf S generalize the maximum and minimum for sets that aren’t finite. The supremum and
infimum are also known as the greatest lower bound and least upper bound, respectively.

Definition 11 (Upper bound) A scalar u is an upper bound on S ⊆ R if for all x ∈ S,
x ≤ u.

Let U be the set of upper bounds on S. There are three possibilities:

1. U = R, in which case S is empty and supS = −∞,

2. U = ∅, in which case S is unbounded above and supS = +∞, or

3. U = [a,∞) for some a ∈ R and supS = a.

Definition 12 (Lower bound) A scalar l is a lower bound on S ⊆ R if for all x ∈ S,
x ≥ l.

Let L be the set of lower bounds on S. As with U , there are three possibilities:

1. L = R, in which case S is empty and inf S = +∞,

2. L = ∅, in which case S is unbounded below and inf S = −∞, or

3. L = (−∞, b] for some b ∈ R and inf S = b.

If supS ∈ S, we say the supremum of S is attained. Similarly, if inf S ∈ S, we say the
infimum of S is attained.

The supremum and infimum of a function f : E→ R are

sup
x∈E

f(x) = sup {f(x) | x ∈ dom f}

inf
x∈E

f(x) = inf {f(x) | x ∈ dom f} .

The supremum and infimum of a function can be infinite: if dom f = ∅, then supx∈E f(x) =
sup ∅ = −∞ and infx∈E f(x) = inf ∅ = +∞. Similarly, if f is unbounded above on dom f ,
then supx∈E f(x) = +∞, and if f is unbounded below on dom f , then infx∈E f(x) = −∞.

A few useful rules for suprema and infima of functions:

sup
x∈E

f(x) = − inf
x∈E
−f(x)

sup
x∈E

f(−x) = sup
x∈E

f(x)

sup
x∈E

{
f(x) + sup

y∈F
g(x,y)

}
= sup

x∈E,y∈F
{f(x) + g(x,y)} .
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1.2 Convex sets

Definition 13 (Convex set) A set S is convex if for all λ ∈ [0, 1],

x,y ∈ S =⇒ λx + (1− λ)y ∈ S.

Example: the closed halfspace

H = {x | 〈a,x〉 ≤ β} = {x | 〈a,x− x0〉 ≤ 0} (1.1)

is convex.

Proposition 1 The intersection of any family of convex sets, possibly infinite in number,
is convex.

Examples:

• The intersection of finitely many halfspaces, called a polyhedron, is convex.

• The cone of positive semidefinite matrices,

Sn+ ≡
{
X ∈ Sn

∣∣ yTXy ≥ 0 for all y ∈ Rn
}

=
{
X ∈ Sn

∣∣ tr(yTXy) ≥ 0 for all y ∈ Rn
}

=
{
X ∈ Sn

∣∣ tr(XyyT ) ≥ 0 for all y ∈ Rn
}

=
⋂

y∈Rn

{
X ∈ Sn

∣∣ 〈X,yyT 〉 ≥ 0
}

is convex.

Proposition 2 The closure of a convex set is convex.

Lemma 3 (Accessibility) If a set S is convex, then for all λ ∈ [0, 1],

x ∈ intS, y ∈ clS =⇒ λx + (1− λ)y ∈ intS.

Corollary 4 If S is nonempty and convex, then intS is convex and clS = cl(intS).

Theorem 5 (Best approximation) If S is closed, nonempty and convex, then there exists
a unique shortest vector x̄ ∈ S characterized by 〈x̄,x− x̄〉 ≥ 0 for all x ∈ S.

The proof uses the Weierstrass theorem (a continuous function attains its minimum over a
compact set).

Theorem 6 (Basic separation) If S is closed and convex and y /∈ S, then there exists a
halfspace H ⊃ S such that y /∈ H.

The proof uses the best approximation theorem. This theorem implies that any convex set
can be viewed as the intersection of the halfspaces that contain it.

Theorem 7 (Supporting hyperplane) If S is convex and y /∈ intS, then there exists a
hyperplane H ⊃ S with y on its boundary.

The proof uses the accessibility lemma and the basic separation theorem.
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1.3 Convex functions

Definition 14 (Epigraph) The epigraph of a function f : E→ R is the set

epi f = {(x, t) ∈ E×R | t ≥ f(x)} .

Definition 15 (Convex function) A function f : E→ R is convex if epi f is convex.

The classical definition of convexity considers functions f : S → R, where S is convex. Such
a function is convex if for all x,y ∈ S and λ ∈ [0, 1],

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y),

and strictly convex if the inequality holds strictly whenever x 6= y and λ ∈ (0, 1).
The epigraph allows the convexity of a function to be analyzed in terms of the convexity

of a set. The indicator function δS : E→ {0,+∞}, defined by

δS(x) =

{
0 x ∈ S
+∞ x /∈ S,

maps in the other direction, allowing sets to be analyzed in terms of functions.
Examples: affine functions and norms are convex.

Definition 16 (Minimizer) A point x̄ is a minimizer of f : E→ R if for all x,

f(x̄) ≤ f(x).

Proposition 8 If a minimizer of a strictly convex function exists, it’s unique.

Definition 17 (Local minimizer) A point x̄ is a local minimizer of f if there exists an
ε > 0 such that for all x ∈ x̄ + εB,

f(x̄) ≤ f(x).

Lemma 9 If g : R → R is convex and g(0) = 0, then t 7→ g(t)/t is nondecreasing for all
t > 0.

The proof follows from the definition of a convex function.

Theorem 10 If f : E → R is convex and f(x̄) 6= +∞, then x̄ is a minimizer of f if and
only if x̄ is a local minimizer of f .

This theorem makes convex optimization tractable. The proof uses lemma 9.
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1.3.1 Recognizing convexity

Proposition 11 If h : (a, b)→ R is differentiable, then h is convex if and only if dh/dx is
nondecreasing.

The proof uses lemma 9 and the mean value theorem.

Corollary 12 If h : (a, b)→ R is twice differentiable, then

(1) h is convex if and only if d2h/dx2 ≥ 0 on (a, b), and

(2) h is strictly convex if d2h/dx2 > 0 on (a, b).

Note that the converse of the second claim is not true in general; consider f(x) = x4, which
is strictly convex but d2h/dx2|0 = 0.

The next few results generalize this scalar convexity criterion.

Proposition 13 Let S be open and f : S → R. At any x ∈ S, there exists at most one
g ∈ E such that for all y ∈ E,

f(x + ty) = f(x) + t〈g,y〉+ o(t) as t ↓ 0.

The “little o” notation h(t) = o(t) means that for all ε > 0, there exists a t > 0 such that
|h(t)| ≤ εt. If h(t) = o(t) holds as t ↓ 0, then

lim
t↓0

h(t)

t
= 0.

Thus, proposition 13 implies that if g exists at x, then for all y,

lim
t↓0

f(x + ty)− f(x)− t〈g,y〉
t

= 0.

In proposition 13, the vector g is called the Gateaux derivative of f at x. If the Gateaux
derivative exists at every x ∈ E, then we call g the gradient of f at x, ∇f(x). If ∇f : E→ E
is continuous (denoted∇f ∈ C), then we call f continuously differentiable (denoted f ∈ C1).
If ∇f ∈ C and for all y ∈ E, the function h(x) = 〈y,∇f(x)〉 is continuously differentiable,
then we call f twice continuously differentiable (denoted f ∈ C2).

If f ∈ C2, then for any y ∈ E, we define

∇2f(x)[y,y] ≡ 〈y,∇h(x)〉.

If E = Rn, this reduces to the weighted 2-norm of y,

∇2f(x)[y,y] = yT∇2f(x)y

where ∇2f(x) is the Hessian of f at x.
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Theorem 14 (Taylor) If f : S → R and f ∈ C2, then for all y ∈ E,

f(x + ty) = f(x) + t〈∇f(x),y〉+
t2

2
∇2f(x)[y,y] + o(t2).

Corollary 15 If f : S → R, where S is open and convex, and f ∈ C2, then

(1) f is convex if and only if ∇2f(x)[y,y] ≥ 0 for all x ∈ S and y ∈ E, and

(2) f is strictly convex if ∇2f(x)[y,y] > 0 for all x ∈ S and y ∈ E.

Corollary 15 generalizes corollary 12. The proof uses Taylor’s theorem and corollary 12 to
show that t 7→ f(x + ty) is convex.

As an example of the usefulness of this coordinate-free convexity criterion, consider the
logarithmic barrier function f : Sn++ → R, defined by

f(X) = − ln(det(X)).

Here Sn++ is the set of n× n positive definite matrices,

Sn++ ≡
{
X ∈ Sn

∣∣ yTXy > 0 for all y 6= 0
}
.

It can be shown that Sn++ is closed and convex (and, as an aside, that Sn++ = int(Sn+)), so
corollary 15 applies.

Theorem 16 The logarithmic barrier function is strictly convex.

Sketch of proof:

1. Show that ∇f(X) = −X−1.

2. Show that (I + tZ)−1 = I − tZ +O(t2) as t→ 0.

3. Observe that∇2f(X)[Y, Y ] = tr((X−1Y )2), so it suffices to show that tr((X−1Y )2) > 0.

4. Notice that sinceX (and henceX−1) is positive definite, it has a Cholesky factorization.
Hence, there exists an upper triangular, nonsingular A ∈ Rnn such that X−1 = ATA.
Use this to prove that tr((X−1Y )2) > 0.
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1.3.2 Lipschitz continuity

Definition 18 (Lipschitz) A function f : E → R is Lipschitz around x̄ if there exists an
L ≥ 0 such that for all x,y in a neighborhood of x̄,

|f(x)− f(y)| ≤ L ‖x− y‖ .

If f is Lipschitz at x̄, we call L the Lipschitz constant.

Lemma 17 If f : E → R is convex and f(x̄) is finite, then f is Lipschitz around x̄ if and
only if f is bounded above on x̄ + εB for some ε > 0.

Although lemma 17 certifies the local Lipschitz continuity of a wide class of convex
functions, it’s still weaker than we’d like. For example, it’s tempting to think that if f :
E→ R is convex and finite at x̄ and xr → x̄, then f(xr)→ f(x̄). This is not true in general,
however. As a counterexample, consider the function f : R2 → R, defined by

f(x) =


x2

1/x2 x2 > 0

0 x = 0

+∞ otherwise.

(1.2)

It can be shown that f(x) is not only convex, but also has a closed epigraph and is otherwise

well-behaved. Note that f(xr) = 1 for all r > 0, where xr =
[
1/r, 1/r2

]T → 0 as r → +∞,
but f(0) = 0.

Incidentally, the function defined in (1.2) illustrates many of the pathological behaviors
that convex functions can exhibit. It’s a useful counterexample in many proofs.

Proposition 18 If f : S → R is convex, x1, . . . ,xm ∈ S, λ ≥ 0, and 1Tλ = 1, then

m∑
i=1

λixi ∈ S and f

(
m∑
i=1

λixi

)
≤

m∑
i=1

λif(xi).

The proof is by induction, with the base case m = 2 given by the definition of convexity.

Definition 19 (Unit simplex) The unit simplex in Rn is the set

∆n =
{
x ∈ Rn

∣∣ x ≥ 0, 1Tx ≤ 1
}
.

Proposition 19 Any convex f : ∆n → R is bounded above, and therefore Lipschitz around
any point on the interior of ∆n.

Theorem 20 If S and f : S → R are convex, then f is Lipschitz around any point on the
interior of S.

The proof involves fitting a tiny copy of the unit simplex around any point x̄ ∈ intS.
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1.3.3 Subgradients

Definition 20 (Subgradient) Let f : E → R be convex and finite at x̄. If x̄ minimizes
f(x)− 〈y,x〉, then we call y a subgradient of f at x̄ and write y ∈ ∂f(x̄).

In other words, y is a subgradient of f at x̄ if for all x,

f(x) ≥ f(x̄) + 〈y,x− x̄〉.

The set ∂f(x̄) is called the subdifferential of f at x̄. The notation y ∈ ∂f(x̄) is intended to
suggest that y is some kind of derivative. In fact, if f is differentiable at x̄, then ∂f(x̄) =
{∇f(x̄)}. Subgradients generalize the gradient.

Theorem 21 If f : E→ R is convex, x̄ ∈ int(dom f), and f(x̄) is finite, then f

(1) never takes the value −∞,

(2) is Lipschitz around x̄, and

(3) has a subgradient at x̄.

Theorem 21 is a key concept in convex duality theory, and a fundamental tool in convex
optimization algorithms. The proof uses the supporting hyperplane theorem.
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Chapter 2

Duality
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2.1 The Fenchel framework

2.1.1 Fenchel conjugates

Definition 21 (Conjugate) For any f : E→ R and z ∈ E, the conjugate of f at z is

f ∗(z) = sup
x∈E
{〈z,x〉 − f(x)} .

The epigraph of the conjugate of f at z is

epi f ∗(z) =
⋂
x∈E

{(z, t) | 〈z,x〉 − t ≤ f(x)} .

For fixed x, {(z, t) | 〈z,x〉 − t ≤ f(x)} is a closed halfspace with normal a =
[
xT −1

]T
and

offset β = f(x). Thus, epi f ∗ is the intersection of a family of closed halfspaces, hence closed
and, by proposition 1, convex.

Example. Consider the entropy function f : R→ R, defined by

f(s) =


+∞ s < 0

0 s = 0

s ln(s)− s s > 0.

The conjugate of the entropy function at t is

f ∗(t) = et.

It can also be shown that
f ∗∗(s) = f(s)

where f ∗∗ is called the biconjugate of f . This is a special case of a more general result.

Definition 22 (Closed) A function f : E→ R is closed if epi f is closed.

Closed functions are sometimes called lower semicontinuous.

Theorem 22 If f : E → R is closed and convex and either always or never −∞, then
f ∗∗ = f .

The proof uses the basic separation theorem 6, as well as the Fenchel duality theorem 24,
which is proved independently.

Definition 23 (Proper) A convex function f : E→ R is proper if f is never −∞, and is
not identically +∞.

By theorem 22, a closed proper convex function equals its biconjugate.

Proposition 23 (Fenchel-Young inequality) Let f : E→ R. For all x and y,

f(x̄) + f ∗(y) ≥ 〈x,y〉.
The Fenchel-Young inequality follows directly from definition 21. It holds with equality if
and only if y ∈ ∂f(x).
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2.1.2 Fenchel duality

Definition 24 (Adjoint) For Euclidean spaces E and F and a linear map A : E → F,
there exists a unique linear map A∗ : F→ E, called the adjoint of A, that satisfies 〈Ax,y〉 =
〈x, A∗y〉 for all x ∈ E, y ∈ F.

If E = Rn, F = Rm, and A is an m× n matrix, then the adjoint of A satisfies

〈Ax,y〉 = 〈x, A∗y〉 ⇐⇒ xTATy = xTA∗y.

In other words, the adjoint of a matrix is its transpose.

Theorem 24 (Fenchel duality) Consider Euclidean spaces E and F, a linear map A :
E→ F, and functions f : E→ R and g : F→ R. If

p = inf
x∈E
{f(x) + g(Ax)} (primal)

d = sup
y∈F
{−f ∗(A∗y)− g∗(−y)} (dual)

then

(1) p ≥ d.

If, in addition, f and g are convex and

0 ∈ int (dom g − A dom f) , (2.1)

then

(2) p = d,

(3) if d is finite, then it is attained, and

(4) x̄ and ȳ are primal-dual optimal if and only if A∗ȳ ∈ ∂f(x̄) and −ȳ ∈ ∂g(Ax̄).

Theorem 24 is the central result in linearly-constrained convex optimization. Result 1
is analogous to weak duality in linear programming. Results 2-4 are analogous to strong
duality: 2 says that the primal is infeasible (p = +∞) if and only if the dual is unbounded
(d = +∞); and that the primal is unbounded (p = −∞) if and only if the dual is infeasible
(d = −∞). Result 3 says that if the dual is feasible and bounded (hence by result 2, so
is the primal), then the optimal value is attained. Result 4 is analogous to complementary
slackness.
Proof: Weak duality (p ≥ d) follows from definitions 21 and 24, so we’ll prove the strong
duality result, p = d.

The proof technique is “perturbational duality,” where we embed the problem in a more
general one, then perturb it slightly to generate the desired result. Define the value function

v(z) = inf
x∈E

(f(x) + g(Ax + z))
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which is a perturbation of the primal, with p = v(0). We’d like to apply theorem 21 to v,
which requires showing that v is convex and finite at some z̄ ∈ int(dom v). We’ll set z̄ = 0,
and use information about p to show that 0 ∈ int(dom v) and v(0) is finite.

To show that 0 ∈ int(dom v), observe that v(z) = +∞ if and only if {f(x) + g(Ax + z)} =
∅, meaning no x ∈ dom f satisfies Ax + z ∈ dom g. Thus,

dom v = {z ∈ F | v(z) < +∞}
= {z ∈ F | ∃ x ∈ dom f s.t. Ax + z ∈ dom g}
= {y − Ax | y ∈ dom g, x ∈ dom f}
= dom g − A dom f.

By the regularity condition (2.1), therefore, 0 ∈ int(dom v).
To show that v(0) is finite, observe that 0 ∈ int(dom v) implies that v(0) < +∞. If

p = −∞, then d ≤ p implies that p = d, and we’re done. So we need only consider the case
where p > −∞, meaning v(0) is finite.

We can now apply theorem 21 to v, which states that v has a subgradient at 0. Let −y
be a subgradient of v at 0. Then the Fenchel-Young inequality 23 holds with equality, i.e.,
v(0) + v∗(−y) = 〈0,−y〉. Thus,

p = v(0) = −v∗(−y) = − sup
z∈F
{〈z,−y〉 − v(z)}

= − sup
z∈F

{
〈z,−y〉 − inf

x∈E
{f(x) + g(Ax + z)}

}
= − sup

z∈F

{
〈z,−y〉+ sup

x∈E
{−f(x)− g(Ax + z)}

}
= − sup

x∈E,z∈F
{〈z,−y〉 − f(x)− g(Ax + z)}

= − sup
x∈E,z∈F

{〈Ax,y〉+ 〈Ax + z,−y〉 − f(x)− g(Ax + z)}

= − sup
x∈E

{
〈Ax,y〉 − f(x) + sup

z∈F
{〈−y, Ax + z〉 − g(Ax + z)}

}
= − sup

x∈E
{〈Ax,y〉 − f(x) + g∗(−y)}

= − sup
x∈E
{〈A∗y,x〉 − f(x)} − g∗(−y)

= −f ∗(A∗y)− g∗(−y)

≤ d.

By weak duality, p ≥ d, so the last line must hold with equality. Thus, if condition (2.1)
holds, then p = d and −f ∗(A∗y)− g∗(y) = d, i.e., y attains d.

2
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Interpretation of p = d. The idea that the duality gap is zero is equivalent to saying
that at z = 0, the value function is equal to its biconjugate. To see this, note that in the
proof of Fenchel duality we showed that for any −y ∈ ∂v(0),

−v∗(−y) = −f ∗(A∗y)− g∗(−y).

The right-hand side is exactly the dual objective function, so the dual can be written as

d = sup
y∈F
{−v∗(−y)}

= sup
y∈F
{−v∗(y)}

= sup
y∈F
{〈0,y〉 − v∗(y)}

= v∗∗(0).

Since v(0) = p, therefore, p = d if and only if v(0) = v∗∗(0).

Regularity condition. The regularity condition (2.1) (sometimes called a constraint qual-
ification) may be difficult to check. It can be shown that (2.1) holds if either of the following
stronger conditions are satisfied:

• there exists an x̂ ∈ dom f such that Ax̂ ∈ int(dom g), or

• A is surjective, and there exists an x̂ ∈ int(dom f) such that Ax̂ ∈ dom g.

The proof that the first condition implies (2.1) is straightforward, but the second condition
requires the following theorem.

Theorem 25 (Open mapping) A surjective linear A : E → F maps open sets to open
sets.

The proof of the open mapping theorem uses the singular value decomposition and the fact
that any matrix representation of a surjective linear map has full row rank.

2.1.3 Subdifferential calculus

Fenchel duality gives some insight into the calculus of subdifferentials. For instance, recall
from vector calculus that for continuously differentiable f, g : E → R, ∇(f + g)(x) =
∇f(x) + ∇g(x) and ∇(g ◦ A)(x) = A∗∇g(Ax). (Notation: (f + g)(x) = f(x) + g(x) and
(g ◦ A)(x) = g(Ax).) Fenchel duality proves the following analog for subdifferentials:

Theorem 26 For f : E→ R, g : F→ R and affine A : E→ F,

∂(f + g ◦ A)(x̄) ⊇ ∂f(x̄) + A∗∂g(Ax̄).

The above holds with equality under the Fenchel duality conditions.
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2.2 Conic programming

Definition 25 (Convex hull) The convex hull of S is

conv(S) =

{
m∑
i=1

λixi

∣∣∣∣∣ m ∈ N, 1Tλ = 1, λ ≥ 0, xi ∈ S

}
.

Proposition 27 The smallest convex set containing S is conv(S).

Proposition 28 If S is finite, then conv(S) is compact.

Corollary 29 If S is compact, then conv(S) is compact.

Definition 26 (Cone) A set K is a cone if 0 ∈ K and for all α ≥ 0 and x ∈ K, αx ∈ K.

A cone K is convex if and only if for all x,y ∈ K, x + y ∈ K. The only difference between a
convex cone and a subspace, therefore, is that a convex cone only needs to be closed under
vector addition and nonnegative scalar multiplication. A subspace is closed under general
scalar multiplication.

Examples: the nonnegative orthant Rn
+, the cone of symmetric positive definite matrices

Sn+, and the second-order cone

SOn
+ = {(x, t) ∈ Rn ×R | t ≥ ‖x‖2}

are all convex cones. Note that SOn
+ is the epigraph of the 2-norm on Rn.

Definition 27 (Dual cone) For any set K, the dual cone of K is

K+ = {y | 〈x,y〉 ≥ 0 for all x ∈ K} .

All dual cones are convex. The nonnegative orthant, semidefinite cone, and second-order
cone are all self dual: (Rn

+)+ = Rn
+, (Sn+)+ = Sn+, and (SOn

+)+ = SOn
+.

Theorem 30 (Conic duality) Consider Euclidean spaces E and F, a linear map A : E→
F, vectors c ∈ E and b ∈ F, and cones K ⊂ E and H ⊂ F. If p and d are the values of the
primal-dual pair

minimize 〈c,x〉
subject to Ax ∈ {b + y | y ∈ H}

x ∈ K

maximize 〈b,y〉
subject to A∗y ∈ {c− x | x ∈ K+}

y ∈ K+

then

(1) p ≥ d.

If, in addition, K and H are convex and either of the following hold:
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(a) there exists an x̂ ∈ K such that Ax̂ ∈ b + intH, or

(b) A is surjective and there exists an x̂ ∈ int(K) such that Ax̂ ∈ b +H,

then

(2) p = d,

(3) if d is finite, then it is attained, and

(4) x̄ and ȳ are primal-dual optimal if and only if 〈ȳ, Ax̄− b〉 = 0 and 〈x̄, c− A∗ȳ〉 = 0.

The proof of conic duality is by reduction to Fenchel duality using the functions

f(x) =

{
〈c,x〉 x ∈ K
+∞ otherwise

and

g(y) =

{
0 y − b ∈ H
+∞ otherwise.
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2.3 The Lagrangian framework

Consider a convex set U ⊂ E, convex functions f, g1, . . . , gm : U → R, the primal

minimize f(x)
subject to gi(x) ≤ 0, i = 1, . . . ,m

x ∈ U
(2.2)

and the Lagrangian
L(x,λ) = f(x) + λTg(x).

Note that the primal is equivalent to

p = inf
x∈U

sup
λ≥0
L(x,λ)

since the supremum is +∞ if gi(x) > 0 for any i. The Lagrangian dual is

d = sup
λ≥0

inf
x∈U
L(x,λ)

= − inf
λ≥0

{
− inf

x∈U
L(x,λ)

}
= − inf

λ
ψ(λ)

where

ψ(λ) =

{
− infx∈U L(x,λ) λ ≥ 0

+∞ otherwise

is called the dual function.
It’s easy to show that weak duality holds, i.e., that p ≥ d. The duality gap can be

nonzero, however. To see this, consider

p = inf
x∈R2

{
ex2
∣∣∣∣ √x2

1 + x2
2 − x1 ≤ 0

}
.

Here p = 1 and d = 0.

Definition 28 (Slater point) A Slater point x̂ ∈ U satisfies gi(x̂) < 0 for all i.

Theorem 31 (Lagrangian duality) If a Slater point exists, then p = d and d is attained
if finite.

Proof: Like Fenchel duality, Lagrangian duality is proved by a perturbation argument.
In fact, Lagrangian duality can be viewed as a special case of Fenchel duality, but it’s more
natural to prove it directly.
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We start by defining the value function

v(z) = inf
x∈U
{f(x) | g(x) ≤ z} .

It’s easy to check that v is convex and that v(0) = p. The Fenchel conjugate of v is

v∗(−λ) = sup
z

{
−λTz− v(z)

}
= sup

z

{
−λTz + sup

x∈U
{−f(x) | g(x) ≤ z}

}
= sup

x∈U,z

{
−λTz− f(x)

∣∣ g(x) ≤ z
}

= sup
w≥0,x∈U,z

{
−λTz− f(x)

∣∣ g(x) + w = z
}

= sup
w≥0,x∈U

{
−λT (g(x) + w)− f(x)

}
=

{
supx∈U

{
−λTg(x)− f(x)

}
λ ≥ 0

+∞ otherwise

=

{
− infx∈U L(x,λ) λ ≥ 0

+∞ otherwise

= ψ(λ).

From the definition of the dual,

d = − inf
λ
ψ(λ) = − inf

λ
v∗(−λ) = sup

λ
−v∗(λ) = v∗∗(0),

so we have p = v(0) and d = v∗∗(0). To prove p = d, therefore, we only need to show that
v(0) = v∗∗(0).

To see this, let x̂ be a Slater point, meaning x̂ ∈ U and g(x̂) < 0. Then

0 ∈ int(dom v) = int {z | g(x) ≤ z for some x ∈ U} .

By Theorem 21, therefore, v is never −∞ and has a subgradient at 0. It can also be shown
that v is closed, so Theorem 22 applies and v = v∗∗. Hence p = d.

To see that d is attained when finite, recall that d = − infλ v
∗(−λ). Let −λ̄ be a

subgradient of v at 0. Then by the Fenchel-Young inequality,

v(0) + v∗(−λ̄) = 0. (2.3)

Since v(0) = p = d, equation (2.3) implies that d = −v∗(−λ̄). Thus, λ̄ attains the infimum
and is dual optimal.

2
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Chapter 3

Algorithms
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3.1 The alternating directions method of multipliers

The alternating direction method of multipliers (ADMM) is a popular algorithm for large-
scale optimization of Fenchel-type problems. It’s a splitting method, meaning it operates on
f and g separately. There are many variants of ADMM; we’ll discuss one.

Consider linear A : E→ F, convex f : E→ R and g : F→ R, and the primal-dual pair

p = inf
x
{f(x) + g(Ax)} (primal)

d = sup
y
{−f ∗(A∗y)− g∗(−y)} (dual)

Assume that p is finite, p = d (a stronger condition than the results given by Fenchel
duality), and that the primal and dual have optimal solutions x∗ and y∗, respectively, not
necessarily unique. From Fenchel duality, a necessary and sufficient optimality condition is
that −A∗y∗ ∈ ∂f(x∗) and y∗ ∈ ∂g(Ax∗).

If we think of the primal as minimizing f(x)+g(z) subject to Ax = z, then it makes sense
to define Lagrange multipliers (i.e., dual variables) y ∈ F. We can also form the augmented
Lagrangian Lρ : E× F× F→ R, parameterized by ρ > 0, such that

Lρ(x, z,y) = f(x) + g(z) + 〈y, Ax− z〉+
ρ

2
‖Ax− z‖2 .

Notice that
p = inf

x,z
sup
y
Lρ(x, z,y)

since the augmented Lagrangian is +∞ whenever Ax 6= z.
The ADMM algorithm is

given xk, zk, yk, and parameter ρ > 0
repeat

1. xk+1 = argminx Lρ(x, zk,yk)

2. zk+1 = argminz Lρ(xk+1, z,yk)

3. yk+1 = yk + ρrk+1

stop if rk+1 and sk+1 are small.

In the above,
rk+1 = zk+1 − Axk+1

sk+1 = ρA∗(zk+1 − zk)

are the primal and dual residuals, respectively. The norm of rk+1 measures the distance
from constraint satisfaction, and the norm of sk+1 measures the distance to optimality. To
see the latter, one can show that yk+1 ∈ ∂g(zk+1) and −A∗yk+1 − sk+1 ∈ ∂f(xk+1), so xk+1
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and yk+1 are optimal if and only if rk+1 = 0 and sk+1 = 0. From step 3, the parameter ρ
can be interpreted as a step size. Large ρ will result in stricter enforcement of the primal
constraints.

ADMM is slow. Rather than stopping when ‖rk+1‖ and ‖sk+1‖ are less than 10−6 like
we might in a Newton-type algorithm, in ADMM we typically stop when the norms are less
than 10−2 or so. The power of ADMM comes from the fact that step 1 only involves f , and
step 2 only involves g. For many interesting problems, the x and z updates can be performed
quickly.

Theorem 32 Let pk = f(xk) + g(zk). If the ADMM assumptions hold, then

rk → 0, sk → 0, pk → p.

The proof involves the monotonicity property 〈yk+1−yk, zk+1− zk〉 ≥ 0, which follows from
the definition of subgradient. It involves showing that

Vk =
1

ρ
‖yk − y∗‖+ ρ ‖zk − z∗‖

is a Lyapunov function.

3.1.1 Proximity operators

The ADMM algorithm is only useful if the x and z updates in steps 1 and 2 are easy.
Thankfully, for many interesting problems they are. This is because the updates often take
the form

argmin
{
f +

ρ

2
‖· − v‖2

}
(3.1)

This problem of minimizing a function plus the 2-norm of a translation is called a proxim-
ity operator. Proximity operators are easy to compute for many convex functions. The
operator 3.1 is a smooth function of v, so even if f and g are nonsmooth or extended valued,
the proximity operator can be analyzed using smooth tools.

To see that steps 1 and 2 can be proximity operators, note that the augmented Lagrangian
can be written as

Lρ(x, z,y) = f(x) + g(z) +
ρ

2
‖Ax− z + u‖2 − ρ

2
‖u‖2 ,

where we have changed dual variables to u = y/ρ. When A = I, ADMM reduces to

given xk, zk, uk, and parameter ρ > 0
repeat

1. xk+1 = argminx

{
f(x) + (ρ/2) ‖x− (zk − uk)‖2

}
2. zk+1 = argminz

{
g(z) + (ρ/2) ‖z− (xk+1 + uk)‖2

}
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3. uk+1 = uk + xk+1 − zk+1

stop if rk+1 and sk+1 are small.

Some common proximity operators follow.

Projection. If f = δC , then the proximity operator is

argmin
x

{
δC(x) +

ρ

2
‖x− v‖2

}
= argmin

x∈C

ρ

2
‖x− v‖2 = PC(v)

where PC(v) is the projection of v onto C. It’s easy to compute PC(v) when C is the
nonnegative orthant, the semidefinite cone, any affine subspace, the second-order cone, or
x̄ + kB.

Quadratic forms on subspaces. The proximity operator is easy to compute if

f(x) =

{
1
2
xTPx x ∈ L

+∞ else

where L is a subspace.

The 1-norm. If

f(x) = ‖x‖1 =
n∑
i=1

|xi|

then

argmin
x

{
‖x‖1 +

ρ

2
‖x− v‖2

}
= argmin

x

{
n∑
i=1

|xi|+
ρ

2
(xi − vi)2

}
which can be computed separately for each xi. The solution is the so-called soft-thresholding
operator,

xi = S1/ρ(vi) =


vi + 1/ρ vi < −1/ρ

0 |vi| ≤ 1/ρ

vi − 1/ρ vi > 1/ρ.

Soft thresholding can be done in linear time.

3.1.2 Applications

Set intersection. If
p = inf

x
{δC(x) + δD(x)}

then steps 1 and 2 are projection onto C and D, and ADMM reduces to Dykstra’s alternating
projection algorithm.
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Linear programming. A linear program can be written

p = inf
x

{
〈q,x〉+ δb+L(x) + δRn

+
(x)
}

where L is a subspace. This can be solved by setting f(x) = 〈q,x〉 + δb+L(x) and g(x) =
δRn

+
(x) and applying ADMM. Similarly, linearly constrained quadratic programs can be

solved by replacing 〈q,x〉 by xTPx, where P ∈ Sn+.

Basis pursuit. The basis pursuit problem

p = inf
x
{‖x‖1 + δb+L(x)}

can be solved for billions of variables, since soft thresholding can be done in linear time. On
this problem, ADMM typically proceeds in two phases. It starts by discovering the correct
basis (i.e., which components of x should be zero), then it solves the linear system x ∈ b+L
in linear time. The first phase may take many iterations. ADMM basis pursuit resembles
an active set method, where the work of the algorithm is finding the set of constraints that
are binding at the solution.

LASSO regression. A popular statistics problem is

p = inf
x

{
λ

2
‖Ax− b‖2 + ‖x‖1

}
.

The 1-norm term encourages sparsity, so this problem is often used instead of ordinary least
squares regression when there are many more predictors than responses (n � m, where
A ∈ Rm×n) and a parsimonious model is sought.

Least absolute deviations. The problem

p = inf
x
{‖Ax− b‖1}

can be solved by setting f ≡ 0 and g(z) = ‖z− b‖1.

3.1.3 Example: consensus optimization

An example that gives nice intuition for ADMM, and particularly for its usefulness in dis-
tributed problems, is the consensus optimization problem

inf
z∈F

N∑
i=1

fi(z)

where N may be very large. It models agents 1, . . . , N , each with their local objective fi,
trying to agree on an acceptable value of z.
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To apply ADMM to consensus optimization, we introduce the slightly more general primal

p = inf
x
{f(x) + g(z) | Ax = Bz}

where A : E → G and B : F → G are linear and f : E → R and g : F → R are convex.
The convergence proof and algorithm follow through for this formulation, with two minor
changes: the augmented Lagrangian is

Lρ(x, z,y) = f(x) + g(z) + 〈y, Ax−Bz〉+
ρ

2
‖Ax−Bz‖2

and the y update is
yk+1 = yk + ρ(Axk+1 −Bzk+1).

The residuals and stopping criterion generalize naturally.
The consensus optimization problem can be put into this form by setting E = G = FN

(the space of N -tuples x = (x1, . . . ,xN), with xi ∈ F), A = I, g = 0, Bz = (z, . . . , z), and
f(x) =

∑N
i=1 fi(xi). This gives the ADMM primal

p = inf
x∈FN

{f(x) | xi = z for all i = 1, . . . , N} .

Defining dual variables y = (y1, . . . ,yN), the augmented Lagrangian is

Lρ(x, z,y) = f(x) +
N∑
i=1

〈yi,xi − z〉+
ρ

2
‖x− (z, . . . , z)‖2

=
N∑
i=1

[
fi(xi) + 〈yi,xi − z〉+

ρ

2
‖xi − z‖2

]
where we’ve used the fact that the inner product on E×F is 〈(x,y), (u,v)〉 = 〈x,u〉+〈y,v〉,
hence ‖(x,y)‖2 = ‖x‖2 + ‖y‖2.

The ADMM algorithm is

given xk, zk, yk, and parameter ρ > 0
repeat

1. xk+1
i = argminxi

{fi(xi)) + 〈yki ,xi − zk〉+ ρ ‖xi − zk‖2 /2 } for all i

2. solve ∇zk+1
Lρ(xk+1, zk+1,yk) = 0 for zk+1

3. yk+1
i = yki + ρ(xk+1

i − zk+1) for all i

with the appropriate stopping criterion. It’s easy to show that step 2 is equivalent to

zk+1 =
1

N

N∑
i=1

(
xk+1
i +

1

ρ
yi

)
= x̄k+1 +

1

ρ
ȳk.
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Step 3 implies that

ȳk+1 = ȳk + ρ (x̄k+1 − zk+1) = ȳk + ρ

(
−1

ρ
ȳk

)
= 0

so for all k > 1, zk+1 = x̄k+1. Changing variables to u = y/ρ, ADMM simplifies to

given xk, uk, and parameter ρ > 0
repeat

1. xk+1
i = argminxi

{fi(xi)) + (ρ/2)
∥∥xi − x̄k + uki

∥∥2 } for all i

2. uk+1
i = uki + (xk+1

i − x̄k+1) for all i

At each iteration of the consensus optimization solution, ADMM first evaluates N prox-
imity operators to update x1, . . . ,xN . Each proximity operator evaluation is distributed,
i.e., involves only local information. ADMM then performs the central step of averaging the
xi and updating the (scaled) dual variables u1, . . . ,uN according to the discrepancy from
the mean.
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3.2 The proximal point method

Consider a closed proper convex f : E→ R and the problem

p = inf
x
f(x). (3.2)

This is a very general convex optimization problem, since f maps to R and hence models
constraints. It’s not clear how to solve problem (3.2), since gradient descent-type methods
may fail if f is nonsmooth.

A naive approach is to apply ADMM to (3.2) with g = 0 and A = I. The augmented
Lagrangian is

Lρ(x, z,y) = f(x) + 〈y,x− z〉+
ρ

2
‖x− z‖2

and the dual is

d = sup
y
−f ∗(y) = sup

y
− sup

x
{〈y,x〉 − f(x)} = sup

y
−δ{0}(y) = 0

with optimal dual variable y∗ = 0. In ADMM, therefore, yk+1 = 0 and zk+1 = xk+1, so the
algorithm reduces to

given xk and parameter ρ > 0

repeat xk+1 = argminx{f(x) + (ρ/2) ‖x− xk‖2 }

which is called the proximal point method (PPM).

Corollary 33 If f has a minimizer, then f(xk)→ min f and xk+1 − xk → 0.

The proof follows from theorem 32 with y∗ = 0.

3.2.1 Convergence

Corollary 33 establishes that PPM will eventually converge to the solution of problem (3.2).
We could consider our work with PPM done, but we will explore its convergence further in
order to understand the convergence of ADMM from a more abstract perspective.

We start by showing that the subproblem at each PPM iteration has a solution. This is
guaranteed if and only if

f̃(u) = inf
x

{
f(x) +

ρ

2
‖x− u‖2

}
is finite for all u. The function f̃ is called the Moreau envelope of f .

Proposition 34 If a proper f : E → R has a subgradient, then the Moreau envelope of f
is always finite.
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All we need to know, therefore, is when a closed proper convex function has a subgradient.
It turns out the answer is “always.”

Theorem 35 A convex function has a subgradient if and only if it’s proper.

The proof uses the following lemma.

Lemma 36 If 0 ∈ S ⊂ E and S is open, then intS 6= ∅ if and only if S spans E.

We have established that the PPM subproblems are well-defined. Next, we characterize
their solutions.

Theorem 37 If f : E→ R is closed convex proper and z ∈ E, then

inf
x

{
f(x) +

1

2
‖x− z‖2

}
+ inf

y

{
f ∗(y) +

1

2
‖y − z‖2

}
=

1

2
‖z‖2

uniquely attained by x∗ and y∗. Furthermore, (x∗,y∗) is the unique solution of the system{
x + y = z

y ∈ ∂f(x).

This theorem is symmetric in x and y, since f = f ∗∗ by theorem 22. The proof applies
Fenchel duality to the problem in x, observing that f has a subgradient. Uniqueness follows
from the fact that ‖x− z‖2 is strictly convex, so f(x) + (1/2) ‖x− z‖2 is too.

Theorem 37 gives us a unique characterization of xk+1, the solution of the kth PPM
subproblem. Replacing x by xk+1 and z by xk gives

xk − xk+1 ∈ ∂f(xk+1).

Since the solution is unique, we write

xk+1 = (I + ∂f)−1(xk)

where (I + ∂f)−1 is called the resolvent of the subdifferential operator ∂f .

3.2.2 ADMM as a special case of PPM

We now explore what properties of ∂f , which maps points in E to sets in E, we need in
order to guarantee PPM convergence.

Definition 29 (Monotone) A set-valued mapping T : E ⇒ E is monotone if

y ∈ T (x) and y′ ∈ T (x′) =⇒ 〈y − y′,x− x′〉 ≥ 0.
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Examples: if f is convex, then ∂f is monotone. If T = f : R → R with f nondecreasing,
then T is monotone.

Definition 30 (Maximal) A monotone T : E ⇒ E is maximal if

T ′ : E ⇒ E monotone and T (x) ⊂ T ′(x) for all x ∈ E =⇒ T ≡ T ′.

It turns out that PPM works with ∂f replaced by any maximal monotone operator.

Theorem 38 (Minty) A monotone T : E ⇒ E is maximal if and only if z ∈ x + T (x) has
a unique solution x for all z ∈ E.

The “only if” direction of Minty’s theorem is an easy exercise, but the “if” direction is hard
to prove in general. We do know one special case where the “if” direction is easy, however:
if T = ∂f and f is closed, proper, and convex, then theorem 37 does the job. In this case,
Minty’s theorem also tells us that ∂f is maximal monotone only if f : E → R is closed,
proper, and convex.

Theorem 39 Suppose T is maximal monotone and {λk} is a bounded sequence with λk > 0
for all k. Consider the PPM iteration

xk+1 = (I + (1/λk)F )−1(xk).

If 0 ∈ F (x) is solvable, then the sequence {xk} converges to a solution.

The sequence λk is included to allow online tuning of the step size ρ.
This theorem is important because, by a clever choice of maximal monotone T , it can be

used to show that ADMM is a special case of PPM.
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3.3 The augmented Lagrangian method

It’s not clear how to actually implement PPM for a general problem. A special case where
PPM is easy to implement is the Lagrangian framework discussed in §2.3.

Observe that the Lagrangian primal (2.2) is equivalent to

p = inf
x∈U,z≥0

{f(x) | g(x) + z = 0} .

We can also add a quadratic penalty, giving the equivalent primal

p = inf
x∈U,z≥0

{
f(x) +

1

2
‖g(x) + z‖2

∣∣∣∣ g(x) + z = 0

}
.

Taking the Lagrangian dual gives

d = sup
λ

inf
x∈U,z≥0

{
f(x) +

1

2
‖g(x) + z‖2 + λT (g(x) + z)

}
.

The minimization over z ≥ 0 can be done in closed form using the following lemma.

Lemma 40 Given λ, g ∈ R,

inf
z≥0

{
1

2
(g + z)2 + λ(g + z)

}
=

1

2
(λ+ g)2

+ −
1

2
λ2,

where (·)+ = max(0, ·). The minimizing z is z = (λ+ g)+.

Applying Lemma 40 componentwise to the Lagrangian dual gives

d = sup
λ

inf
x∈U

{
f(x) +

1

2
‖(λ + g(x))+‖2 − 1

2
‖λ‖2

}
,

where the positive part is taken componentwise. This motivates defining the augmented
Lagrangian

L̄(x,λ) = f(x) +
1

2
‖(λ + g(x))+‖2 − 1

2
‖λ‖2 .

It also motivates the augmented Lagrangian method (ALM),

given xk and λk
repeat

1. xk = argminx L̄(x,λk)

2. λk+1 = (λk + g(xk))+
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ALM is one of a handful of standard methods used by commercial codes for nonlinear
optimization. It can be shown (see Lemma 41) that

λk − λk+1 ∈ ∂ψ̄(λk+1),

which means that an ALM iteration is exactly a PPM iteration on the dual. Therefore,
all the properties of PPM also apply to ALM. Note that the inner minimization can be
done using a Newton-style method, although the Hessian may not be well-defined since the
augmented Lagrangian is nonsmooth.

Lemma 41 Let x̄ ∈ U minimize L̄(·, λ̄) for some λ̄ ≥ 0, and define z̄ = (λ̄+g(x̄))+. Then

λ̄− z̄ ∈ ∂ψ̄(z̄),

where

ψ̄(z̄) =

{
− infx∈U L̄(x, z̄) z̄ ≥ 0

+∞ otherwise.

The proof involves showing that for convex h : E → R, the function x 7→ (1/2)h(x)2
+

is convex with subgradients h(x)+∂h(x) at x. Subdifferential calculus then shows that x̄
minimizes L̄(·, λ̄) if and only if x̄ minimizes L(·, z̄).
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3.4 The subgradient method

We now consider the problem of minimizing a convex, proper f : E → R over a closed,
convex, nonempty Q ⊂ dom f . We assume that

• f has at least one minimizer x∗ ∈ Q,

• it’s easy to project onto Q, and

• it’s easy to produce one element of ∂f(x) for any x ∈ Q.

These assumptions hold in a variety of interesting situations. One is the Lagrangian
framework, where we’re interested in the primal

p = inf
z
{h(z) | g(z) ≤ 0}

and dual
d = inf

λ≥0
ψ(λ).

The dual function
ψ(λ) = − inf

z

{
h(z) + λTg(z)

}
is convex, and projecting onto Rm

+ is easy (just take the componentwise positive part). It’s
also easy to produce a subgradient of ψ(λ), as the following proposition shows.

Proposition 42 If z̄ minimizes h+ λ̄
T
g, then −g(z̄) ∈ ∂ψ(λ̄).

Proof: Observe that ψ(λ) ≥ −h(z̄)− λTg(z̄) and ψ(λ̄) = −h(z̄)− λ̄
T
g(z̄). Hence

ψ(λ)− ψ(λ̄) ≥ −(λ− λ̄)Tg(z̄),

so −g(z̄) is a subgradient of ψ at λ̄. 2

3.4.1 Algorithm

The subgradient method uses two key ideas. The first is moving in a direction opposite to a
subgradient. The second is projecting onto Q, an operation which we denote by PQ. These
ideas are motivated by the following proposition.

Proposition 43 For nonminimizing x ∈ Q and nonzero g ∈ ∂f(x), ‖PQ(x− tg)− x∗‖ is
strictly decreasing for small t ≥ 0.
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The proof uses the fact that for x∗ ∈ Q and x ∈ E,

‖x− PQ(x)‖2 + ‖PQ(x)− x∗‖2 ≤ ‖x− x∗‖2 .

Proposition 43 guarantees that by taking a small step in a direction opposite a subgradient
and projecting the result onto Q, we reduce the distance to a minimizing x∗ ∈ Q. Repeating
this process will eventually drive the iterates to x∗. This motivates the subgradient method,

given xk, gk ∈ ∂f(xk), and step size tk > 0

repeat xk+1 = PQ(xk − tkgk/ ‖gk‖)

It’s important to note that proposition 43 makes no mention of improving the objective
value. To show that the subgradient method converges to an optimal value, we need a
Lipschitz assumption on f in the neighborhood of x∗. We also need to understand how to
choose the step size tk.

3.4.2 Convergence and step size

To prove that the subgradient method converges, we need to add the following assumption:

• the objective function f is M -Lipschitz on x∗ +RB, for some R > 0.

This gives the following lemma.

Lemma 44 If ‖x− x∗‖ ≤ R and g ∈ ∂f(x), then

1

M
(f(x)− f(x∗)) ≤

〈
g

‖g‖
,x− x∗

〉
.

Suppose that we start the subgradient method from some x0 satisfying ‖x0 − x∗‖ ≤ R,
and that f(xi) > f(x∗) + ε for all i = 0, . . . , k. In other words, we never get within ε > 0 of
optimality. In the worst case, how big could the optimality gap ε be after k iterations?

To answer this question, recall the subgradient update equation

xi+1 = PQ

(
xi − ti

gi
‖gi‖

)
.

Subtracting x∗ from both sides and taking norms gives

‖xi+1 − x∗‖2 =

∥∥∥∥PQ(xi − ti
gi
‖gi‖

)
− x∗

∥∥∥∥2

≤
∥∥∥∥xi − ti gi

‖gi‖
− x∗

∥∥∥∥2

= ‖xi − x∗‖2 + t2i − 2ti

〈
gi
‖gi‖

,xi − x∗
〉
.

35



This gives the k + 1 inequalities

R2 − ‖x0 − x∗‖2 ≥ 0

‖x0 − x∗‖2 − ‖x1 − x∗‖2 + (t1)2 − 2t1

〈
g1

‖g1‖
,x1 − x∗

〉
≥ 0

...

‖xk−1 − x∗‖2 − ‖xk − x∗‖2 + (tk)
2 − 2tk

〈
gk
‖gk‖

,xk − x∗
〉
≥ 0.

Adding these inequalities gives

R2 +
k∑
i=0

t2i ≥ 2
k∑
i=0

ti

〈
gi
‖gi‖

,xi − x∗
〉
. (3.3)

Claim 45 For i = 0, . . . , k, 〈
gi
‖gi‖

,xi − x∗
〉
>

ε

M
.

The proof is by contradiction. It uses lemma 44 and the fact that

ε < f(x0)− f(x∗) ≤ RM.

This holds because ‖x0 − x∗‖ ≤ R, f(xi) > f(x∗) + ε, and f is M -Lipschitz on x∗ +RB.
Combining this claim with inequality 3.3 gives

ε < M

(
R2 +

∑k
i=0 t

2
i

2
∑k

i=0 ti

)
.

This is the desired upper bound on the optimality gap. It shows that after k iterations of the
subgradient method, started from any x0 ∈ x∗ + RB, we get at least as close to optimality
as the right-hand side. This is stated formally in the next theorem.

Theorem 46 If f is M-Lipschitz on x∗ +RB, where x∗ is a minimizer of f , then

min
i=1,...,k

{f(xi)− f(x∗)} ≤M

(
R2 +

∑k
i=0 t

2
i

2
∑k

i=0 ti

)
.

Step size. Theorem 46 establishes that the subgradient method converges, provided the
step sizes ti are chosen such that the denominator goes to +∞ faster than the numerator.
One such choice is ti = 1/(i+ 1). A better choice, it turns out, is

ti =
r√
i+ 1

,
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which gives the convergence bound

min
i=1,...,k

{f(xi)− f(x∗)} ≤M

(
R2 + r2(1 + ln(k + 1))

4r
(√

k + 2− 1
) )

.

For large k, the right-hand side is O(1/
√
k). This is very slow : to get within ε = 10−3

of optimality, the subgradient method requires k ≈ 1/ε2 = 106 iterations. An interesting
fact, however, is that the bound is independent of the dimension of x, making the method
potentially attractive for very large problems.

Although the subgradient method is slow, it’s actually optimal for the problem in this
section, where we assume only that a subgradient is available, projection is easy, and the
objective function is Lipschitz on a neighborhood of a minimizer in Q. There are counterex-
amples showing that (roughly speaking) no algorithm can do better than O(1/

√
k) on this

problem; to improve the convergence bound requires further assumptions about the prob-
lem structure. The next section narrows the scope to smooth objective functions, for which
O(1/k) and even O(1/k2) algorithms have been developed.
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3.5 The gradient method

In §3.4, we considered the problem of minimizing a convex, proper (but possibly nonsmooth)
objective function over a closed, convex set. We now narrow our focus to objective functions
that are smooth, i.e., that are differentiable and whose gradients satisfy a Lipschitz condition.

For any unit direction d, the rate of decrease in the function f at x is

− lim
t↓0

f(x + td)− f(x)

t
= −〈∇f(x),d〉.

Assuming ∇f(x) 6= 0, the rate of decrease is optimized by the negative gradient, d =
−∇f(x). This is the basis for the gradient method,

given xk and step size tk > 0

repeat xk+1 = xk − tk∇f(xk)

Theorem 47 If f : E→ R and ∇f is L-Lipschitz, then for all x and y,

|f(y)− (f(x) + 〈∇f(x),y − x〉)| ≤ L

2
‖y − x‖2 .

Theorem 47 bounds the error between f(y) and f(x) + 〈∇f(x),y − x〉, the linear approxi-
mation to f(y). The proof uses the fundamental theorem of calculus and the chain rule.

Assuming that the linear approximation underestimates f(y), theorem 47 gives the
quadratic upper bound

f(y) ≤ f(x) + 〈∇f(x),y − x〉+
L

2
‖y − x‖2 . (3.4)

The y that minimizes this upper bound is

y = x− 1

L
∇f(x),

which looks like a gradient method iteration with tk = 1/L. This is the step size that we’ll
use to analyze the algorithm. Note that this y gives the upper bound

f

(
x− 1

L
∇f(x)

)
≤ f(x)− 1

2L
‖∇f(x)‖2 . (3.5)

The results so far hold for convex or nonconvex f . If we assume that f is convex, we get
the following result.

Theorem 48 (Co-coercivity) For convex f : E→ R with ∇f L-Lipschitz,

〈∇f(x)−∇f(y),x− y〉 ≥ 1

L
‖∇f(x)−∇f(y)‖2 .
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This theorem strengthens the monotonicity that we already know the gradient, a monotone
operator, satisfies. With a little algebra, co-coercivity implies that with step size tk = 1/L,
the gradient method iterates satisfy

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 1

L2
‖∇f(xk)‖2 .

In other words, the distance to any minimizer x∗ is nonincreasing.

Theorem 49 Let f be convex and have L-Lipschitz gradient. If xk+1 = xk − (1/L)∇f(xk)
and x∗ minimizes f , then

f(xk)− f(x∗) ≤ 2L ‖x0 − x∗‖2

k + 4
.

The proof uses the quadratic upper bound (3.5) and the subgradient inequality.
Theorem 49 says that the gradient method is a descent method with O(1/k) convergence.

This is a big improvement over the O(1/
√
k) convergence of the subgradient method: to get

within ε = 10−3 of optimality, the gradient method requires only k ≈ 1/ε = 103 iterations,
rather than the 106 subgradient iterations. Of course, the gradient method applies only to
smooth objective functions.

Although we proved theorem 49 using the step size tk = 1/L, the O(1/k) convergence
holds for other step sizes, provided that they’re not too much larger than 1/L. In practice,
tk is often chosen by backtracking.

39



3.6 Fast proximal gradient methods

In 1983, Yurii Nesterov published a method with O(1/k2) convergence for the problem in
§3.5. Although this was a huge improvement over the gradient method’sO(1/k) convergence,
Nesterov’s first method was fairly opaque and gained little attention. Nesterov published a
more transparent O(1/k2) method in 1988, and another in 2005. In 2008, Amir Beck and
Marc Teboulle developed the fast iterative shrinkage-thresholding algorithm (FISTA), an
O(1/k2) splitting method that has since gained widespread popularity. [3] Later in 2008,
Paul Tseng gave a clean derivation of the convergence properties of a family of splitting
methods that includes FISTA. [4] The development in this section follows Tseng’s.

3.6.1 General framework

The setting is the problem
inf {f(x) = g(x) + h(x)} ,

where g : E→ R is convex, ∇g is L-Lipschitz, and h : E→ R is closed, proper, and convex.
We also assume

• the infimum is attained at x∗ (not necessarily uniquely), and

• the proximity operator of h is easy to evaluate.

We consider the following family of methods, parameterized by θ.

given x, v (initialized by v0 = x0), parameter θ, and Lipschitz constant L > 0
repeat

1. θ ← θk

2. y← (1− θ)x + θv

3. y+ ← y − (1/L)∇g(y)

4. x+ minimizes h+ (L/2) ‖· − y+‖2

5. v+ ← x+ + (1/θ − 1)(x+ − x)

6. x← x+

7. v← v+

If θk = 1 for all k, then at every iteration v = x = y, and the algorithm reduces to
a gradient step followed by a proximity operation. The θk = 1 case, called the proximal
gradient method (PGM), further reduces to PPM when g ≡ 0.
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We now search for a choice of θ that results inO(1/k2) convergence. Since g is L-Lipschitz,
the quadratic upper bound (3.4) gives

g(x+) ≤ g(y) + 〈∇g(y),x+ − y〉+
L

2

∥∥x+ − y
∥∥2
. (3.6)

From the definition of x+,

0 ∈ ∂
(
h+

L

2

∥∥· − y+
∥∥2
)

(x+)

= ∂h(x+) + L(x+ − y+),

where the second line follows from the subdifferential calculus theorem 26 and the differen-
tiability of ‖·‖2. But L(y+ − x+) ∈ ∂h(x+) means that for all z,

h(x+) ≤ h(z) + L〈x+ − z,y+ − x+〉.

Plugging in the definition of y+ and simplifying,

h(x+) ≤ h(z) + L〈x+ − z,y − x+〉 − 〈x+ − z,∇g(y)〉. (3.7)

Adding inequalities (3.6) and (3.7) gives

f(x+) ≤ g(y) + h(z) + 〈∇g(y), z− y〉+ L〈x+ − z,y − x+〉+
L

2

∥∥x+ − y
∥∥2
.

Since g is convex,
g(y) + 〈∇g(y), z− y〉 ≤ g(z).

For all z, therefore,

f(x+) ≤ f(z) + L〈x+ − z,y − x+〉+
L

2

∥∥x+ − y
∥∥2
. (3.8)

Evaluating inequality (3.8) at z = x and z = x∗ and multiplying through by 1 − θ and
θ, respectively, gives

(1− θ)f(x+) ≤ (1− θ)
(
f(x) + L〈x+ − x,y − x+〉+

L

2

∥∥x+ − y
∥∥2
)

θf(x+) ≤ θ

(
f(x∗) + L〈x+ − x∗,y − x+〉+

L

2

∥∥x+ − y
∥∥2
)
.

Adding these inequalities, writing the terms involving y as a difference of squares, and
simplifying gives

2

Lθ2

(
f(x+)− f(x∗)

)
+
∥∥v+ − x∗

∥∥2 ≤ 2(1− θ)
Lθ2

(f(x)− f(x∗)) + ‖v − x∗‖2 . (3.9)

We’ve also used the definitions of y+ and v+.
Recall that θ ∈ [0, 1] is a free parameter that can be independently chosen at each

iteration. A clever choice of θ gives the following theorem.
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Theorem 50 For θk = 2/(k + 1),

f(xk)− f(x∗) ≤ 2L ‖x0 − x∗‖2

(k + 1)2
.

The proof is by induction, using the fact that

1− θk
θk

=
k2 − 1

4
<
k2

4
=

1

θ2
k−1

.

3.6.2 The fast iterative shrinkage-thresholding algorithm

The FISTA algorithm is the following.

given xk−2, xk−1, and Lipschitz constant L > 0
repeat

1. y = xk−1 + k−2
k+1(xk−1 − xk−2)

2. ŷ = y − (1/L)∇g(y)

3. xk = argminx

{
h(x) + (L/2) ‖x− ŷ‖2

}
FISTA converges according to

min
i=1,...,k

{f(xi)− f(x∗)} ≤ 2L ‖x0 − x∗‖2

(k + 1)2
.

Note that FISTA is not a descent method, and that when h ≡ 0, FISTA reduces to Nesterov’s
second method. The method combines a gradient step (step 2) with a proximity operator
(step 3). There are counterexamples to show that FISTA’s O(1/k2) convergence is optimal
within the class of algorithms using only first-order information.

In the form above, FISTA requires knowing the Lipschitz constant L. In practice, how-
ever, the Lipschitz constant is often unknown.A simple work-around is to replace 1/L by a
step size t, which is determined by backtracking. With this modification, the algorithm is

given xk−2, xk−1, and Lipschitz constant L > 0
repeat

1. y = xk−1 + k−2
k+1(xk−1 − xk−2)

2. ŷ = y − t∇g(y)

3. while g(x+) > g(y) + 〈∇g(y),x+ − y〉+ 1
2t ‖x

+ − y‖2, set t← t/2 and return to step 2

4. xk = argminx

{
h(x) + (L/2) ‖x− ŷ‖2

}
The O(1/k2) convergence result carries through for FISTA with backtracking.
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Chapter 4

Variational analysis and nonconvex
optimization
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4.1 Generalized derivatives

4.1.1 Regular subgradients

Recall that for convex f : E→ R, y is a subgradient of f at x if for all z,

f(x + z) ≥ f(x) + 〈y, z〉.

This subgradient inequality is a one-sided, global estimate of f(x+z). We used subgradients
extensively in both duality theory and algorithms for convex optimization.

For continuously differentiable f : E → R, we have the analogous result that y is the
gradient of f at x if in the limit z→ 0,

f(x + z) = f(x) + 〈y, z〉+ o(z).

This two-sided, local estimate of f(x + z) is somewhat less useful for optimization. We’d
like to develop a one-sided estimate for nonconvex functions. To do so, we extend the idea
of subgradients to nonconvex functions with the following definition.

Definition 31 (Regular subgradient) For f : E→ R finite at x, y ∈ ∂̂f(x) if as z→ 0,

f(x + z) ≥ f(x) + 〈y, z〉+ o(z).

We call y a regular subgradient and ∂̂f the regular subdifferential of f at x.

The regular subdifferential provides a one-sided, local estimate of f(x + z). It has a few
familiar-looking properties:

1. If x is a local minimizer of f , then 0 ∈ ∂̂f(x).

2. If 0 ∈ ∂̂f(x), then x is a strict local minimizer of f + δ ‖· − x‖ for all δ > 0.

3. If g : E→ R is continuously differentiable, then

∂̂(f + g)(x) = ∂̂f(x) +∇g(x).

These properties are as close as we can get to the powerful result that for convex f , x∗ is a
global minimizer of f if and only if 0 ∈ ∂f(x∗).

We’ve also used subdifferential calculus (see theorem 26) in several proofs. This calculus
extends to nonconvex functions in the following sense.

Theorem 51 (Fuzzy sum rule) Let f1, f2 : E → R be finite at x and closed. If y ∈
∂̂(f1 + f2)(x), then for i = 1, 2 there exists an xi close to x and a yi ∈ ∂̂fi(xi) such that
fi(xi) is close to fi(x) and y1 + y2 is close to y.

The proof uses local arguments and quadratic penalties. This is quite different from our
convex analysis proofs, which relied on global arguments and separating hyperplanes. This
is a recurring theme that distinguishes nonconvex and convex analysis.

44



4.1.2 Limiting subgradients

The graph of the regular subdifferential is generally not closed. This is unsatisfying, since
we’d like to take limits, e.g., to prove the convergence of algorithms. An object that allows
this sort of analysis is the limiting subdifferential.

Definition 32 (Limiting subgradient) Let f : E → R be finite at x. A vector y is a
limiting subgradient of f at x, denoted y ∈ ∂f(x), if there exists a sequence xr → x with
yr ∈ ∂̂f(xr) and f(xr) → f(x), so yr → y. We call ∂f(x) the limiting subdifferential of f
at x.

Like the regular subdifferential, the limiting subdifferential has some familiar properties:

1. If f is continuously differentiable, then ∂f(x) = {∇f(x)}.

2. If f : E→ R is closed and convex, then ∂f(x) is exactly the subdifferential defined in
§1.3.3. In other words, there’s no clash of notation.

3. If f is Lipschitz, then ∂f has a closed graph with nonempty compact (set) values.

4. If x is a local minimizer of f , then 0 ∈ ∂f(x).

The limiting subdifferential also satisfies a cleaner version of the fuzzy sum rule:

Theorem 52 (Sum rule) If f1, f2 : E→ R are closed and f1 or f2 is Lipschitz, then

∂(f1 + f2)(x) ⊂ ∂f1(x) + ∂f2(x).

The proof uses the fuzzy sum rule.
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4.2 Metric regularity

4.2.1 The Ekeland variational principle

Theorem 53 (Ekeland 1974) Consider f : E→ R closed and ε, λ > 0. If f(x̂) ≤ inf f+ε,
then there exists an x̄ satisfying

1. ‖x̄− x̂‖ ≤ λ,

2. f(x̄) ≤ f(x̂), and

3. x̄ strictly minimizes f + (ε/λ) ‖· − x̄‖.

The Ekeland variational principle was published by the French mathematician Ivar Ekeland
in 1974. It holds much more generally than the form stated here, and is used in many fields of
applied math. It’s unique in that it gives an existence criterion that requires no compactness
assumptions (unlike the usual Weierstrass arguments).

The proof involves showing that f̂ = f+(ε/λ) ‖· − x̂‖ is closed, that {x | f(x) ≤ f(x̂)} is
nonempty and compact, and hence that the set of minimizers of f̂ is nonempty and compact.

When we apply the Ekeland variational principle, we usually think of λ as being some
function of ε (typically

√
ε), and argue that near an approximate minimizer x̂ lies an exact

minimizer x̄ of a “nearby function.” This approach gives the following result.

Corollary 54 For closed f : E→ R, if f(x̂) ≤ inf f + ε, then

• there exists an x̄ ∈ x̂ +
√
εB with f(x̄) ≤ f(x̂), and

• there exists a ȳ ∈
√
εB with ȳ ∈ ∂f(x̄).

4.2.2 Definitions

Metric regularity is a fundamental topic in many fields of numerical analysis, particularly
inverse problems. It provides a general framework from which to view nonlinear root finding,
matrix rank, linear programming sensitivity, and other familiar ideas. We will introduce
metric regularity in general terms, then discuss its application to nonconvex optimization.

Consider Euclidean spaces E,Y and a set valued operator Φ : E ⇒ Y. Given the data
y ∈ Y, we’re interested in the generalized equation y ∈ Φ(x). In particular, we’d like to
understand whether an approximate solution x (meaning an x for which y is close to Φ(x))
is necessarily close to a true solution. Loosely, this depends on the smoothness of the inverse
operator Φ−1.

Definition 33 (Distance) The distance from x to a set Z is

dZ(x) = inf
z∈Z
{‖x− z‖} .

Note that d∅(x) = +∞ for all x.
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Example. For Φ : Rn ⇒ Rm defined by

Φ(x) =

{
Ax + Rm

+ x ∈ Rn
+

∅ otherwise,

the generalized equation y ∈ Φ(x) is a linear programming feasibility problem with solutions
satisfying x ≥ 0 and Ax ≤ y. Suppose x̂ ≥ 0 and ‖(Ax̂− y)+‖ is small. Is x̂ necessarily
close to the feasible region {x ≥ 0 | Ax ≤ y}? It turns out that the answer is yes.

Theorem 55 (Hoffman 1952) For any x̂, there exists a k (depending on the data A and
y) such that

d{x≥0 | Ax≤y}(x̂) ≤ k ‖(Ax̂− y)+‖ .

Metric regularity generalizes this idea to other types of inverse problems.

Definition 34 (Metrically regular) Suppose ȳ ∈ Φ(x̄). A set-valued operator Φ : E ⇒ Y
is metrically regular at x̄ for ȳ if there exists a k > 0 such that for all (x,y) close to (x̄, ȳ),

dΦ−1(y)(x) ≤ kdΦ(x)(y).

A particular consequence of metric regularity is that Φ−1(y), the inverse image of y, is
nonempty for all y near ȳ.

Examples.

1. If the single-valued map g : Y → E is Lipschitz and Φ(x) = g−1(x), then Φ is
metrically regular (to see this, set k equal to the Lipschitz constant of g). This suggests
that metric regularity is a sort of inverse of the idea of Lipschitz continuity.

2. If Φ : R → R is defined by Φ(x) = x3, then Φ−1(x) = y1/3. This Φ is not metrically
regular at 0, since the ratio

dΦ−1(y)(x)

dΦ(x)(y)
=

∣∣x− y1/3
∣∣

|x3 − y|

is not bounded for small (x, y). Note that the inverse map Φ−1(y) = y1/3 is not
Lipschitz.

3. The linear map A : E → Y is metrically regular at 0 (and in fact, anywhere) if and
only if A is surjective or, equivalently, if the matrix representation of A has full row
rank. This can be proved by the singular value decomposition, with k = 1/σmin(A).
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4.2.3 Conditions for metric regularity

We’ve seen that an answer to the question “When is an approximate solution to y ∈ Φ(x)
necessarily close to a true solution?” is “When Φ is metrically regular.” We now develop
conditions for metric regularity.

To begin, consider the simple case of a continuous, single-valued mapping f : E → Y.
Suppose x̄ ∈ S ⊂ E with S closed, and define FS : E ⇒ Y by

FS(x) =

{
{f(x)} x ∈ S
∅ otherwise.

If FS is metrically regular at x̄, then F−1
S (y) = {x ∈ S | f(x) = y} is nonempty for all y near

F (x̄). In other words, the problem of finding an x with f(x) = y is solvable for y near f(x̄).
Hence minS ‖f(·)− y‖ = 0, and if x ∈ argminS ‖f(·)− y‖, then f(x) = y. The following
theorem establishes an approximate converse of this result.

Lemma 56 (Ioffe 1979) Suppose ‖x− x̄‖, ‖y − f(x)‖, and δ > 0 are small. If the impli-
cation

x ∈ argmin
S
{‖f(·)− y‖+ δ ‖· − x‖} =⇒ f(x) = y

holds, then FS is metrically regular at x̄.

The proof is by contradiction, and uses the Ekeland variational principle (53).
It’s not clear how to check the conditions in Ioffe’s lemma. To establish more constructive

conditions, we add the assumption that f is Lipschitz and use the following definition.

Definition 35 (Normal cone) For x̄ ∈ S ⊂ E with S closed, the set NS(x̄) = ∂δS(x̄) is
called the normal cone to S at x̄.

Note that ∂· is the limiting subdifferential. By definition, NS(x̄) is always a closed convex
cone. In the special case of convex S, the normal cone to S at x̄ is the set of all vectors y
making an obtuse angle with vectors x− x̄, for any x ∈ S:

NS(x̄) = {y | 〈y,x− x̄〉 ≤ 0 for all x ∈ S} .

In the convex case, the supporting hyperplane theorem implies that x̄ ∈ intS if and only
if NS(x̄) = {0}. The following theorem allows us to generalize this result to the nonconvex
case (see corollary 58).

Theorem 57 Suppose f : E → Y is Lipschitz and x̄ ∈ S ⊂ E with S closed. If the
implication

0 ∈ ∂〈w, f(·)〉(x̄) +NS(x̄) =⇒ w = 0

holds, then the mapping

x 7→

{
{f(x)} x ∈ S
∅ x /∈ S

is metrically regular at x̄.
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The proof of theorem 57 has a similar structure to Ioffe’s lemma: it’s by contradiction,
using the Ekeland variational principle. It also involves the sum rule (theorem 52) and the
following properties of the limiting subdifferentiall:

• For Lipschitz g : E→ Y and continuously differentiable g : Y → R,

∂(g ◦ g)(x) = ∂〈∇g(g(x)),g(·)〉(x).

In other words, g ◦ g can be replaced by its linear approximation.

• If g : E→ R is L-Lipschitz, then the graph of ∂g is closed and for all x,

∂g(x) ⊂ LB.

• The graph of ∂δS is closed.

Example. Consider the special case where S = E and f is smooth. In this case, δS ≡ 0,
∂δS ≡ {0}, and ∂〈w, f(·)〉(x) = 〈w,∇f(x)〉. The metric regularity implication therefore
reduces to

0 = 〈w,∇f(x)〉 =⇒ w = 0,

which holds if and only if the Jacobian ∇f is surjective. Hence a smooth Lipschitz map
defined on all of E with surjective Jacobian is metrically regular. This result is also known
as the inverse function theorem.

Corollary 58 For any closed set S, x̄ ∈ intS if and only if NS(x̄) = {0}.

Instead of using the supporting hyperplane theorem, which does not apply to the nonconvex
case, the proof follows from theorem 57 with f the identity map.

4.2.4 Error bounds

We now consider the slightly more general system{
f(x) ∈ z + P

x ∈ S.

Theorem 59 Suppose f : E → Y is Lipschitz, S ⊂ E and P ⊂ Y are closed, x̄ ∈ S, and
f(x̄) ∈ P . If there is no k > 0 such that for all x ∈ S near x̄ and small z,

dS∩f−1(z+P )(x) ≤ kdP (f(x)− z),

then there exists a nonzero w ∈ NP (f(x̄)) with 0 ∈ ∂〈w, f(·)〉(x̄) +NS(x̄).

The proof uses theorem 57 and the fact that NS×P (x̄, ȳ) = NS(x̄)×NP (ȳ).
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Example. Suppose Y = E, and that the transversality condition NS(x̄) ∩−NP (x̄) = {0}
holds. Then for all δ > 0, the set

S ∩ (z + P ) ∩ (x̄ + δB)

is nonempty. The analog of this result for convex S and P follows from the separating
hyperplane theorem. Theorem 59 therefore gives a kind of local, nonconvex separation.
An interesting application of this result is that transversality implies that the method of
alternating projections, an algorithm for finding a point in the intersection of two sets,
converges locally.

We’d like to extend theorem 59 from its current form, which requires that x̄ ∈ S, to the
general case of x ∈ E. To do this, we introduce the idea of exact penalty functions.

Proposition 60 (Exact penalty function) If f : E→ R is L-Lipschitz around x̄, a local
minimizer of f over S ⊂ E, then x̄ locally minimizes f + kdS for all k ≥ L.

Proposition 60 allows us to exchange the constrained problem of minimizing f over S for the
unconstrained problem of minimizing f + kdS over E. Note that the modified objective in
the unconstrained problem, which involves the (nonsmooth, 1-Lipschitz) distance function,
is Lipschitz but nonsmooth.
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4.3 Tangent cones and optimality

Definition 36 (Tangent cone) The tangent cone to a set S at x̄ is

TS(x̄) =
{

lim
r

dr

∣∣∣ there exist tr ↓ 0 with x̄ + trdr ∈ S
}
.

In other words, the tangent cone is the set of limit points of sequences of directions in which
you can take a small step from x̄ and remain in S. For any S, TS(x̄) is a closed cone.

Proposition 61 The dual cone of TS(x̄) is −∂̂δS(x̄).

Corollary 62 For closed, convex S, TS(x̄) = cl(R+(S − x̄)) = −NS(x̄)+.

Corollary 63 For any S ⊂ E, S++ is the smallest closed, convex cone containing S.

Equivalently, S++ is the intersection of all closed, convex cones containing S.

Proposition 64 (Basic optimality condition) If x̄ is a local minimizer of f : E → R
over S ⊂ E and f is differentiable at x̄, then ∇f(x̄) ∈ TS(x̄)+.

Proposition 64 is the basic first-order necessary optimality condition for nonlinear optimiza-
tion. The proof uses properties of the regular subdifferential. To apply the result, it’s
useful to know how to compute tangent cones to sets with structure, such as S ∩ f−1(P ) =
{x ∈ S | f(x) ∈ P}, the feasible region of an optimization problem.

Proposition 65 For S ⊂ E, P ⊂ Y, and f : E → Y continuously differentiable at x̄ ∈ S
with f(x̄) ∈ P ,

TS∩f−1(P )(x̄) ⊂ TS(x̄) ∩∇f(x̄)−1TP (f(x̄)).

Note that the set ∇f(x̄)−1TP (f(x̄)) is the inverse image of the tangent cone to P at f(x̄),
under the inverse image of ∇f(x̄).

Proposition 65 allows us to compute the tangent cone to S ∩ f−1(P ) by computing a
Jacobian and the tangent cones to S and P . However, the basic optimality condition involves
the dual of the tangent cone of the the feasible region, rather than the tangent cone itself. To
construct duals to tangent cones, it helps to view the tangent cone in terms of the distance
function, as follows.

Proposition 66 For x̄ ∈ S, a direction d lies in TS(x̄) if and only if there exists a sequence
tr ↓ 0 with

lim(1/tr)dS(x̄ + trd) = 0.

When S is convex, the condition reduces to limt↓0(1/t)dS(x̄ + td) = 0. Proposition 66 allows
us to introduce the machinery of metric regularity, which bounds the distance to the feasible
region.
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Theorem 67 Assume S ⊂ E and P ⊂ Y are closed and convex, f : E→ Y is continuously
differentiable, x̄ ∈ S, f(x̄) ∈ P , and the constraint qualification{

w ∈ NP (f(x̄))

−∇f(x̄)∗w ∈ NS(x̄)
=⇒ w = 0

holds. Then
TS∩f−1(P )(x̄) = TS(x̄) ∩∇f(x̄)−1TP (f(x̄)).

The proof uses proposition 66, as well as our metric regularity theorem 59, extended by
proposition 60. Note that although S and P are convex, the feasible region S ∩ f−1(P ) is
nonconvex in general.

Corollary 68 For closed, convex S, P ⊂ E with x̄ ∈ S ∩P , if NP (x̄)∩−NS(x̄) = {0}, then
TP∩S(x̄) = TP (x̄) + TS(x̄).

The result follows from theorem 67 with f set to identity.
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4.4 The Karush-Kuhn-Tucker conditions

We can now derive optimality conditions for the problem

minimize f(x)
subject to f(x) ∈ P

x ∈ S,
(4.1)

where f : E → Y is continuously differentiable at a local minimizer x̄, f is continuously
differentiable, and the sets S ⊂ E and P ⊂ Y are closed and convex.

The constraint qualification in theorem 67 can be written in terms of tangent cones as

TP (f(x̄))−∇f(x̄)TS(x̄) = Y, (4.2)

which is known as the Robinson constraint qualification. Showing this requires the following
facts:

• For any cones K,Q and linear A, (K + A∗Q)+ = K+ ∩ A−1Q+.

• For any convex cone L, L+ = {0} if and only if L = Y.

Assuming x̄ is a local minimizer for problem 4.1, the basic optimality condition 64 is
∇f(x̄) ∈ TS∩f−1(P )(x̄)+. If the Robinson condition also holds, this is equivalent to

∇f(x̄) ∈
(
TS(x̄) ∩∇f(x̄)−1TP (f(x̄))

)+
.

Applying the Krein-Rutman polar cone calculus (a consequence of Fenchel duality) to the
right-hand side, the optimality condition reduces to

−∇f(x̄) ∈ NS(x̄) +∇f(x̄)∗NP (f(x̄)).

This gives the following result.

Corollary 69 Suppose x̄ is a local minimizer for problem (4.1). If the Robinson condition
(4.2) holds, then

−∇f(x̄) ∈ NS(x̄) +∇f(x̄)∗NP (f(x̄)).

These are the first-order necessary optimality conditions for the abstract nonlinear program
(4.1). If P is described by a system of inequality and equality constraints, and if S = E, we
get the famous Karush-Kuhn-Tucker conditions.

Theorem 70 (Karush-Kuhn-Tucker) Suppose x̄ is a local minimizer for

minimize f(x)
subject to gi(x) ≥ 0 i = 1, . . . , q

h(x) = 0,
(4.3)
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where f is differentiable at x̄ and h and the gi are continuously differentiable. Define the
active set I = {i | gi(x̄) = 0} and assume the Mangasarian-Fromowitz condition: ∇h(x̄) is
surjective and there exists a d ∈ null(∇h(x̄)) such that 〈∇gi(x̄),d〉 > 0 for all i ∈ I.

Then there exist Lagrange multipliers λ ∈ Rq and µ such that

∇f(x̄) =
∑
i∈I

λi∇gi(x̄) +∇h(x̄)∗µ

and λ ≥ 0.

The Karush-Kuhn-Tucker theorem was originally proved by William Karush in his 1939
master’s thesis at the University of Chicago. The result was largely unappreciated until
Harold Kuhn and Albert Tucker rediscovered it in 1951 at Princeton University. The proof

involves applying corollary 69 with f(x) =
[
g1(x) . . . gq(x) h(x)T

]T
and w =

[
λT µT

]T
.
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