Controlling big, diverse, nonlinear load aggregations for grid services by adjusting device setpoints

IEEE Conference on Decision and Control, Austin, TX

Kevin Kircher¹, Yuan Cai, Steven Leeb and Leslie Norford MIT Electrical Engineering & Building Technologies

December, 2021

¹Presenter, http://kircher.mit.edu

A control opportunity

- many electrical devices regulate measurements near setpoints
- devices increasingly accept setpoints via the Internet
- often, setpoints can be adjusted slightly without inconvenience
- setpoint adjustments cause device power perturbations

- aggregated over *n* devices, power perturbations can be large
- can we shape them to provide services to the power grid?

Example devices

collectively, these devices use about half of U.S. electricity

A scalable control architecture

sensing and communication requirements are independent of n

A three-step control method

- 1. learn to predict aggregate power under baseline operation
- 2. learn how setpoint adjustments perturb aggregate power
- 3. embed baseline predictions and perturbation model in load-shifting optimization
- \star problem dimensions in all three steps are **independent of** n

Step 1: Baseline prediction

here we use a feedforward neural network

Step 2: Perturbation system identification

here we use random binary inputs and a linear time-varying model

Step 3: Load-shifting optimization

- decide a trajectory of normalized setpoint adjustments
- to **minimize** a cost related to grid-service performance
- subject to
 - the perturbation model (a set of equality constraints)
 - \diamond $-1 \leq$ normalized setpoint adjustments ≤ 1
- paper provides convex, risk-averse formulations for
 - peak shaving
 - ♦ arbitraging energy prices or electricity CO₂ intensities
 - planning capacity offers for regulation or reserve

Context for numerical examples

- simulations set in Austin during Winter Storm Uri (Feb '21)
- 50,000 diverse devices simulated, 115 MW peak load
- ullet mild setpoint adjustments, e.g. $\pm 1~^{\circ}\text{C}$ for heat pumps

Photo credit: CBS Austin

Peak shaved by 18 MW (16%) in this simulation

if similar (non-intrusive) load reductions had been possible state-wide, could blackouts have been avoided?

Summary

the data-driven control framework proposed here

- accommodates wide varieties of devices and grid services
- can be deployed at low cost using existing hardware
- can scale to gigawatt-sized aggregations
- requires no private information