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Abstract

Thermal resistor-capacitor networks are a popular method for control-oriented building modeling. A basic
assumption underlying this method is that the continuous temperature distribution in a wall or window is
well-approximated by a small number of lumped capacitances. In this paper, we explore the accuracy of this
approximation when a single capacitance is used. We derive conditions on the dimensionless parameters that
characterize the problem, called Biot numbers, that lead to small errors in approximating a wall or window’s
surface heat fluxes and internal energy. The lumped capacitance approximation can be surprisingly accurate
for Biot numbers much larger than the conventional upper bound of 0.1. In particular, the approximation is
nearly exact for window panes, and is often acceptable for uniform walls. A large Biot number at an indoor
wall surface, however, leads to large lumped capacitance approximation errors.
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1. Introduction

Buildings consumed 41% of U.S. primary energy
in 2010, at a cost of $448 billion and 7% of the
world’s greenhouse gas emissions. [1] Over half of
the energy consumed in U.S. buildings goes toward
heating, ventilation and air conditioning (HVAC).
[2, 3] The opportunities for improving HVAC con-
trols are significant: a 2005 study estimated that so-
phisticated controls could reduce the U.S. commer-
cial sector’s energy expenditures by 13% at relatively
low capital costs. [4]

Model predictive control (MPC), an optimization-
based method widely used in the chemical processing
and automotive industries [5], has shown promise in
HVAC applications. In 2011, a two-week deploy-
ment of MPC for radiant heating on a university
campus reported upwards of 15% savings in HVAC
energy relative to standard controls. [6] In 2012,
MPC was deployed in a six-story office building, ac-
tuating temperature and flow rate setpoints and the
angles of controllable blinds. [7] The system ran
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smoothly for the full three-month trial with no com-
plaints from building occupants; supporting simula-
tions estimated 17% HVAC energy savings. Another
2012 MPC study in an office building estimated 60%
energy savings over a five day trial. [8] Many sim-
ulation studies have predicted improvements on par
with these early experimental results. [9]

A significant barrier to widespread adoption of
MPC for HVAC systems is the need for a building
model. [10] To be useful for MPC, such a model must
(1) accurately predict indoor air temperatures as a
function of weather, internal heat gains, and control
actions, and (2) easily interface with an optimization
solver. Existing building simulators such as Energy-
Plus and TRNSYS meet the first criterion, but fail
the second; although they can technically interface
with scientific computing environments capable of
optimization, the integration process requires com-
plicated middleware, and the optimization can be
slow and unreliable. These facts motivate the cur-
rent research effort to develop control-oriented build-
ing modeling software. Three promising approaches
are neural networks, autoregressive processes, and
resistor-capacitor (RC) networks. [11] This paper
focuses on RC networks, which are gray-box models
that have shown surprisingly good predictive power
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in many studies. [12, 13, 14, 15, 16, 7] We wish to
understand this success, and to inform RC network
modeling by highlighting cases where the RC net-
work loses its physical meaning.

RC networks aim to capture the dominant build-
ing physics, while ignoring the nonlinearities that
complicate controller design. The typical approach,
as described in §2 of [17], is to assign a thermal ca-
pacitance to each wall (or window, floor, or ceiling)
and to the air in each room. Each air node is con-
nected to the adjacent wall nodes through a ther-
mal resistance. Heat transfer between air and wall
nodes is assumed to be linear, and coupling between
walls is ignored. The resulting model is a linear,
time-invariant dynamical system whose states are
the node temperatures. The model parameters may
be assigned using a priori knowledge of the building,
or estimated from data.

The RC network approach involves three major
assumptions:

1. radiative coupling between surfaces is negligi-
ble,

2. air-wall convection is linear, and

3. the continuous temperature distribution inside
a wall can be approximated by a small number
of lumps of uniform temperature.

Assumption 1 is reasonable for interior wall surfaces,
which are often nearly isothermal with one another.
It is less accurate for coupling between interior and
exterior walls. Assumption 2 is a common model
of convection, but can also introduce error; for ex-
ample, film coefficients for natural convection along
vertical walls vary with the cube root of the driving
temperature gradient. [18] RC network models ig-
nore such mild nonlinearities. Assumption 3 is the
focus of this paper.

The overall goal of our study is to understand the
applicability of RC network models in order to en-
hance the capabilities of MPC in buildings. Specif-
ically, we aim to quantify the lumped capacitance
approximation accuracy in the RC network setting.
For tractability, we restrict our attention to the case
where a uniform wall or window is modeled as a sin-
gle lumped capacitance, and where Assumptions 1
and 2 are accurate. We begin in §2 by formally stat-
ing the problem and reviewing related work (§2.1),
deriving the lumped capacitance approximation (§2.2),
defining error metrics (§2.3), and presenting the an-
alytical solution (§2.4). The accuracy results in §3

include both steady state (§3.1) and transient (§3.2)
regimes; we apply the results to two examples in
§3.3 and conclude in §4. Mathematical details and
a summary of notation can be found in the appen-
dices.

2. Theory

2.1. Problem statement and related work
The lumped capacitance approximation eliminates

spatial variation from transient conduction, reducing
the heat equation

∂T

∂t
= α

∂2T

∂x2

to an ordinary differential equation in time. Intro-
ductory heat transfer textbooks commonly present
the lumped capacitance approximation as the first
method for analyzing transient conduction, along
with the rule of thumb that the approximation is
accurate for Biot numbers less than 0.1. [19, 20, 21]
The method is often justified through the exam-
ple of a small, highly conductive object symmetri-
cally cooled by convection to a surrounding fluid.
We wonder whether the “Bi ≤ 0.1” rule of thumb
extends to the asymmetric situations that arise in
buildings.

To explore this question, we consider the uni-
form, one-dimensional slab shown in Figure 1. We
assume that all thermal properties, including the
heat transfer coefficients at either surface, are spa-
tially uniform and independent of temperature. The
two sides of the slab are exposed to the driving
temperatures T0 and Tl, with heat exchange gov-
erned by the coefficients h0 and hl (W/m2·K). The
surfaces gain or lose the fluxes q̃0 and q̃l (W/m2)
through temperature-independent mechanisms, such
as shortwave radiation or heat sources or sinks. This
gives the net surface fluxes

q0(t) = h0(T0 − T (0, t)) + q̃0

ql(t) = hl(T (l, t)− Tl) + q̃l,
(1)

with fluxes to the right defined to be positive. We
seek to quantify the accuracy of the lumped capaci-
tance approximation to the true solution of the prob-
lem

∂T

∂t
= α

∂2T

∂x2
, x ∈ [0, l], t ≥ 0

T (x, 0) = Ti, x ∈ [0, l]

∂T

∂x

∣∣∣∣
0,t

= −q0(t)

k
,

∂T

∂x

∣∣∣∣
l,t

= −ql(t)
k

, t ≥ 0,

(2)
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Figure 1: a uniform slab of length l, thermal diffusivity α, and thermal conductivity k. The net heat fluxes q0(t) and ql(t)
depend on the surface temperatures T (0, t) and T (l, t) and the driving temperatures T0 and Tl. The lumped capacitance
approximation of T (x, t) is TLC(t).

where Ti is the initial temperature of the slab.
In 2001, Alhama and Campo studied a special

case of this problem with T0 = Tl and q̃0 = q̃l = 0,
so that all asymmetry was in the heat transfer co-
efficients h0 6= hl. [22] By comparing the lumped
capacitance model to the output of the circuit sim-
ulation code PSPICE, they sketched out a region of
the Biot numbers Bi0 ≡ h0l/k and Bil ≡ hll/k that
maintain the error metric γAC(t), defined in §2.3,
under 5% for all t ≥ 0. The boundaries of this set
are the dashed black lines in Figures 5 through 9.

This paper extends Alhama and Campo’s work
by considering a more general problem, by bench-
marking against the analytical solution rather than
a circuit simulator, and by exploring the evolution
of the approximation accuracy with time. New er-
ror metrics are defined that, compared to γAC, more
closely reflect the physical quantities of interest in
applications (e.g., surface fluxes and stored energy),
as well as the underlying assumptions of the lumped
capacitance approximation. We provide plots from
which the reader can easily quantify the approxima-
tion accuracy by each error metric and for a wide
range of time scales. We give numerical conditions
on the Biot numbers that keep all error metrics un-
der 5, 10, . . . , and 35% for all time.

2.2. The lumped capacitance approximation

The heat equation for the uniform slab in Figure
1 can be written as

∂T

∂t
= α

∂

∂x

(
∂T

∂x

)
, x ∈ [0, l], t ≥ 0.

Integrating both sides over x from 0 to l gives

d

dt

∫ l

0

T (x, t)dx = α

(
∂T

∂x

∣∣∣∣
l,t

− ∂T

∂x

∣∣∣∣
0,t

)
, (3)

where the left-hand side follows from Leibniz’s in-
tegral rule and the right-hand side from the funda-
mental theorem of calculus. The left-hand side of
equation (3) is the scaled time derivative of the spa-

tial average temperature T̄ (t) ≡ (1/l)
∫ l
0
T (x, t)dx.

By Fourier’s law, the terms on the right-hand side
of (3) are

∂T

∂x

∣∣∣∣
0,t

= −q0(t)

k
,

∂T

∂x

∣∣∣∣
l,t

= −ql(t)
k

,

so (3) is equivalent to

dT̄

dt
=
α

kl
(q0(t)− ql(t)) .

Given the heat fluxes in equation (1), the spatial
average temperature satisfies

dT̄

dt
=
α

kl

(
h0(T0 − T (0, t))

+ q̃0 − hl(T (l, t)− Tl)− q̃l
)
.

(4)

Equation (4) follows directly from the heat equa-
tion and boundary conditions, but cannot be solved
in general without first solving the heat equation
for the unknown surface temperatures T (0, t) and
T (l, t). However, under the lumped capacitance ap-
proximation

T (0, t) ≈ T̄ (t) ≈ T (l, t) for all t > 0, (5)
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equation (4) reduces to

dT̄

dt
≈ −α(h0 + hl)

kl
(T̄ (t)− Tref).

Given the initial condition T (x, 0) = Ti for all x ∈
[0, l], the solution is T̄ (t) ≈ TLC(t), where

TLC(t) ≡ Tref + (Ti − Tref)e−t/tc (6)

is the lumped capacitance approximation to the tem-
perature distribution, with time constant

tc ≡
kl

α(h0 + hl)
.

The reference temperatures is

Tref ≡
h0T0 + q̃0 + hlTl − q̃l

h0 + hl
.

2.3. Error metrics

In [22], Alhama and Campo use an error metric
equivalent to

γAC(t) ≡ Tmax(t)−min {T (0, t), T (l, t)}
Tmax(t)− Tref

,

where Tmax(t) = sup {T (x, t) | x ∈ [0, l]}. This met-
ric poses three difficulties. First, it may grow with-
out bound as Tmax(t)→ Tref. If the lumped capaci-
tance approximation is accurate, this is exactly the
limiting behavior as t → ∞, so we can only reason-
ably expect γAC to be small for small t. Second, γAC

is rather far removed from physical quantities of in-
terest, such as surface heat fluxes and stored energy.
Third, γAC only indirectly reflects the basic lumped
capacitance assumption (5), which states that the
surface temperatures are nearly equal to the average
temperature, rather than the maximum temperature
used in γAC.

To address these issues, we propose three new
error metrics. The first two,

γ0(t) ≡
∣∣∣∣T (0, t)− TLC(t)

Ti − Tref

∣∣∣∣
γl(t) ≡

∣∣∣∣T (l, t)− TLC(t)

Ti − Tref

∣∣∣∣ , (7)

directly quantify the accuracy of the fundamental
lumped capacitance assumption (5). They are also
relevant to applications, since the surface temper-
atures determine the surface heat fluxes and hence

the net heat flow through the slab. The third error
metric,

γ̄(t) ≡
∣∣∣∣ T̄ (t)− TLC(t)

Ti − Tref

∣∣∣∣ , (8)

quantifies the accuracy in approximating the spatial
average temperature. This is of interest in thermal
storage applications, where the heat fluxes across
the boundary are less important than the internal
energy.

In definitions (7) and (8), we have normalized by
Ti − Tref, which (if the lumped capacitance approxi-
mation is accurate) is the maximum deviation from
the equilibrium temperature Tref. The denominator
is zero only in the trivial case where Ti = Tref, mean-
ing the system starts and remains in equilibrium. In
this case, the lumped capacitance approximation is
exact for all time.

2.4. Analytical solution

To simplify analysis, we introduce the dimension-
less space and time variables ξ ≡ x/l and τ ≡ αt/l2,
and the dimensionless temperatures

θ(ξ, τ) ≡ T (x, t)− Tref
Ti − Tref

θ0 ≡
T0 + q̃0/h0 − Tref

Ti − Tref

θl ≡
Tl − q̃l/hl − Tref

Ti − Tref
.

Under these transformations, the lumped capacitance
approximation to the dimensionless temperature dis-
tribution is θ̄(τ) ≈ θLC(τ) ≡ e−τ/τc , where θ̄(τ) ≡∫ 1

0
θ(ξ, τ)dξ is the spatial average dimensionless tem-

perature and τc ≡ 1/(Bi0 + Bil) is the dimensionless
time constant. The surface temperature approxima-
tion errors from equation (7) reduce to

γ0(t) =
∣∣θ(0, τ)− θLC(τ)

∣∣
γl(t) =

∣∣θ(1, τ)− θLC(τ)
∣∣ . (9)

The spatial average temperature error is

γ̄(t) =
∣∣θ̄(τ)− θLC(τ)

∣∣ . (10)
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In dimensionless form, problem 2 becomes

∂θ

∂τ
=
∂2θ

∂ξ2
, ξ ∈ [0, 1], τ ≥ 0

θ(ξ, 0) = 1, ξ ∈ [0, 1]

∂θ

∂ξ

∣∣∣∣
0,τ

= −Bi0(θ0 − θ(0, τ)), τ ≥ 0

∂θ

∂ξ

∣∣∣∣
1,τ

= −Bil(θ(1, τ)− θl), τ ≥ 0.

(11)

Applying separation of variables and Sturm-Liouville
theory to problem (11) (see Appendix A) gives the
solution

θ(ξ, τ) = φ(ξ) +

∞∑
n=1

Ane
−ω2

nτXn(ξ).

The steady state component is φ(ξ) = aξ + b, with
a = Bi0(b − θ0) and b = θ0/(1 + 1/Bi0 + 1/Bil).
The nth eigenfunction of the transient component is
Xn(ξ) = cos(ωnξ) + (Bi0/ωn) sin(ωnξ), with eigen-
value ωn solving the transcendental equation cot(ω) =
(ω − Bi0Bil/ω)/(Bi0 + Bil). The nth coefficient is

An =
2ωn sin(ωn)(Bi0 + Bil)

ω2
n[Bi0 + Bil − sin2(ωn)] + Bi0Bil sin

2(ωn)
.

(12)

3. Results

The following results are for the initial condition
shown in Figure 2, where

Ti = T0+q̃0/h0 =⇒ θ0 = 1 and θl = −Bi0/Bil.

Physically, this models a uniform slab initially in
thermal equilibrium with identical environments at
either boundary. Both surfaces of the slab initially
receive the temperature-independent heat flux q̃0,
and lose an equal heat flux to the environment due to
convection or radiation. At t = 0, the driving tem-
perature to the right of the slab suddenly changes
from T0 to Tl, the heat transfer coefficient changes
from h0 to hl, and the temperature-independent heat
flux changes from q̃0 to q̃l.

3.1. Steady state accuracy

For large times, the accuracy of the lumped ca-
pacitance approximation can be analyzed in terms
of φ(ξ) only, since limτ→∞ θ(ξ, τ) = φ(ξ). Noting

that θLC(τ)→ 0 as τ →∞, the steady state surface
temperature approximation errors are

γSS0 ≡ lim
t→∞

γ0(t) = |φ(0)| = 1

1 + 1/Bi0 + 1/Bil

γSSl ≡ lim
t→∞

γl(t) = |φ(1)| = Bi0/Bil
1 + 1/Bi0 + 1/Bil

.

Similarly, since the spatial average temperature in
steady state is

θ̄SS = lim
τ→∞

θ̄(τ) =

∫ 1

0

φ(ξ)dξ,

the spatial average temperature approximation error
reduces to

γ̄SS ≡ lim
t→∞

γ̄(t) =
|1− Bi0/Bil|

2(1 + 1/Bi0 + 1/Bil)
. (13)

An immediate consequence of equation (13) is
that γ̄SS = 0 whenever Bi0 = Bil 6= 0, no matter
how large the Biot numbers are. In other words,
once the slab reaches steady state, the lumped ca-
pacitance approximation is nearly exact whenever
the Biot numbers are nearly equal. In §3.2, we shall
see a similar pattern in the slab’s transient response.
Figure 3 shows contours of the approximation errors
for Bi0,Bil ∈ [0, 1]. Interestingly, γSSl and γ̄SS are
more sensitive to Bi0 than Bil. This asymmetry is
not reflected in previous results.

3.2. Transient accuracy

To quantify the approximation accuracy for small
times, we compare the lumped solution to the first
N terms of θ(ξ, τ), with N chosen such that |An|
e−ω

2
nβτc ‖Xn(ξ)‖∞ ≤ 10−5 for all n > N . We com-

pute the analytical solution for 450,000 combina-
tions of the parameters Bi0, Bil, and β. We con-
sider 300 values each of Bi0 and Bil, linearly spaced
in [0, 1]. The dimensionless times considered are
τ = βτc, with β ∈ {0.05, 0.35, 0.8, 1.6}, as well as
steady state (β → ∞). These times correspond to
the temperature difference TLC(t)−Tref decaying to
about 95, 70, 45, 20, and 0% of the initial difference
Ti−Tref, respectively. The spatial average tempera-
ture θ̄(τ) and the lumped capacitance approximation
θLC(τ) were also computed at each parameter com-
bination, and used to find the errors γ0(t), γl(t), and
γ̄(t). Figure 4 shows contours of each error metric
at each value of β.
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Figure 2: initial state of the slab.
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Figure 3: steady state errors with contours at intervals of 0.01. The left-hand surface temperature error γSS0 is small when
either Bi0 or Bil is small. The right-hand surface temperature error γSSl is sensitive to Bi0, but actually decreases as Bil grows.

The spatial average temperature error γ̄SS is zero along the line Bi0 = Bil.
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Figure 4: contour plots of the errors γ0(βtc) (left), γ̄(βtc) (center), and γl(βtc) (right). Contours are at intervals of 0.01. The
top row (β = 0.05) shows the early transient errors. As time increases, the errors approach the steady-state errors in Figure 3.
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Figure 5: the Biot pairs that maintain the left-hand surface
temperature error γ0(t) under 5% at each multiple β of the
time constant tc. The shaded set is their intersection, Γ0.05

0 .
The dashed curve is the boundary of Γ0.05

AC , the 5% error set
from [22].

3.2.1. Surface temperature errors

The left-hand column of Figure 4 shows the level
sets of γ0(t) for each t = βtc. For very small times,
the errors are small for a wide range of Biot numbers.
As t increases, however, the errors grow quickly. The
errors are nearly symmetric in Bi0 and Bil. The
sets of Biot numbers that maintain γ0(t) below the
threshold δ at a particular t,

Γδ0(t) ≡ {Bi0,Bil ≥ 0 | γ0(t) ≤ δ} ,

are shown in Figure 5 for δ = 0.05. The shaded area
is their intersection,

Γδ0 ≡
⋂
t≥0

Γδ0(t).

The right-hand column of Figure 4 shows the
level sets of γl(t) for each t = βtc. The errors are
initially large and nearly symmetric in the Biot num-
bers. As t increases, the errors for large Bi0 increase,
while for large Bil they decrease. For times above
about one time constant, the lumped capacitance
approximation to T (l, t) actually improves with in-
creasing Bil. These phenomena are also demon-
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B
i l

Right error vs. time, Γ0.05
l

(β tc)

β = 0.05
β = 0.35
β = 0.8
β = 1.6
β → ∞

Figure 6: the Biot pairs that maintain the right-hand surface
temperature error γl(t) under 5% at each t = βtc. The shaded
set Γ0.05

l is similar in area to Γ0.05
AC (dashed curve), but more

restrictive on Bi0 and less restrictive on Bil.

strated in Figure 6, which shows the sets

Γδl (t) ≡ {Bi0,Bil ≥ 0 | γl(t) ≤ δ}

and
Γδl ≡

⋂
t≥0

Γδl (t)

for δ = 0.05.

3.2.2. Spatial average temperature error

The center column of Figure 4 shows the errors
in approximating T̄ (t). The approximation is nearly
exact for all Bi0,Bil ≤ 1 and times less than about
one time constant. For t > tc, γ̄(t) remains small
if Bi0 and Bil are sufficiently close to the line Bil =
m(t)Bi0, where the slope m(t) approaches 1 from
below as t→∞. The reason for this accuracy is the
fact that TLC(t) underestimates temperatures near
x = 0 and overestimates those near x = l. When
the temperature is averaged over space, these errors
tend to cancel out. Thus, if one is only interested
in T̄ (t), for instance in thermal storage applications,
then a wide range of Biot numbers are acceptable.
This fact is also demonstrated by the shaded area in
Figure 7, which shows the sets

Γ̄δ(t) ≡ {Bi0,Bil ≥ 0 | γ̄(t) ≤ δ}
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Figure 7: the Biot pairs that maintain the spatial average
temperature error γ̄(t) under 5% at each t = βtc. The shaded
area is their intersection, Γ̄0.05. For β ≤ 0.35, any Biot pair
with Bi0,Bil ≤ 1 is acceptable.

and
Γ̄δ ≡

⋂
t≥0

Γ̄δ(t)

for δ = 0.05.

3.2.3. All errors

We now consider the sets of Biot numbers for
which all error metrics are maintained below a thresh-
old δ. Figure 8 shows how the acceptable Biot num-
bers change with time. The sets pictured are

Γ0.05(t) ≡ Γ0.05
0 (t) ∩ Γ0.05

l (t) ∩ Γ̄0.05(t)

for t = βtc, with β ∈ {0.05, 0.35, 0.8, 1.6} and β →
∞. As expected, these sets shrink as time increases.
The sets look similar to those shown in Figure 6,
since for most Bi0, Bil, and β, γl(βtc) > max(γ0(βtc), γ̄(βtc)).
For large t, however, γ0(t) exceeds γl(t), which re-
stricts the values in the upper left of the plot.

Figure 9 shows the sets

Γδ ≡ Γδ0 ∩ Γδl ∩ Γ̄δ

for δ ∈ {0.05, 0.1, . . . , 0.35}. These sets contain the
Biot numbers for which all error metrics are less than
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β = 0.05
β = 0.35
β = 0.8
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Figure 8: the Biot pairs that maintain all errors under 5%, for
each t = βtc. As time increases, the bound on Bi0 tightens
while the bound on Bil loosens.

δ for all time. As expected, the sets grow in area as
the error threshold increases.

We can approximate the set Γδ for a given δ
by fitting curves to the upper and lower boundaries
shown in Figure 9. This gives

Γδ ≈ {Bi0,Bil ≥ 0 | f1δ(Bi0) ≤ Bil ≤ f2δ(Bi0)}
(14)

where fiδ(Bi0) = (aiδ + biδBi0)ciδ . Table 1 gives the
coefficients aiδ, biδ, and ciδ for i ∈ {1, 2} and δ ∈
{0.05, 0.1, . . . , 0.35}. The coefficients were fit using
the Box-Cox transformation and linear regression.

3.3. Examples

In this section, we apply the results in §3 to ex-
amples involving a wall and a window. The first
example demonstrates that a uniform wall may be
lumped with fair accuracy, assuming the outdoor
conditions are mild. The second example demon-
strates that a single-pane window may be lumped
under a wide range of conditions.

3.3.1. Wind over a wall

In this example, we consider a single-layer wall
of thickness l = 0.1 m, thermal conductivity k = 0.3
W/m·K, and thermal diffusivity α = 5×10−7 m2/s,
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Figure 9: the Biot pairs that maintain all errors under δ for
all time. The sets are shown for error thresholds δ between 5
and 35%.

Table 1: coefficients of the curves f1δ and f2δ bounding the
sets Γδ in Figure 9.

δ a1δ b1δ c1δ a2δ b2δ c2δ
0.05 -0.18 5.70 2.41 0.27 -1.49 1.31
0.1 -0.27 3.36 1.92 0.40 -1.30 0.89
0.15 -0.32 2.63 1.87 0.83 -2.11 0.72
0.2 -0.35 2.16 1.86 1.42 -2.73 0.68
0.25 -0.36 1.83 1.85 2.62 -4.40 0.41
0.3 -0.36 1.58 1.83 4.51 -5.58 0.91
0.35 -0.36 1.39 1.82 8.49 -8.88 0.84

separating a room (x < 0) from the outdoors (x >
l). Initially, the wall is at the uniform temperature
T0 = 293 K with film coefficient h0 = 1 W/m2·K
at both surfaces. At t = 0, a cool wind suddenly
changes the outdoor temperature to Tl = 289 K
and film coefficient to hl = 3 W/m2·K, while the
indoor environment remains constant. We assume
that q̃0 = q̃l = 0, and wish to estimate the accuracy
of the lumped capacitance approximations to T (0, t)
and T (l, t) after 15 and 90 minutes.

The Biot numbers are Bi0 = h0l/k = 0.33 and
Bil = hll/k = 1. The dimensionless time constant
is τc = 1/(Bi0 + Bil) = 0.75, giving a time constant
tc = l2τc/α = 15,000 s, or about 4 hours and 10
minutes. The times of interest are t1 = β1tc = 900 s,
and t2 = β2tc = 5,400 s, so β1 = 0.06 and β2 = 0.36.
From the top two plots in the left column of Figure
4, the approximation errors at t1 and t2 are about
γ0(β1tc) = 0.05 and γ0(β2tc) = 0.2. Similarly, from
the top two plots in the right column, γl(β1tc) = 0.2
and βl(β2tc) = 0.22. The reference temperatures
is Tref = 290 K, so the temperature approximation
errors are∣∣T (0, t1)− TLC(t1)

∣∣ = γ0(t1)(T0 − Tref) = 0.15 K∣∣T (l, t1)− TLC(t1)
∣∣ = γl(t1)(T0 − Tref) = 0.6 K∣∣T (0, t2)− TLC(t2)
∣∣ = γ0(t2)(T0 − Tref) = 0.6 K∣∣T (l, t2)− TLC(t2)
∣∣ = γl(t2)(T0 − Tref) = 0.66 K.

Note that even though the Biot numbers in this
problem are large, the temperature approximation
errors are well below 1 K, the measurement uncer-
tainty of a typical thermocouple.

3.3.2. Accuracy regime for a window

For a second example, we consider a single-pane
window of thickness l = 0.005 m and thermal con-
ductivity k = 1 W/m·K, separating a room (x < 0)
from the outdoors (x > l). The window is initially
at temperature T0 + q̃0/h0, with heat transfer coeffi-
cient h0 and temperature-independent heat gain q̃0
at both surfaces. At t = 0, the outdoor environment
suddenly changes to Tl 6= T0, hl 6= h0, and q̃l 6= q̃0.
We wish to find the largest hl such that the lumped
capacitance approximation is accurate to within 5%
error by all metrics, for all time, and for all h0 ≤ 10
W/m2·K.

The room-side Biot number satisfies Bi0 = h0l/k ≤
0.05. From Figure 9, the tightest bound on Bil oc-
curs at Bi0 = 0.05. From equation (14) and Table 1,
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the largest Bil such that (Bi0,Bil) ∈ Γ0.05 satisfies

Bimax
l = f2,0.05(0.05) = [0.27−1.49(0.05)]1.31 = 0.12.

Thus, all error metrics are under 5% whenever hl ≤
Bimax
l k/l = 23.6 W/m2·K. This encompasses any

situation one might practically encounter in a build-
ing.

4. Conclusion

In this paper, we studied conduction through a
slab subject to an asymmetric step change of bound-
ary conditions. We compared the lumped capaci-
tance approximation to the analytical solution for
450,000 parameter values, with Biot numbers be-
tween zero and one, and times ranging from early
transients through steady state. We defined three
new error metrics intended to

1. assess the validity of the fundamental assump-
tion (5), and

2. quantify the accuracy of approximating the sur-
face temperatures and spatial average temper-
ature, which in turn determine the surface fluxes
and internal energy.

We provided numerical expressions for the sets of
Biot numbers that maintain all error metrics below
5, 10, . . . , and 35% for all time.

We showed that, depending on the physical quan-
tities of interest, Biot numbers well beyond the con-
ventional upper bound of 0.1 may be acceptable. In
particular, if one is only interested in the internal
energy of the slab, then Biot numbers of 1 or more
maintain the error under 5% at all times, provided
that they are close to the line Bil = Bi0.

We also showed that the strongest influence on
the surface temperature errors is Bi0, the Biot num-
ber at the surface of the slab that does not expe-
rience a step change in environmental conditions.
This may explain the surprising accuracy of RC net-
works in buildings, where indoor conditions are main-
tained nearly constant, while outdoor air tempera-
tures, film coefficients, and solar gains can change
rapidly in response to wind and clouds. The indoor
heat transfer coefficient h0, which typically mod-
els mild natural convection, is often small. Thus,
Bi0 = h0l/k is also often small, and the surface tem-
perature approximations may be accurate for a wide
range of outdoor conditions.

It would be interesting to extend this work to
multilayer slabs, which model a larger set of walls
and windows. This is technically possible given the
recently published analytical solutions for multilayer
slabs [23], but it may be complicated by the new pa-
rameters introduced by each layer. The accuracy
of higher-order RC network models of the slab, or of
refined lumped approximations based on Hermite in-
tegral approximations [24] or perturbation methods
[25], could also be analyzed.

Finally, we highlight cases where an RC network
may be a poor predictor of indoor air temperatures.
Errors may arise from lumped capacitance approx-
imations to walls that are thick and well-insulated.
Walls that have large convection coefficients at the
indoor surface, e.g., due to mechanical systems forc-
ing air over them, will likely have large Bi0 and poor
lumped capacitance accuracy. Failures could also oc-
cur in the presence of significant radiative coupling
between walls, or of film coefficients that depend
strongly on the driving temperature gradients. Pa-
rameters estimated from data with low information
content may also lead to poor predictions. Although
care should be taken in these cases, the results in
this paper lend theoretical support to RC network
building models.
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Appendix A. Analytical solution details

In this appendix, we solve the dimensionless prob-
lem (11) by separation of variables. This solution
is not new (see, for example, [26]), but provides
some insight into the problem. Due to the nonho-
mogeneous boundary conditions, we look for a so-
lution of the form θ(ξ, τ) = φ(ξ) + ψ(ξ, τ), where
ψ(ξ, τ) = f(ξ)g(τ). In terms of ψ(ξ, τ) and φ(ξ),
problem (11) is

∂ψ

∂τ
=
∂2ψ

∂ξ2
+

d2φ

dξ2
, ξ ∈ [0, 1], τ ≥ 0

φ(ξ) + ψ(ξ, 0) = 1, ξ ∈ [0, 1]

∂ψ

∂ξ

∣∣∣∣
0,τ

+
dφ

dξ

∣∣∣∣
0

= −Bi0 (θ0 − ψ(0, τ)− φ(0)) , τ ≥ 0

∂ψ

∂ξ

∣∣∣∣
1,τ

+
dφ

dξ

∣∣∣∣
1

= −Bil (ψ(1, τ) + φ(1)− θl) , τ ≥ 0,

which we divide into a subproblem in ψ(ξ, τ) and
a subproblem in φ(ξ), coupled by the initial condi-
tion. We choose the φ(ξ) subproblem to be steady
state, and include the nonhomogeneous parts of the
boundary conditions in it. This gives the subprob-
lems

d2φ

dξ2
= 0, ξ ∈ [0, 1]

dφ

dξ

∣∣∣∣
0

= −Bi0 (θ0 − φ(0))

dφ

dξ

∣∣∣∣
1

= −Bil (φ(1)− θl)

(A.1)

and

∂ψ

∂τ
=
∂2ψ

∂ξ2
, ξ ∈ [0, 1], τ ≥ 0

∂ψ

∂ξ

∣∣∣∣
0,τ

= −Bi0 (−ψ(0, τ)) , τ ≥ 0

∂ψ

∂ξ

∣∣∣∣
1,τ

= −Bil (ψ(1, τ)) , τ ≥ 0.

(A.2)

The solution to the steady state subproblem (A.1)
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is
φ(ξ) = aξ + b, a = Bi0(b− θ0)

b =
θ0

1 + 1/Bi0 + 1/Bil
,

where the expressions for a and b follow from the
boundary conditions and the fact that Bi0θ0+Bilθl =
0.

Applying separation of variables to the transient
subproblem (A.2) gives a solution of the form

ψ(ξ, τ) = e−ω
2τ [A cos(ωξ) +B sin(ωξ)] ,

where ω, A and B can be resolved from the initial
and boundary conditions. The boundary condition
at ξ = 0 gives B = ABi0/ω, and the boundary con-
dition at ξ = 1 gives the transcendental equation

cot(ω) =
ω − Bi0Bil/ω

Bi0 + Bil
(A.3)

for the eigenvalue ω. Equation (A.3) has an infinite
number of solutions ωn, where

ω1 ∈ (0, π), ω2 ∈ (π, 2π), . . .

ω−1 ∈ (−π, 0), ω−2 ∈ (−2π,−π), . . . ,

and ω−n = −ωn. To build ψ(ξ, τ) by superposition,
therefore, it suffices to take only the positive eigen-
values. Thus, the solution to subproblem (A.2) can
be written as

ψ(ξ, τ) =

∞∑
n=1

Ane
−ω2

nτXn(ξ),

where Xn(ξ) = cos(ωnξ) + (Bi0/ωn) sin(ωnξ). The
ωn can be computed by a nonlinear root-finding al-
gorithm such as Newton’s method.

It can be shown that the Xn(ξ) are orthogonal:

m 6= n =⇒
∫ 1

0

Xm(ξ)Xn(ξ)dξ = 0.

To find the constants An, we use this orthogonality
property and the initial condition

φ(ξ) + ψ(ξ, 0) = 1

⇐⇒
∞∑
m=1

Ame
−ω2

mτXm(ξ) = 1− φ(ξ).

Multiplying both sides of this equation by Xn(ξ) and
integrating over ξ from 0 to 1 gives∫ 1

0

∞∑
m=1

Ame
−ω2

mτXm(ξ)Xn(ξ)dξ

=

∫ 1

0

(1− φ(ξ))Xn(ξ)dξ.

By orthogonality, therefore,

An =

∫ 1

0
(1− φ(ξ))Xn(ξ)dξ∫ 1

0
Xn(ξ)2dξ

.

Both of the integrals on the right-hand side have
closed-form solutions. Plugging them in and simpli-
fying gives equation (12).

Appendix B. Notation

Notation is summarized in Table B.2.
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Table B.2: summary of notation.

Quantity Symbol Units Dimensionless analog
Biot numbers Bi0, Bil -
Space coordinate x m ξ
Time coordinate t s τ
Temperature distribution T (x, t) K θ(ξ, τ)
Thermal diffusivity α m2/s
Thermal conductivity k W/m·K
Thickness l m 1
Driving temperatures T0, Tl K θ0, θl
Heat transfer coefficients h0, hl W/m2·K
Temperature-independent fluxes q̃0, q̃l W/m2

Net surface fluxes q0(t), ql(t) W/m2·K
Lumped capacitance temperature TLC(t) K θLC(τ)
Spatial maximum temperature Tmax(t) K
Alhama and Campo error γAC(t) -
Alhama and Campo error set ΓAC -
Spatial average temperature T̄ (t) K θ̄(τ)
Reference temperature Tref K 0
Initial temperature Ti K 1
Time constant tc s τc
Surface temperature errors γ0(t), γl(t) -
Spatial average temperature error γ̄(t) -
Steady state dimensionless temperature φ(ξ) -
Transient dimensionless temperature ψ(ξ, τ) -
nth eigenfunction, coefficient, eigenvalue Xn(ξ), An, ωn -
Time parameter β -
Error threshold δ -
Surface temperature error sets Γδ0, Γδl -
Spatial average temperature error set Γ̄δ -
All error set Γδ -
Curve fit parameters aiδ, biδ, ciδ -
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