
Linear Programming Notes

Lecturer: David Williamson, Cornell ORIE
Scribe: Kevin Kircher, Cornell MAE

These notes summarize the central definitions and results of the theory of linear program-
ming, as taught by David Williamson in ORIE 6300 at Cornell University in the fall of 2014.
Proofs and discussion are mostly omitted. These notes also draw on Convex Optimization by
Stephen Boyd and Lieven Vandenberghe, and on Stephen Boyd’s notes on ellipsoid methods.
Prof. Williamson’s full lecture notes can be found here.

Contents

1 The linear programming problem 3

2 Duailty 5

3 Geometry 6

4 Optimality conditions 9
4.1 Answer 1: cTx = bTy for a y ∈ F(D) . 9
4.2 Answer 2: complementary slackness holds for a y ∈ F(D) 10
4.3 Answer 3: the verifying y is in F(D) . 10

5 The simplex method 12
5.1 Reformulation . 12
5.2 Algorithm . 12
5.3 Convergence . 14
5.4 Finding an initial basic feasible solution . 15
5.5 Complexity of a pivot . 16
5.6 Pivot rules . 16
5.7 Degeneracy and cycling . 17
5.8 Number of pivots . 17
5.9 Varieties of the simplex method . 18
5.10 Sensitivity analysis . 18
5.11 Solving large-scale linear programs . 20

1

http://www.davidpwilliamson.net/work/
http://kircher.mae.cornell.edu
http://stanford.edu/~boyd/cvxbook/
http://stanford.edu/class/ee364b/lectures/ellipsoid_method_notes.pdf
http://people.orie.cornell.edu/dpw/orie6300/

6 Good algorithms 23

7 Ellipsoid methods 24
7.1 Ellipsoid geometry . 24
7.2 The basic ellipsoid method . 25
7.3 The ellipsoid method with objective function cuts 28
7.4 Separation oracles . 29

8 Interior-point methods 30
8.1 Finding a descent direction that preserves feasibility 30
8.2 The affine-scaling direction . 31
8.3 The logarithmic barrier function . 32
8.4 A primal-dual path-following method . 33
8.5 A potential-reduction method . 35

9 Conic programming 37
9.1 Weak duality . 38
9.2 Infimum vs. minimum . 39
9.3 Strong duality . 40
9.4 Semidefinite programming . 41

2

1 The linear programming problem

A linear program (LP) is an optimization problem with objective and constraint functions
that are linear in the optimization variables. Formally, the general LP problem is

maximize cTx
subject to Ax ≤ b

(1)

where A ∈ Rm×n and m ≥ n. The inequalities are interpreted component-wise: Ax ≤ b
means that (Ax)i ≤ bi for all i ∈ {1, . . . ,m}. It’s often useful to refer to the columns aj or
rows αTi of A:

A =
[
a1 . . . an

]
=

α
T
1
...
αTm

 .
We will occasionally abbreviate LP (1) as max{cTx | Ax ≤ b}.
Vocabulary:

• The optimization variables (or just variables) are x1, . . . , xn.

• The objective function is cTx.

• The data or inputs are A, b, and c.

• The feasible region is the set F(P) = {x ∈ Rn | Ax ≤ b}. If F(P) is nonempty,
then the LP is feasible.

• If cTx∗ ≤ cTx for all x ∈ F(P), then x∗ is an optimal solution (or just solution)
and cTx∗ is the optimal value (or just value) of the LP.

• If there exist an x ∈ F(P) and a direction d ∈ Rn such that cTd > 0 and x+λd ∈ F(P)
for all λ ≥ 0, then LP (1) is unbounded.

The LP (1) is in basic form. The general standard form LP is

minimize c̃T x̃

subject to Ãx̃ = b̃
x̃ ≥ 0

(2)

where Ã ∈ Rm̃×ñ, m̃ ≤ ñ, and rank(Ã) = m̃. The standard form LP (2) can be written in
basic form by identifying

x = x̃, c = −c̃, A =

 Ã

−Ã
−I

 ∈ R(2m̃+ñ)×ñ, b =

 b̃

−b̃
0

3

because argmin c̃T x̃ = argmax−c̃T x̃; Ãx̃ = b̃ ⇐⇒ (Ãx̃ ≤ b̃ and −Ãx̃ ≤ −b̃); and
x̃ ≥ 0 ⇐⇒ −Ix̃ ≤ 0. With these definitions, LPs (1) and (2) are equivalent: although the
objective value of one is the negative of the other, they have the same feasible regions and
optimal solutions.

Similarly, the basic form LP (1) can be written in standard form by identifying

x̃ =

x+

x−
s

 , c̃ =

−c
c
0

 , Ã =
[
A −A I

]
∈ Rm×(2n+m), b̃ = b

because x ∈ Rn ⇐⇒ (x = x+ − x− and x+,x− ≥ 0); argmax cTx = argmin−cTx; and
Ax ≤ b ⇐⇒ (Ax + s = b and s ≥ 0). The variables s1, . . . , sm, which are introduced to
transform inequality constraints into equality constraints and nonnegativity constraints, are
called slack variables.

4

2 Duailty

Much LP theory is built around the concept of duality: any primal LP in the optimization
variables x ∈ Rn has a dual LP in the dual variables y ∈ Rm.

Rules for taking a dual:

Primal Dual
maximize cTx minimize bTy

Ax ≤ b y ≥ 0
x ∈ Rn ATy = c
Ax = b y ∈ Rm

x ≥ 0 ATy ≥ c

So the dual of the basic form primal LP (1) is

minimize bTy
subject to ATy = c

y ≥ 0
(3)

and the dual of the standard form primal LP (2) is

maximize b̃Ty

subject to ÃTy ≤ c̃.
(4)

We denote the feasible region of the dual LP by F(D).

Theorem 1 The dual of the dual is the primal.

Theorem 2 (Weak duality) The optimal value of the primal (1) is less than or equal to
the optimal value of the dual (3).

Proof:
cTx = (ATy)Tx = yT (Ax) ≤ yTb

where the last inequality follows from Ax ≤ b and y ≥ 0. 2
It can also be shown that the optimal value of the primal (2) is greater than or equal to

the optimal value of the dual (4).

5

3 Geometry

After solving a few low-dimensional LPs by hand, a pattern emerges: optima are ‘corners’
of the feasible region. This section formalizes that idea.

Definition 1 (Convex set) A set C ⊆ Rn is convex if for all x,y ∈ C and for all λ ∈ [0, 1],
λx + (1− λ)y ∈ C.

Definition 2 (Polyhedron) The set P = {x ∈ Rn | Ax ≤ b} is a polyhedron.

Polyhedra are convex.

Definition 3 (Vertex) Let C ⊆ Rn be a convex set. A vector x ∈ C is a vertex of C if
there exists a c ∈ Rn such that for all y ∈ C with y 6= x, cTx < cTy.

In other words, a vertex is an element of C that is the unique minimizer of cTx on C, for
some cost vector c.

Definition 4 (Extreme point) Let C be a convex set. A vector x ∈ C is an extreme point
of C if x cannot be written as λy + (1− λ)z for any y, z ∈ C, y, z 6= x, λ ∈ [0, 1].

In other words, an extreme point of C can’t be written as a convex combination of any other
points in C.

Definition 5 (Basic solution) Let P = {x ∈ Rn | Ax ≤ b}, and let A=(x) be a matrix
such that a row αTi of A is a row of A=(x) if and only if αTi x = bi. A vector x ∈ Rn is a
basic solution of P if rank(A=(x)) = n.

In other words, at least n linearly independent constraints (and possibly more linearly de-
pendent ones) are binding at a basic solution.

There are at most
(
m
n

)
basic solutions of P .

Definition 6 (Basic feasible solution) A vector x ∈ Rn is a basic feasible solution of P
if x ∈ P and x is a basic solution of P .

Theorem 3 (Characterization of vertices) Let P = {x ∈ Rn | Ax ≤ b} be nonempty.
The following are equivalent:

(1) x is a vertex of P ,

(2) x is an extreme point of P , and

(3) x is a basic feasible solution of P .

Definition 7 (Convex combination) A vector v ∈ Rn is a convex combination of v1, . . . ,vk
if there exists a λ ∈ Rk such that λ ≥ 0, 1Tλ = 1, and v =

∑k
i=1 λivi.

6

Definition 8 (Convex hull) The set conv(v1, . . . ,vk) ⊆ Rn, called the convex hull of
v1, . . . ,vk, is the set of all convex combinations of v1, . . . ,vk ∈ Rn.

Theorem 4 (Carathéodory) If x ∈ conv(v1, . . . ,vk) ⊆ Rn, then x can be written as a
convex combination of n+ 1 or fewer of the vi.

Compare Carathéodory’s theorem to the analogous result for linear combinations: if x ∈
span(v1, . . . ,vk) ⊆ Rn, then x can be written as a linear combination of n or fewer of the
vi.

Definition 9 (Polytope) The convex hull of a finite number of vectors is a polytope.

• Polytopes are convex.

• Any extreme point of the polytope conv(v1, . . . ,vk) is one of the vi.

Lemma 5 Let Q = conv(v1, . . . ,vk) with vi ∈ Rn for all i. For any cost c ∈ Rn, at least
one of the vi satisfies cTvi ≤ cTx for all x ∈ Q.

Definition 10 (Bounded polyhedron) A polyhedron P is bounded if there exists an M >
0 such that for all x ∈ P , ‖x‖ ≤M .

Theorem 6 (Representation of bounded polyhedra) A bounded polyhedron is the con-
vex hull of its vertices, and is therefore a polytope.

The proof is by induction on the rank of A=(x) and hinges on the equivalence of vertices,
extreme points and basic feasible solutions.

Note that the boundedness assumption is necessary (see Figure 1).

7

P1 P2

Figure 1: the unbounded polyhedra P1 and P2 are not polytopes.

Theorem 7 (Separating hyperplane) Let C ⊆ Rn be closed, nonempty and convex, and
let y ∈ Rn, y /∈ C. Then there exist an a ∈ Rn and b ∈ R such that aTy > b and aTx < b
for all x ∈ C.

The proof requires the Weierstrass theorem from real analysis (if C ⊆ Rn is closed, nonempty
and bounded, then f : C → R attains a maximum and minimum on C.)

Definition 11 (Polar) The polar of a set S ⊆ Rn is S◦ =
{
z ∈ Rn | zTx ≤ 1 for all x ∈ S

}
.

Lemma 8 If C ⊆ Rn is closed and convex and 0 ∈ C, then (C◦)◦ = C.

The proof uses the separating hyperplane theorem.

Theorem 9 (Representation of polytopes) A polytope is a bounded polyhedron.

The proof is based on polars and Lemma 8.

8

4 Optimality conditions

Consider the primal-dual pair in standard form,

minimize cTx
subject to Ax = b

x ≥ 0

maximize bTy
subject to ATy ≤ c (5, 6)

where A ∈ Rm×n and m < n. Let F(P) = {x ∈ Rn | Ax ≤ b, x ≥ 0}, F(D) = {y ∈ Rm |
ATy ≤ c}, and A =

[
a1 . . . an

]
.

How to tell whether an x ∈ F(P) is optimal? This section gives three answers.

4.1 Answer 1: cTx = bTy for a y ∈ F(D)

Theorem 10 (Farkas’ lemma) Let A ∈ Rm×n and b ∈ Rm. Exactly one of the following
holds:

(1) There exists an x ∈ Rn such that Ax = b and x ≥ 0.

(2) There exists a y ∈ Rm such that ATy ≥ 0 and bTy < 0.

The proof of Farkas’ lemma uses the separating hyperplane theorem.

Theorem 11 (Farkas’ lemma′) Let A ∈ Rm×n and b ∈ Rm. Exactly one of the following
holds:

(1′) There exists an x ∈ Rn such that Ax ≤ b.

(2′) There exists a y ∈ Rm such that ATy = 0, bTy = −1 and y ≥ 0.

The following is equivalent to (2′):

(2′′) There exists a y ∈ Rm such that ATy = 0, bTy < 0 and y ≥ 0.

Farkas’ lemma′ can be derived from Farkas’ lemma.

Theorem 12 (Strong duality) There are four possibilities:

(1) Both the primal and the dual are infeasible.

(2) The primal is infeasible and the dual is unbounded.

(3) The primal is unbounded and the dual is infeasible.

(4) Both the primal and the dual are feasible and their optimal values are equal.

The proof of strong duality uses both versions of Farkas’ lemma.

9

4.2 Answer 2: complementary slackness holds for a y ∈ F(D)

Definition 12 (Complementary slackness) The vectors x ∈ F(P) and y ∈ F(D) obey
the complementary slackness conditions if for all j ∈ {1, . . . , n}, either xj = 0 or aTj y = cj.

Lemma 13 The vectors x ∈ F(P) and y ∈ F(D) are optimal if and only if the comple-
mentary slackness conditions hold.

Proof: Let x ∈ F(P) and y ∈ F(D). By strong duality, x and y are optimal if and only
if cTx = bTy. But bTy = yTb = yT (Ax) = (ATy)Tx, so x and y are optimal if and only if

cTx = (ATy)Tx

⇐⇒ (c− ATy)Tx = 0

⇐⇒
n∑
j=1

(cj − aTj y)xj = 0.

Since x ∈ F(P) and y ∈ F(D), xj ≥ 0 and aTj y ≤ cj for all j ∈ {1, . . . , n}, so each
term is nonnegative. The sum is therefore zero if and only if each term is zero, i.e., for all
j ∈ {1, . . . , n}, either xj = 0 or aTj y = cj. 2

4.3 Answer 3: the verifying y is in F(D)

Lemma 14 A vector x ∈ F(P) is a vertex of F(P) if and only if {aj | xj > 0} is linearly
independent.

The proof uses the fact that if an optimal solution exists, then an optimal vertex exists
(Lemma 5). It also uses the equivalence of vertices and basic feasible solutions.

Definition 13 (Basis) A set B ⊆ {1, . . . , n} is a basis if |B| = m and {aj | j ∈ B} is
linearly independent.

It’s also useful to define the set N = {1, . . . , n} −B.
Given a basis B, the objective and constraints can be decomposed into their basic and

nonbasic components by permuting columns of A and elements of x,b, and c such that

cTx =
[
cTB cTN

] [xB
xN

]
= cTBxB + cTNxN

Ax =
[
AB AN

] [xB
xN

]
= ABxB + ANxN = b

where aj is a column of AB ∈ Rm×m if and only if j ∈ B. Similarly, aj is a column of
AN ∈ Rm×(n−m) if and only if j ∈ N . By definition of basis, A−1

B exists.

Lemma 15 For any basis B, there is a unique corresponding basic solution to Ax = b.

10

The proof involves setting xN = 0 and xB = A−1
B b.

Note that the basic solution corresponding to B is not necessarily feasible.

Definition 14 (Degenerate) A basic solution x ∈ F(P) is degenerate if there exists a
j ∈ B such that xj = 0.

Lemma 16 Let B be a basis with corresponding basic solution x.

(1) If there exists a y ∈ F(D) such that ATBy = cB, then x is optimal.

(2) If x is nondegenerate and optimal, then there exists a y ∈ F(D) such that ATBy = cB.

The proof uses complementary slackness.

Definition 15 (Verifying y) For a basis B, y = A−TB cB is the verifying y.

It’s called ‘verifying’ because if y = A−TB cB ∈ F(D), then

[
xB
xN

]
=

[
A−1
B b
0

]
is optimal.

Note that A−TB = (A−1
B)T = (ATB)−1.

11

5 The simplex method

Consider again the standard form primal (5) and dual (6).

5.1 Reformulation

Definition 16 (Reduced cost) For any y ∈ Rm, the reduced cost with respect to y is
c̄ = c− ATy.

• A vector y ∈ Rm is dual feasible if and only if the reduced cost with respect to y is
nonnegative:

c̄ = c− ATy ≥ 0 ⇐⇒ ATy ≤ c.

• The basic component of the reduced cost with respect to the verifying y is zero:

c̄ = c− ATy = c− ATA−TB cB

⇐⇒
[
c̄B
c̄N

]
=

[
cB
cN

]
−
[
ATB
ATN

]
A−TB cB =

[
0

cN − (A−1
B AN)TcB

]
.

Lemma 17 Let c̄ be the reduced cost for some y ∈ Rm. Then x is optimal for min{c̄Tx |
Ax = b,x ≥ 0} if and only if x is optimal for min{cTx | Ax = b,x ≥ 0}.

Proof: The LPs have the same feasible region, so consider their objectives:

c̄Tx = (c− ATy)Tx = cTx− yT (Ax) = cTx− yTb.

Since yTb is constant for a given y, the LPs have the same optimal solution. 2
Lemma 17 allows reformulation of the primal as the equivalent LP

minimize c̄TNxN
subject to ĀxN ≤ b̄

xN ≥ 0
(7)

where Ā = A−1
B AN , b̄ = A−1

B b, and c̄N = cN − ĀTcB is the nonbasic component of the

reduced cost with respect to y = A−TB cB. If xN is optimal for (7), then x =
[
xTB xTN

]T
and

y, where xB = b̄− ĀxN , are optimal for (5) and (6).

5.2 Algorithm

Given1 an initial basis B and corresponding basic feasible solution x =

[
xB
xN

]
=

[
A−1
B b
0

]
, the

simplex method consists of four steps.

1More on producing an initial feasible solution and corresponding basis in §5.4.

12

1. Check for optimality

Set y = A−TB cB and c̄ = c−ATy, so c̄B = 0 and c̄N = cN − ĀTcB. If c̄ ≥ 0, then x is
optimal. Otherwise, there exists a j ∈ N such that c̄j < 0. Pick2 one such j.

2. Check for unboundedness

Since c̄j < 0, increasing xj from zero will improve the objective c̄TNxN . The upper
bound on xj is given by

ĀxN ≤ b̄

⇐⇒
[
ā1 . . . ān−m

]
xN ≤ b̄

⇐⇒ xjāj ≤ b̄

⇐⇒ xj āij ≤ b̄i for all i ∈ B

where the third line follows from xi = 0 for all i 6= j. Note that the row indices of
Ā = A−1

B AN and b̄ = A−1
B b are the row indices of A−1

B , which are the elements of B. If
āj ≤ 0, then xj can be increased arbitrarily while remaining feasible, i.e., the primal
is unbounded.

3. Ratio test

If āj � 0, then there exists at least one i ∈ B such that āij > 0. The first such i for
which the constraint xj āij ≤ b̄i becomes binding determines the upper bound on xj.
Set3

ε = min
i:āij>0

b̄i
āij

and i∗ = argmin
i:āij>0

b̄i
āij
.

4. Pivot

Set x̂N = xN + εej = εej and x̂B = b̄ − Āx̂N = xB − εāj (so xi∗ = 0). Update the

basis to B̂ = B ∪ {j} − {i∗} and N̂ = N ∪ {i∗} − {j}.

2More on choosing a j in §5.6.
3Multiple i may attain the minimum. More on resolving this ambiguity in §5.6.

13

5.3 Convergence

Claim 18 (Nonincreasing objective) cT x̂ ≤ cTx

Proof: By Lemma 17, it suffices to show that c̄T x̂ ≤ c̄Tx. Because c̄B = 0 and x̂N = εej,

c̄T x̂ = c̄TBx̂B + c̄TN x̂N = c̄TN(εej) = c̄jε ≤ 0

since c̄j < 0 and ε ≥ 0. But xN = 0, so c̄Tx = c̄TBxB + c̄TNxN = 0. Thus, c̄T x̂ ≤ c̄Tx. 2

Claim 19 (Decreasing objective for nondegenerate solutions) If x is nondegenerate,
then cT x̂ < cTx.

Proof: Let x be nondegenerate, i.e., let xB > 0. Since xB = A−1
B b = b̄, it’s also true

that b̄ > 0. Thus, bi/āij > 0 whenever āij > 0, so ε > 0. 2

Claim 20 The set B̂ is a basis.

Proof: Since B̂ = B ∪ {j} − {i∗}, AB̂ and AB differ only by one column. Without loss
of generality, we can construct AB̂ by overwriting aBi∗ , the (i∗)th column of AB, with aj, the
jth column of AN :

AB̂ =
[
aB1 . . . aBi∗−1 aj aBi∗+1 . . . aBm

]
= AB

[
e1 . . . ei∗−1 A−1

B aj ei∗+1 . . . em
]

= AB
[
e1 . . . ei∗−1 āj ei∗+1 . . . em

]
= ABE

where A−1
B aj = āj follows from j ∈ N and Ā = A−1

B AN . The matrix E is called an eta
matrix.

Note that (āj)i∗ = āi∗j > 0 from the ratio test, and (ek)i = 0 for all k 6= i, so the set
{e1, . . . , ei∗−1, āj, ei∗+1, . . . , em} is linearly independent and E is full rank. Pre-multiplying

by AB, which is full rank since B is a basis, preserves rank. Thus, AB̂ is full rank and B̂ is
a basis. 2

Claim 21 The basic feasible solution corresponding to B̂ is x̂.

Because there are only
(
n
m

)
possible bases, the previous four claims establish that – as long

as no degenerate solutions are encountered – the simplex method converges to an optimum
in finite time.

14

5.4 Finding an initial basic feasible solution

The algorithm in §5.2 requires an initial basic feasible solution and corresponding basis.
To compute this solution and basis (or provide a certificate of infeasibiilty), we start by
multiplying by −1 any row i of Ax = b such that bi < 0. This ensures that b ≥ 0. We then
introduce artificial variables z ∈ Rm and consider the LP

minimize 1Tz
subject to Ax + Iz = b

x, z ≥ 0
(8)

which can be written in standard form min{c̃T x̃ | Ãx̃ = b̃, x̃ ≥ 0} by setting

x̃ =

[
x
z

]
, Ã =

[
A I

]
, b̃ = b, c̃ =

[
0
1

]
.

An initial basis for (8) is ÃB = I, ÃN = A with corresponding basic feasible solution x̃N = 0,
x̃B = Ã−1

B b̃ = b̃ ≥ 0. We can therefore run the simplex method on (8), which will converge
to an optimum x̃∗. There are two possible outcomes:

1. c̃T x̃∗ > 0, so the original primal (5) is infeasible.

2. c̃T x̃∗ = 0 =⇒ 1Tz∗ = 0, so the original primal is feasible. There are two subcases:

(a) All artificial variables are nonbasic, so AB = ÃB, xN = 0, and xB = A−1
B b give

an initial basis and corresponding basic feasible solution for (5).

(b) Some artificial variables are basic. There are two sub-cases:

i. For i ∈ B corresponding to an artificial variable zi, there exists a j ∈ N
corresponding to a real variable xj such that āij 6= 0. In this case, we pivot

to B̂ = B ∪ {i} − {j}. It can be shown that B̂ is a basis with corresponding
basic solution x̃.

ii. For i ∈ B corresponding to an artificial variable zi, āij = 0 for all j ∈ N
corresponding to real variables xj. This implies that A is not full (row) rank,
so delete the linearly dependent row(s) and continue.

Repeat until all artificial variables are nonbasic, at which point AB = ÃB̂, xN = 0,
and xB = A−1

B b give an initial basis and corresponding basic feasible solution for
(5).

Producing an initial basis and corresponding basic feasible solution is called Phase 1 of
the simplex method. Finding an optimal solution to the original LP is called Phase 2.

15

5.5 Complexity of a pivot

The operations associated with an iteration of Phase 2 of the simplex method are:

1. Solve ABxB = b for xB.

2. Solve A−TB y = c̄ for y.

3. Compute c̄ = c− ATy, check whether c̄ ≥ 0 and if not, pick a j such that c̄j < 0.

4. Solve ABāj = aj for āj.

5. Find ε = mini:āij>0 b̄i/āij and the corresponding index i∗.

6. Update solution: x̂j = ε, x̂B = xB − εāj.

Steps 1, 2 and 4 require solving m equations for m unknowns, which takes O(m3) time if
the coefficient matrix is dense, less if sparsity can be exploited. Steps 5 and 6 are checking or
updating m-vectors, so each is O(m) time. For each nonbasic component of c̄ in step 3, an
inner product must be taken between y ∈ Rm and a column of A (O(m) time), along with a
subtraction. Computing all n−m nonbasic components of c̄ takes O(nm) time. Therefore,
a naive implementation of the simplex method takes O(m3 + nm) time per iteration.

Computation time can be cut down in steps 1, 2 and 4 by using the eta matrices defined in
the proof of Claim 20. Let B0, . . . , Bk be the bases at iterations 0, . . . , k with corresponding
eta matrices E1, . . . , Ek. Without loss of generality, suppose that AB0 = I (if not, we can
perform elementary row operations on Ax = b until it is). Then

AB1 = AB0E1 = E1

...

ABk
= ABk−1

Ek−1 = E0 · · ·Ek−1.

Solving AB1xB1 = E1xB1 = b by back-substitution takes O(m) time. At iteration k,
ABk

xBk
= E1 · · ·EkxBk

= b can be solved by solving k equations of the form EixBi
= b,

which takes O(km) time in total. Steps 2 and 4 can be expedited similarly.
With this modification, an iteration of the simplex method takes O(km+nm) time. Once

k gets large, common practice is to recompute A−1
Bk

and row reduce Ax = b until ABk
= I,

effectively resetting k to zero.

5.6 Pivot rules

Some of the O(nm) time required to compute c̄ can be saved by using an efficient rule for
choosing the j that leaves the basis. In general, choosing such a pivot rule requires balancing
computational efficiency in the current iteration against progress of the overall algorithm.

Some candidate pivot rules:

16

1. Compute c̄ component-wise and stop at the first c̄j < 0.

2. Find the j that makes c̄j most negative.

3. Find the j that gives the biggest decrease in the objective c̄TNxN .

4. Find the steepest edge, i.e., the j that gives the biggest decrease in objective per
change in basic solution:

∆(objective)

∆(basic solution)
=

c̄TN x̂N − c̄TNxN
‖x̂B − xB‖2

=
c̄TN(εej)

‖−εāj‖2

=
c̄j
‖āj‖2

.

The steepest edge rule works very well in practice. Another common method is to maintain
a pivot pool, i.e., a list of indices that corresponded to negative reduced costs in recent
iterations, and to search over these indices first. This heuristic is based on the idea that c̄ is
fairly stable across iterations.

5.7 Degeneracy and cycling

In §5.3, we showed that if no degenerate solutions are encountered, then the simplex method
converges in finite time. If degenerate solutions are encountered, however, this guarantee is
lost: the algorithm can cycle repeatedly through a sequence of bases.

One anti-cycling technique used in some commercial codes is perturbation: the algorithm
uses an efficient pivot rule until a cycle is encountered, then perturbs b by some small amount
in order to force nondegeneracy. Another technique is to switch to Bland’s rule when a cycle
is encountered.

Definition 17 (Bland’s rule) Under Bland’s rule, the smallest index in {j ∈ N | c̄j < 0}
leaves the basis and the smallest index in

{
i ∈ B | āij > 0, b̄i/āij = ε

}
enters.

Theorem 22 (Termination with Bland’s rule) If the simplex method uses Bland’s rule,
then it converges to an optimum in finite time (with no cycling).

5.8 Number of pivots

Using Bland’s rule, the simplex method is guaranteed to converge in no more than
(
n
m

)
pivots. This factorial upper bound is very loose.

In 1973, Victor Klee and George Minty showed that the worst-case number of pivots
under the “minimum c̄j” pivot rule is at least exponential in n. Using an n-dimensional
Klee-Minty cube (a particular perturbation to the unit hypercube) as the feasible region,
they showed that the simplex method visits all 2n vertices. Thus, a lower bound on the
worst-case number of pivots with this pivot rule is 2n − 1. As of 2014, no other pivot rule
has improved upon this lower bound.

17

Another approach to finding a lower bound on the number of pivots is to bound the
diameter of a polytope P ⊆ Rn with m constraints. Let d(x,y) be the minimum number of
nondegenerate pivots to move between vertices x and y of P . Define the diameter of P to
be the maximum d(x,y) over all vertices x,y of P . Let ∆(n,m) be the maximum diameter
over all polytopes P ⊆ Rn with m constraints. By construction, the simplex method with
any pivot rule, started from the “worst vertex” of the “worst polytope” in Rn, will take at
least ∆(n,m) pivots. In 2014, Michael Todd showed that ∆(n,m) ≤ (m− n)log2 n.

In practice, the simplex method seems to take onlyO(m) pivots. Explaining this observed
convergence rate, which is much faster than the best theoretical bound, is still an active
research area.

5.9 Varieties of the simplex method

• The revised simplex method is the one described in §5.2. It maintains primal
feasibility and complementary slackness while working toward dual feasibility.

• The standard simplex method is similar to the revised simplex method, but it also
maintains a tableau that facilitates solving small problems by hand.

• The capacitated simplex method applies to problems with constraints of the form
` ≤ x ≤ u. Although these problems can be written in standard form, they can be
solved more efficiently by modifying the simplex method. The capacitated simplex
method keeps track of the basis B, the set L of indices of variables set to their lower
bound, and the set U of indices of variables set to their upper bound.

• The dual simplex method maintains dual feasibility and complementary slackness
while working toward primal feasibility. The dual simplex method is the most common
implementation of the simplex algorithm, for three main reasons:

1. It’s often easier to produce an initial basic feasible solution for the dual than for
the primal. This is because c is often nonnegative, so y = 0 is feasible.

2. The dual simplex method seems to encounter degenerate solutions less frequently.

3. The dual simplex method is useful for warm starts, where an LP is initialized
with the optimal solution to a related LP. The primal simplex method can be
warm started if c is changed. The dual simplex method can be warm started if b
is changed or if a new constraint αTm+1x = bm+1 is added, in which case setting the
additional dual variable ym+1 to zero produces an initial basic feasible solution.
This incremental addition of constraints is common practice when solving large-
scale LPs or integer programs.

5.10 Sensitivity analysis

How do the solutions x and y to the standard form primal (5) and dual (6) respond to
perturbations in the data A, b, and c?

18

5.10.1 Changes to b

Suppose b → b + δei. Then y = A−TB cB is unchanged, so dual feasibility is preserved.
Setting xN = 0 and xB = A−1

B (b + δei) also preserves complementary slackness: for all
j ∈ N , xj = 0, and for all j ∈ B, aTj y = cj:

ATy =

[
ATB
ATN

]
A−TB cB =

[
cB

ĀTcB

]
.

If xB ≥ 0, then primal feasibility is also preserved, and x and y are optimal. In this case,
the change in objective is

∆(cTx) = cTB∆xB = cTB(δA−1
B ei) = δ(A−TB cB)Tei = δyTei = δyi.

This gives the interesting interpretation of yi = ∆(cTx)/δ as the change in objective per
unit change in the ith constraint. This is why in the economics literature, the dual variables
are called shadow prices or marginal costs.

5.10.2 Changes to c

Suppose c→ c + δej. Then xN = 0 and xB = A−1
B b are unchanged, so primal feasibility is

preserved. To check complementary slackness and dual feasibility, consider two cases:

1. If j ∈ N , then cB and y = A−TB cB are unchanged, so we still have xi = 0 for all i ∈ B
and yi = ci for all i ∈ N , i.e., complementary slackness is preserved. If aTj y ≤ cj, then
dual feasibility is also preserved, and x and y are optimal. The objective is unchanged
since j ∈ N =⇒ xj = 0.

2. If j ∈ B, then y → A−TB (cB + δej) = y + δA−TB ej. Both dual feasibility and comple-
mentary slackness need to be checked. The objective changes by δxj.

5.10.3 Changes to A

Suppose aj → aj + δei. Consider two cases:

1. If j ∈ N , then xN = 0, xB = A−1
B b and y = A−TB cB are unchanged, so primal

feasibility and complementary slackness are preserved and the objective is unchanged.
Dual feasibility is preserved if aTj y + δyi ≤ cj.

2. If j ∈ B, then AB → AB + δeie
T
j , so we need to check whether AB becomes singular.

If not, then both xB = A−1
B b and y = A−TB cB change, so both primal and dual

feasibility need to be checked. If x and y are feasible, then they’re optimal because
complementary slackness is preserved.

19

5.11 Solving large-scale linear programs

Some linear programs have too many variables to be solved directly with the simplex method
in a reasonable amount of time. A common method for such problems is to decompose them
into a master problem and a number of subproblems. At each iteration of the simplex method
on the master problem, the checks for optimality and unboundedness and the ratio test are
conducted by solving the subproblems. This method is called column generation.

5.11.1 The cutting stock problem

A classic example of a problem amenable to column generation, called the cutting stock
problem, comes from the paper industry. The problem is to cut smaller rolls (“finals”) from
a big roll of paper (a “raw”) of width W . For each i ∈ {1, . . . ,m}, there is a demand for bi
finals of width si ≤ W . The objective is to cut the smallest number of raws while satisfying
demand.

With the proper formulation, this integer program can be solved by LP relaxation and
column generation. Define the pattern aj ∈ Rm such that (aj)i = aij is the number of
finals of width si cut from a raw. The patterns of interest in this problem are feasible (they
satisfy aj ≥ 0 and 1Taj ≤ W) and maximal (their sum is as close as possible to W).

As an example, consider problem data W = 10, m = 3, s1 = 6, s2 = 3, s3 = 2. The
maximal, feasible patterns are

a1 =

1
1
0

 , a2 =

1
0
2

 , a3 =

0
3
0

 , a4 =

0
2
2

 , a5 =

0
1
3

 , a6 =

0
0
5

 .
Let n be the number of maximal patterns and xj be the number of raws cut into pattern aj.
Then the cutting stock problem can be written as

minimize 1Tx
subject to Ax ≥ b

x ∈ Zn
+

(9)

where A =
[
a1 . . . an

]
, x =

[
x1 . . . xn

]T
, b =

[
b1 . . . bm

]T
and Zn

+ is the set of
n-vectors with nonnegative, integer components.

The LP relaxation of (9) is

minimize 1Tx
subject to Ax ≥ b

x ≥ 0

which can be solved by column generation. Let y = A−TB cB be the verifying y at some itera-
tion of the simplex method on the master problem. The subproblem that verifies optimality

20

or produces a negative reduced cost is

maximize yTa
subject to sTa ≤ W

a ∈ Zm
+

where s =
[
s1 . . . sm

]T
. This is called the knapsack problem. It can be solved by

dynamic programming.

5.11.2 The Dantzig-Wolfe decomposition

A common application of column generation is the Dantzig-Wolfe decomposition, which
applies to LPs of the form

minimize cT1 x1 + · · ·+ cTmxm

subject to

A01 . . . A0m

A11

. . .

Amm

x1

...
xm

 =

b0

b1
...

bm

xi ≥ 0, i ∈ {1, . . . ,m}

(10)

where Aij ∈ Rmi×nj , xj ∈ Rnj , and bi ∈ Rmi . The method also requires that the subproblem

minimize c̃Ti xi
subject to Aiixi = bi

xi ≥ 0
(11)

be easy to solve for any i ∈ {1, . . . ,m} and any cost c̃i ∈ Rni .
We assume that each polyhedron Pi = {xi ∈ Rni | Aiixi = bi,xi ≥ 0} is bounded. This

assumption is unnecessary, but makes life easier by allowing any xi ∈ Pi to be written as a
convex combination of the vertices vi1, . . . ,viNi

of Pi. That is, for any xi ∈ Pi, there exists

a λi =
[
λi1 . . . λiNi

]T
satisfying 1Tλi = 1 and λi ≥ 0 such that xi =

∑Ni

j=1 λijvij.
The last assumption allows LP (10) to be written as

minimize
∑m

i=1

∑Ni

j=1 λijc
T
i vij

subject to
∑m

i=1

∑Ni

j=1 λijA0ivij = b0

1Tλi = 1, i ∈ {1, . . . ,m}
λi ≥ 0, i ∈ {1, . . . ,m}

or, equivalently,
minimize cTλ

subject to

A01V1 . . . A0mVm
1TN1

. . .

1TNm

λ =

[
b0

1m

]

λ ≥ 0

(12)

21

where we define N =
∑m

i=1Ni and

λ =

λ1
...
λm

 ∈ RN , Vi =
[
vi1 . . . viNi

]
∈ Rni×Ni , c =

V
T

1 c1
...

V T
mcm

 ∈ RN .

Given a basis for LP (12), the verifying dual variables y ∈ Rm0 and z ∈ Rm can be
computed. For each (i, j) ∈ {1, . . . ,m}×{1, . . . , Ni}, the reduced cost with respect to y and
z is c̄ij = c̃Ti vij − zi, where c̃i = ci − AT0iy. Thus, the reduced cost c̄i of the ith subproblem
is nonnegative if and only if c̃Ti vij ≥ zi for all j ∈ {1, . . . , Ni}.

Since Pi = {xi ∈ Rni | Aiixi = bi,xi ≥ 0} is a polytope with vertices vi1, . . . ,viNi
, by

Lemma 5 at least one of the vij will satisfy c̃Ti vij ≤ c̃Ti xi for all xi ∈ Pi. Thus, the ith

optimality condition c̄i ≥ 0 can be checked by solving subproblem (11).
Let x∗i be the optimal solution to LP (11). If c̃Ti x∗i ≥ zi, then c̄i ≥ 0. This condition can

be checked for each i. If c̄i ≥ 0 for all i ∈ {1, . . . ,m}, then c̄ ≥ 0, so λ is optimal for the
original LP (12). Otherwise, there exist an i ∈ {1, . . . ,m} and k ∈ {1, . . . , Ni} such that
c̃Ti vik > zi, so we add λik to the basis, perform the ratio test to find a λrs that leaves the
basis, and continue.

22

6 Good algorithms

In a 1965 paper, Jack Edmonds first discussed the difference between finite and good algo-
rithms, i.e., between algorithms that converge eventually and ones that converge “quickly.”
This distinction spurred the development of a formal theory of complexity. This section is
gives a very brief introduction to that theory.

Definition 18 (Size) The size of α ∈ R is the number of bits needed to encode α in binary.

• An upper bound on the size of α ∈ Z is size(α) ≤ dlog2(α + 1)e+ 1.

• The size of a vector or matrix is the sum of the sizes of its components.

Definition 19 (Good) An algorithm is good if its runtime can be bounded by a polynomial
in the size of its inputs.

By this definition, the simplex method is not a good algorithm: no known pivot rule
guarantees fewer than 2n − 1 pivots in the worst case (see §5.8). Good algorithms for linear
programming do exist, however. One is the ellipsoid method discussed in §7. Another is the
family of interior-point methods discussed in §8.

Note that the size of the inputs to the LP min{cTx | Ax ≤ b,x ≥ 0} with A ∈ Rm×n is
not directly a function of m and n. Rather, it’s size(A)+size(b)+size(c), which depends on
the sizes of the entries in A, b and c, as well as on m and n. A LP algorithm with runtime
bounded by a polynomial in m and n would be called strongly polynomial. No one knows
whether a strongly polynomial LP algorithm exists.

The next two claims bound the input and output size of the LP

minimize cTx
subject to Ax ≤ b

x ≥ 0
(13)

where A, b and c are assumed to have integer entries. Both claims use the definition
U = max(maxi,j size(aij),maxi size(bi),maxj size(cj)).

Claim 23 The size of the inputs to LP (13) is O(nmU).

Claim 24 If x solves LP (13), then for any j ∈ {1, . . . , n}, size(xj) = O(n log2 n+ nU).

An optimal x has at most m nonzero entries, so size(x) = O(m(n log2 n+nU)). Thus, the
number of bits required to encode the output of an LP algorithm is bounded by a polynomial
in the size of the inputs to the LP. (If this weren’t true, then there’d be no hope for finding
a good LP algorithm.)

23

a

√
λ1

√
λ2

v2
v1

Figure 2: the ellipsoid E(a, A). The matrix A has eigenvalues λ1 and λ2 and eigenvectors v1

and v2.

7 Ellipsoid methods

In 1979, the Russian mathematician Leonid Khachiyan used an ellipsoid method to give
the first proof that linear programs can be solved in polynomial time. Ellipsoid methods
are not generally regarded as practical algorithms, but they are good algorithms according
to Definition 19. Ellipsoid methods can also be extended to other classes of optimization
problems.

The basic idea of ellipsoid methods is to start with an ellipsoid large enough to contain
the entire feasible region, cut the ellipsoid in half with a “well-chosen” hyperplane through its
center, draw a new ellipsoid around the “good” half, and repeat. If “well-chosen” and “good”
are defined appropriately, then the algorithm will converge to the desired result (typically,
either a feasible point or an optimum) in polynomial time.

We begin with some geometry, then discuss two ellipsoid methods for linear programming.

7.1 Ellipsoid geometry

Definition 20 (Ellipsoid) The set E(a, A) =
{
x ∈ Rn | (x− a)TA−1(x− a) ≤ 1

}
, where

A � 0, is an ellipsoid.

The ellipsoid E(a, A) is centered at a, and its size and shape are determined by A. The
eigenvectors of A determine the ellipsoid’s orientation. The square roots of the eigenvalues
of A are the lengths of the ellipsoid’s semi-axes (see Figure 2). The unit sphere is E(0, I).

Claim 25 The volume of the ellipsoid E(a, A) ⊂ Rn is βn
√

detA, where βn = πn/2

Γ(1+n/2)
is

the volume of the unit hypersphere in Rn.

The next claim involves cutting an ellipsoid with a hyperplane through its center, as
shown in Figure 3.

24

ak

E(ak, Ak)g

ak+1

E(ak+1, Ak+1)

Figure 3: E(ak+1, Ak+1) is the minimum volume ellipsoid containing the half-ellipsoid
E(ak, Ak) ∩

{
x | gT (x− ak) ≤ 0

}
.

Claim 26 (Minimum volume ellipsoid) Let E(ak, Ak) ⊂ Rn. For any g ∈ Rn, the min-
imum volume ellipsoid containing the half-ellipsoid E(ak, Ak) ∩

{
x ∈ Rn | gT (x− ak) ≤ 0

}
is E(ak+1, Ak+1), where

ak+1 = ak −
1

n+ 1
Akg̃

Ak+1 =
n2

n2 − 1

(
Ak −

2

n+ 1
Akg̃g̃TAk

)
g̃ =

1√
gTAkg

g.

(14)

Claim 27 Let E(ak, Ak) and E(ak+1, Ak+1) be defined as in Claim 26. Then

vol(E(ak+1, Ak+1))

vol(E(ak, Ak))
=

√
det(Ak+1)√
det(Ak)

≤ e−
1

2(n+1) .

7.2 The basic ellipsoid method

Suppose we had an oracle that took a polytope Q and either returned an x ∈ Q or certified
that Q = ∅.

How could we use such an oracle to solve an LP?
Consider the primal-dual pair

minimize cTx
subject to Ax ≤ b

x ≥ 0

maximize bTy
subject to ATy ≤ c

y ≥ 0
(15, 16)

25

with feasible regions F(P) = {x ∈ Rn | Ax ≤ b,x ≥ 0} and F(D) = {y ∈ Rm | ATy ≤
c,y ≥ 0} both bounded.

We can solve the LPs (15) and (16) with three calls to our oracle:

1. Check F(P). If F(P) = ∅, the primal is infeasible.

2. If F(P) 6= ∅, check F(D). If F(D) = ∅, the primal is unbounded.

3. If F(P) 6= ∅ and F(D) 6= ∅, check
{

(x,y) ∈ F(P)×F(D) | cTx ≤ bTy
}

. By weak
duality, cTx ≥ bTy for all x ∈ F(P) and y ∈ F(D), so the (x,y) returned by the
method satisfy cTx = bTy. By strong duality, therefore, x and y are optimal.

If the oracle runs in polynomial time in the sizes of its inputs, then so does this algorithm.

7.2.1 Explaining the oracle

Given a polytope Q, how can we use ellipsoids to find an x ∈ Q or certify that Q = ∅?
Consider a general polytope

Q = {x ∈ Rn | Bx ≤ d}

where

B =

β
T
1
...
βTm

 ∈ Rm×n.

Assume for now that we have a subroutine that checks whether a polytope is empty.
Given such a subroutine and a Q 6= ∅, the following algorithm produces an x ∈ Q (x
happens to be a vertex).

1. Set S = ∅.

2. For i ∈ {1, . . . ,m},
if
{
x ∈ Rn | βTj x ≤ dj ∀ j /∈ S, βTj x = dj ∀ j ∈ S ∪ {i}

}
6= ∅, set S = S ∪ {i}.

3. Solve the system
{
βTj x = dj ∀ j ∈ S

}
for x.

This algorithm’s runtime is polynomial in the sizes of B and d, provided that the sub-
routine runs in polynomial time.

26

7.2.2 Explaining the subroutine

Given a polytope Q, how can we use ellipsoids to check whether Q = ∅?
Consider the polytope

Q̃ =

{
x ∈ Rn

∣∣∣∣Bx ≤ d +
2−L

n+ 2
1

}
.

Let L denote the number of bits required to encode B and d, i.e., L = size(B) + size(d).
Let U denote maximum number of bits required to encode any entry in B or d, i.e., U =
max{maxi,j size(bij),maxi size(di)}.

Claim 28 Q ⊆ E(0, 2LI).

Proof: By Claim 24, any element xj of a vertex x of Q requires at most O(nU +n log2 n)
bits to encode, so |xj| ≤ 2nU+n log2 n. By Claim 23, L = O(nmU), so |xj| ≤ 2L for all
j ∈ {1, . . . , n}. 2

In other words: a sphere of radius 2L centered at the origin is big enough to contain Q.
This gives a starting point for the ellipsoid method.

Lemma 29 If Q = ∅, then Q̃ = ∅.

By contraposition, this lemma implies that if Q̃ 6= ∅, then Q 6= ∅.

Lemma 30 If Q 6= ∅, then there exists an x̂ ∈ Q̃ such that

E
(

x̂,
2−2L

n+ 2
I

)
⊆ Q̃.

By contraposition, this lemma implies that if vol(Q̃) < vol
(
E
(
x̂, 2−2L

n+2
I
))

, then Q = ∅.
These lemmas allow us to run the following algorithm on Q̃ in order to check whether Q

is empty.

1. Set k = 0, ak = 0, Ak = 2LI.

2. If ak ∈ Q̃, return Q 6= ∅.

3. If vol(E(ak, Ak)) < vol
(
E
(
0, 2−2L

n+2
I
))

, return Q = ∅.

4. Pick an i such that βTi ak > di. Set g = βi and update ak and Ak according to the
minimum volume ellipsoid equations (14).

5. Set k = k + 1 and go to Step 2.

Claim 31 After O(n) iterations, the ellipsoid volume shrinks by at least a factor of two.

27

In symbols, this claim says that

vol(E(ak+O(n), Ak+O(n))) =
1

2
vol(E(ak, Ak)).

The proof uses Claim 27.

Claim 32 The algorithm terminates in O(n2L) iterations.

Proof: By Claim 25, the volume of E(a0, A0) = E(0, 2LI) is 2O(nL). By Claim 30, if Q 6= ∅,
then vol(Q̃) ≥ vol

(
E
(
x̂, 2−2L

n+2
I
))

= 2Ω(nL). So after O(n2L) iterations (O(n) iterations per

O(nL) volume reduction), the algorithm will either have found an ak ∈ Q̃ or certified that
Q = ∅. 2

Since L is polynomial in the inputs to the LP (see Claim 23), so is the algorithm’s
runtime.

7.3 The ellipsoid method with objective function cuts

The basic ellipsoid method relies primarily on information about the feasible region, making
little reference to the objective function. We now describe an ellipsoid method that directly
uses information about the objective function.

Consider again the LP
minimize cTx
subject to Ax ≤ b

x ≥ 0

where

A =

α
T
1
...
αTm

 ∈ Rm×n

and F(P) = {x ∈ Rn | Ax ≤ b,x ≥ 0} is bounded. Let L = size(A) + size(b).
The method uses a mix of feasibility cuts, where the cutting hyperplane is normal to the

gradient of a violated constraint, and objective function cuts, where the cutting hyperplane
is normal to the gradient of the objective function.

1. Set k = 0, ak = 0, Ak = 2LI.

2. If vol(E(ak, Ak)) is sufficiently small that E(ak, Ak) contains exactly one vertex, enter
a rounding routine to find and return the optimal vertex x∗.

3. If vol(E(ak, Ak)) < vol
(
E
(
0, 2−2L

n+2
I
))

, return infeasible.

4. If ak /∈ F(P), pick an i such that αTi ak > di and set g = αi.

28

5. If ak ∈ F(P), set g = c.

6. Update ak and Ak according to the minimum volume ellipsoid equations (14).

7. Set k = k + 1 and go to step 2.

7.4 Separation oracles

Definition 21 (Separation oracle) Given a polytope Q and a vector x, a separation or-
acle checks whether x ∈ Q or returns a violated constraint.

Given a polynomial-time separation oracle for the feasible region, any LP can be solved
in polynomial time. The ellipsoid method is an important example of a separation oracle.

29

8 Interior-point methods

While the ellipsoid method is much slower than the simplex method in practice, it proved
the existence of a polynomial-time algorithm for linear programming. Interior-point methods
(IPMs) for linear programming, first developed by Narendra Karmakar in 1984, are provably
polynomial-time and compete with the simplex method in practice. In fact, some commercial
LP solvers run the simplex method and an IPM in parallel on separate cores and return the
solution of whichever algorithm finishes first. IPMs are also interesting because they readily
extend to more general optimization problems, such as conic programming (see §9).

There are many varieties of IPMs. One variety, called path-following, has an upper
bound of O(n ln(1/ε)) iterations to come within a factor of (1 + ε) of the optimal value. An-
other variety, called potential-reduction, has a tighter theoretical bound of O(

√
n ln(1/ε)).

Path-following methods tend to be faster in practice, however. On a typical LP, a good IPM
gets within 1 + 10−8 of the optimal value in 10-50 (costly) iterations.

We develop IPMs in the context of the primal-dual pair

minimize cTx
subject to Ax = b

x ≥ 0

maximize bTy
subject to ATy + s = c

s ≥ 0
(17, 18)

where A ∈ Rm×n and rank(A) = m. Denote the feasible regions and their interiors by

F(P) = {x ∈ Rn | Ax = b,x ≥ 0}
F(D) =

{
(y, s) ∈ Rm ×Rn | ATy + s = c, s ≥ 0

}
F◦(P) = {x ∈ Rn | Ax = b,x > 0}
F◦(D) =

{
(y, s) ∈ Rm ×Rn | ATy + s = c, s > 0

}
.

At a high level, any IPM can be viewed as a way to generate a sequence of points in either
F◦(P) or F◦(P)×F◦(D) that converges to an optimum.

8.1 Finding a descent direction that preserves feasibility

Given an initial feasible point x̄ ∈ F◦(P), we can begin generating this sequence by finding
a search direction d̄ that improves the objective and preserves feasibility. Without loss of
generality, we require

∥∥d̄∥∥
2
≤ 1 and define x = x̄ + αd̄, where α > 0 is the step size. Since

x̄ > 0, α can always be chosen small enough that x > 0. For x to remain feasible, then, the
only requirement is that Ax = b. This implies that that d̄ ∈ null(A).

The problem of finding the feasibility-preserving direction that yields the best improve-
ment in the objective function can be written as

minimize cTd
subject to Ad = 0

‖d‖2 ≤ 1.
(19)

30

Lemma 33 If no y ∈ Rm satisfies ATy = c, then the solution to (19) is

d̄ = − PAc

‖PAc‖2

where PA = I − AT (AAT)−1A.

Since PA is symmetric and idempotent, it’s a projection matrix. Notice that APA = 0, so
for any z ∈ Rn, PAz ∈ null(A). This gives the geometric interpretation of d̄ as the (negated,
normalized) projection of c onto the null space of A.

If no y ∈ Rm satisfies ATy = c, then d̄ strictly improves the objective:

cT (x̄ + αd̄) = cT x̄− α

‖PAc‖2

cTPAc

= cT x̄− α

‖PAc‖2

cTP T
APAc

= cT x̄− α ‖PAc‖2

< cT x̄

where the last line follows from the facts that α > 0 and ‖PAc‖2 > 0. To see that the
latter is true, observe that PAc = 0 if and only if AT (AAT)−1Ac = c. But this is equivalent
to ATy = c, where y = (AAT)−1Ac. This is prohibited by assumption, so PAc 6= 0 and
‖PAc‖2 > 0.

8.2 The affine-scaling direction

In §8.1, we showed that if no y ∈ Rm satisfies ATy = c, then d̄ = −(1/‖PAc‖2)PAc
solves (19). This value of d̄ is the steepest feasibility-preserving descent direction for any
x ∈ F◦(P), whether x is near or far from the boundary. This poses an implementation
problem: if x is near the boundary of the feasible region, then x+αd̄ may remain an interior
point only for very small values of α. Finding a “small enough” step size is nontrivial.

A common way to address this difficulty is to transform the problem such that x is
some standardized distance from the boundary of the feasible region, find the optimal search
direction in the transformed space, and then invert the transformation. The simplest such
transformation is x̂ = X−1x, where

X = diag(x) =

x1

. . .

xn

 =⇒ X−1 =

1/x1

. . .

1/xn

 .
This transformation maps x into x̂ = 1. Under this transformation, the primal (17) becomes

minimize ĉT x̂

subject to Âx̂ = b
x̂ ≥ 0

(20)

31

where ĉ = Xc and Â = AX.
In the transformed space, we once again seek a descent direction d that preserves feasi-

bility. By the same arguments used in §8.1, the best such d solves

minimize ĉTd

subject to Âd = 0
‖d‖2 ≤ 1.

(21)

By Lemma 33, if no y ∈ Rm satisfies ÂTy = ĉ, then the solution to (21) is

d̂ = − PÂĉ

‖PÂĉ‖2

where PÂ = I− ÂT (ÂÂT)−1Â. Inverting the transformation gives the affine-scaling direc-
tion,

d̃ = Xd̂ = − XPÂĉ

‖PÂĉ‖2

.

Note that the affine-scaling direction d̃ solves

minimize cTd
subject to Ad = 0

‖X−1d‖2 ≤ 1.

The norm constraint in the above provides a natural interpretation of the affine-scaling
direction. If x is very near the boundary of the feasible region, then some xi is nearly
zero. In order for ‖X−1d‖2 =

√
(d1/x1)2 + · · ·+ (dn/xn)2 to be less than one, therefore,

the corresponding di must be even closer to zero. Thus, the affine-scaling direction can be
thought of as a force that repels x from the boundary; the closer x gets, the harder it pushes.

Although the affine-scaling direction is used in some practical IPM implementations,
it hasn’t been proven to yield a polynomial-time LP algorithm. To generate a provably
polynomial-time IPM, we formalize the notion of “repelling x from the boundary” by intro-
ducing the logarithmic barrier function.

8.3 The logarithmic barrier function

It can be shown (e.g., by Lagrange multipliers) that −XPÂĉ, the direction of d̃, solves

minimize cTd + 1
2
‖X−1d‖2

2

subject to Ad = 0.

This problem can be viewed as a trade-off between making progress toward the objective (by
making cTd small) and keeping x away from the boundary of the feasible region (by keeping
‖X−1d‖2

2 small).

32

The weighted, squared 2-norm ‖X−1d‖2
2 is a fairly arbitrary measure of proximity to

the boundary of the feasible region. It turns out that a better measure is the logarithmic
barrier function,

F (x) = −
n∑
j=1

ln(xj).

The minimizer of F (x) over F◦(P), which is also the maximizer of
∏n

j=1 xj over F◦(P), is
called the analytic center of F◦(P).

To negotiate the trade-off between progress and centrality, we minimize over F◦(P) the
function

Bγ(x) = cTx + γF (x)

parameterized by γ. For large values of γ, the minimizer of Bγ(x) is nearly the analytic
center of F◦(P). As γ → 0, the minimizer of Bγ(x) tends toward an optimum of the original
primal (17).

Theorem 34 (Existence of a minimizer) There exists a minimizer of Bγ(x) on F◦(P)
if and only if F◦(P) and F◦(D) are nonempty.

Theorem 35 (Uniqueness of the minimizer) Let F◦(P) and F◦(D) be nonempty. A
vector x is the unique minimizer of Bγ(x) on F◦(P) if and only if there exists a (y, s) ∈
F◦(D) such that

ATy + s = c

Ax = b

XS1 = γ1

(22)

where X = diag(x) and S = diag(s).

8.4 A primal-dual path-following method

Note that the last equation in system (22) reduces to complementary slackness for γ =
0. In this limit, the system enforces primal feasibility, dual feasibility and complementary
slackness. As γ → 0, therefore, the solutions to system (22) tend toward optimality. Path-
following methods use this idea to generate a sequence of points in either F◦(P) or F◦(P)×
F◦(D) that follow a central path toward optimality. There are many varieties of path-
following methods. This section describes a primal-dual variety.

Definition 22 (Central path) Let x(γ), y(γ) and s(γ) solve system (22) for a fixed value
of γ. We call {x(γ) ∈ F◦(P) | γ > 0} the primal central path and {(x(γ),y(γ), s(γ)) ∈
F◦(P)×F◦(D) | γ > 0} the primal-dual central path.

33

System (22) involves n + m linear equations coupled through n nonlinear equations.
Solving it means finding a zero of the function

fγ(x,y, s) =

ATy + s− c
Ax− b

XS1− γ1

that satisfies x, s ≥ 0. The classical algorithm for such nonlinear root-finding problems is
Newton’s method, which we will use with minor variations.

8.4.1 Choosing γ

Recall that γ governs the trade-off between making progress toward optimality and staying
away from the boundaries of the feasible regions, as discussed in §8.3. There are several
common choices of γ, each of which defines a different primal-dual path-following IPM.
These methods all set γ = σµ for some σ ∈ [0, 1], where µ = xT s/n is a scaled measure of
the optimality gap.

The methods differ in their choice of σ. If σ = 0, the step will be toward optimality (an
affine-scaling step). If σ = 1, the step will be toward the analytic centers of F◦(P) and
F◦(D) (a centering step). A value of σ ∈ (0, 1) trades off between the two.

Long-step methods use values of σ nearly zero, short-step use values of σ nearly one,
and predictor-corrector methods alternate between centering and affine-scaling steps.
Short-step and predictor-corrector methods have the tightest theoretical runtime bounds,
both guaranteeing µ < ε within O(

√
n ln(1/ε)) iterations. Long-step methods have a looser

O(n ln(1/ε)) bound, but tend to out-perform short-step methods in practice. Many com-
mercial solvers implement the predictor-corrector method.

8.4.2 Newton direction

Suppose that we’re given an x ∈ F◦(P) and (y, s) ∈ F◦(D) and that we’ve chosen γ
somehow. We can follow Newton’s method by seeking a direction (∆x,∆y,∆s) that satisfies

Df (x,y, s)

∆x
∆y
∆s

+ fγ(x,y, s) = 0 (23)

where Df (x,y, s) is the Jacobian of fγ(x,y, s),

Df (x,y, s) =

0 AT I
A 0 0
S 0 X

 .
When solving (23) given a feasible x and (y, s), we have Ax = b and ATy + s = c, so the
system reduces to 0 AT I

A 0 0
S 0 X

∆x
∆y
∆s

 =

 0
0

−XS1 + γ1

 .

34

A direction (∆x,∆y,∆s) satisfying (23) is called a Newton direction.
Once we’ve found a Newton direction, we update the iterates according tox+

y+

s+

 =

x
y
s

+ α

∆x
∆y
∆s

where the step size α is chosen such that x+ ∈ F◦(P) and (y+, s+) ∈ F◦(D). We then
compute a new γ and repeat.

8.5 A potential-reduction method

In potential-reduction methods, we define a potential function that is small only if x and
(y, s) are nearly optimal. At each iteration, we choose a step that reduces the potential
function, driving the iterates toward optimality. There are many varieties of potential-
reduction methods. This section describes one.

What form should we choose for the potential function? Recall that for x ∈ F◦(P) and
(y, s) ∈ F◦(D),

xT s = xT (c− ATy) = cTx− (Ax)Ty = cTx− bTy.

In other words, xT s is the optimality gap: if xT s = 0, then cTx = bTy. This motivates
defining the potential function

Gq(x, s) = q ln(xT s) + F (x) + F (s).

Minimizing Gq(x, s) can be viewed as negotiating a trade-off between decreasing the optimal-
ity gap and keeping x and (y, s) near the analytic centers of F◦(P) and F◦(D), respectively.
This trade-off is parameterized by q.

What’s a good choice of q? It turns out that q = n+
√
n is a good one.

Claim 36 If Gn+
√
n(x, s) ≤ −

√
n ln(1/ε), then xT s ≤ ε.

Proof: By definition, for any value of q, Gq(x, s) − Gn(x, s) = (q − n) ln(xT s). In
particular, for q = n+

√
n, we have Gn+

√
n(x, s) = Gn(x, s) +

√
n ln(xT s).

Note that Gn(x, s) ≥ n ln(n):

Gn(x, s) = n ln(xT s) + F (x) + F (s)

= n ln

(
n∑
j=1

xjsj

)
−

n∑
j=1

ln(xj)−
n∑
j=1

ln(sj)

= n ln

(
n∑
j=1

xjsj

)
−

n∑
j=1

ln(xjsj)

≥ n ln(n).

35

The last line follows from the fact that the geometric mean lower bounds the arithmetic
mean:

1

n

n∑
j=1

tj ≥

(
n∏
j=1

tj

)1/n

.

(Take logs and substitute xjsj for tj.)
This gives the inequality

Gn+
√
n(x, s) ≥ n ln(n) +

√
n ln(xT s)

⇐⇒ ln(xT s) ≤ 1√
n
Gn+

√
n(x, s)−

√
n ln(n).

Suppose that Gn+
√
n(x, s) ≤ −

√
n ln(1/ε). Then

ln(xT s) ≤ − ln(1/ε)−
√
n ln(n)

= ln(ε)−
√
n ln(n)

≤ ln(ε).

Taking exponentials on both sides gives xT s ≤ ε. 2
Claim 36 implies that, given an initial x ∈ F◦(P) and (y, s) ∈ F◦(D) and a method for

reducing Gn+
√
n by some fixed amount per iteration, the objective value will be within ε of

optimal in O(
√
n ln(1/ε)) iterations.

36

9 Conic programming

So far we’ve restricted our attention to linear programming, i.e., to minimizing a linear
objective function subject to linear constraints. Much LP theory extends to more general
optimization problems, however. In fact, the standard form LP

minimize cTx
subject to Ax = b

x ≥ 0

can be viewed as a special case of the conic programming problem,

minimize cTx
subject to Ax = b

x ∈ K
(24)

where K is a convex cone.

Definition 23 (Convex cone) A set K is a convex cone if for all x,y ∈ K and for all
λ, µ ≥ 0, λx + µy ∈ K.

Examples:

• The nonnegative orthant,
{x ∈ Rn | x ≥ 0} .

If K is the nonnegative orthant, then (24) reduces to the standard form primal LP.

• The second-order cone,{
x ∈ Rn

∣∣∣∣xT [I 0
0 −1

]
x ≤ 0, xn ≥ 0

}
.

The second-order cone is also known as the quadratic cone, the Lorentz cone, or the
ice-cream cone. The second-order cone in R3 is

xy
z

 ∣∣∣∣∣∣x2 + y2 ≤ z2, z ≥ 0

 .

Figure 4 shows the boundary of this set.

• The positive semidefinite cone, {
X ∈ Rn×n | X � 0

}
.

The notation X � 0 means that X is a symmetric, positive semidefinite matrix, i.e.,
XT = X and for all v ∈ Rn, vTXv ≥ 0. Equivalently, X is symmetric and all of its
eigenvalues are nonnegative.

37

Figure 4: the boundaries of the second-order cone (left) and positive semidefinite cone (right).
The second-order cone is also called the ice-cream cone. The cone of 2×2 positive semidefinite
matrices is a subset of R3.

Note that the elements of the positive semidefinite cone are n×n symmetric matrices.
Any such matrix is determined by n(n+ 1)/2 numbers. For example, the cone of 2× 2
positive semidefinite matrices is a subset of R3:{[

x y
y z

] ∣∣∣∣x, z ≥ 0, y2 ≥ xz

}
.

(To see that this is the positive semidefinite cone for n = 2, apply the nonnegative
eigenvalue condition.) Figure 4 shows the boundary of this set.

The constraint and objective functions in problem (24) can be generalized to accom-
modate the matrix-valued optimization variable X (see §9.4).

9.1 Weak duality

In LP duality, we define the dual variables (y, s) such that ATy + s = c and s ≥ 0. Recall
the proof of weak duality: for any x ≥ 0 satisfying Ax = b,

cTx = (ATy + s)Tx = (Ax)Ty + sTx = bTy + sTx ≥ bTy

where the last line follows from s ≥ 0 =⇒ sTx ≥ 0 for all x ≥ 0.
How to define the conic dual variables such that weak duality holds? Suppose x ∈ K

satisfies Ax = b. For the proof of weak duality to follow through, rather than requiring that
s satisfy sTx ≥ 0 for all x ≥ 0, we need s to satisfy sTx ≥ 0 for all x ∈ K. This motivates
defining the dual cone of K,

K∗ =
{
s ∈ Rn | sTx ≥ 0 for all x ∈ K

}
.

38

We define the dual variables (y, s) such that ATy + s = c and s ∈ K∗. With this definition,
weak duality holds: for all feasible x, cTx ≥ bTy.

The dual conic program is the problem of finding the greatest lower bound on the primal
value:

maximize bTy
subject to ATy + s = c

s ∈ K∗.
(25)

Definition 24 (Self-dual) A convex cone K is self-dual if K∗ = K.

Claim 37 The nonnegative orthant, second-order cone and positive semidefinite cone are
all self-dual.

9.2 Infimum vs. minimum

If an LP and its dual are both feasible, then strong duality guarantees that some primal-
feasible point is optimal. Conic programming provides no such guarantee. For example,
consider the primal-dual pair

minimize x2 + x3

subject to x1 = 1
x ∈ K

maximize y
subject to y + s1 = 0, s2 = s3 = 1

s ∈ K∗
(26, 27)

where K = K∗ is the second-order cone in R3. The primal and dual feasible regions are

F(P) =
{
x ∈ R3 | x1 = 1, x2

1 + x2
2 ≤ x2

3, x3 ≥ 0
}

=
{
x ∈ R3 | 1 + x2

2 ≤ x2
3, x3 ≥ 0

}
F(D) =

{
(y, s) ∈ R×R3 | y + s1 = 0, s2 = s3 = 1, s2

1 + s2
2 ≤ s2

3, s3 ≥ 0
}

=
{(

0,
[
0 1 1

]T)}
so both the primal and dual are feasible.

Observe that any x ∈ F(P) satisfies

1 + x2
2 ≤ x2

3 ⇐⇒ (x2 + x3)(x3 − x2) ≥ 1

so no x with objective value x2 + x3 = 0 is feasible. However, consider the solution x1 = 1,
x2 = 1

2
(ε− 1

ε
), x3 = 1

2
(ε+ 1

ε
). This solution is feasible for any ε > 0, since x3 > 0 and

(x2 + x3)(x3 − x2) = (ε) (1/ε) = 1.

The objective value of this solution is x2 +x3 = ε, which can be made arbitrarily close to zero
while preserving feasibility. Thus, inf {x2 + x3 | x ∈ F(P)} = 0, but no x ∈ F(P) attains
this value.

This example motivates defining the optimal value of the conic primal (24) as inf{cTx |
Ax = b, x ∈ K}, rather than min{cTx | Ax = b, x ∈ K}. Similarly, we replace the
maximum with the supremum when defining the optimal value of the conic dual (25).

This example also suggests that odd things can happen when we try to apply strong
duality to conic programming.

39

9.3 Strong duality

Unlike weak duality, strong duality does not hold for a general conic program. Strong
duality can be violated in various ways: the primal can have a finite value while the dual is
infeasible, or the primal and dual can both have finite, but different, values. The weak link
in the derivation of strong duality for conic programming is Farkas’ lemma (see §4.1), which
does not extend to general conic constraints.

We’d like to find special cases of conic programming where strong duality holds. We start
by defining asymptotic feasibility.

Definition 25 (Asymptotically feasible) The system Ax = b, x ∈ K is asymptotically
feasible if for all ε > 0, there exists a ∆b such that ‖∆b‖ < ε and the system Ax = b + ∆b,
x ∈ K is feasible.

In other words, an asymptotically feasible system can be made feasible by perturbing b by
a tiny amount. The dual system ATy + s = c, s ∈ K∗ is asymptotically feasible if for all
ε > 0, there exists a ∆c such that ‖∆c‖ < ε and the system ATy + s = c + ∆c, s ∈ K∗ is
feasible.

Theorem 38 (Asymptotic Farkas’ lemma) Let A ∈ Rm×n, b ∈ Rm, and K be a convex
cone. Exactly one of the following holds:

(1) The system Ax = b, x ∈ K is asymptotically feasible.

(2) The system −ATy ∈ K∗, bTy > 0 is feasible.

Definition 26 (Asymptotically optimal value) If the primal (24) is asymptotically fea-
sible, then its asymptotically optimal value is

a-opt = lim
ε→0

inf
‖∆b‖<ε

inf
{
cTx | Ax = b + ∆b, x ∈ K

}
.

If the dual (25) is asymptotically feasible, then its asymptotically optimal value is

a-dual-opt = lim
ε→0

sup
‖∆c‖<ε

sup
{
bTy | c + ∆c− ATy ∈ K∗

}
.

Theorem 39 If the primal is asymptotically feasible, then the optimal value of the dual
equals a-opt. If the dual is asymptotically feasible, then the optimal value of the primal
equals a-dual-opt.

By weak duality and Theorem 39, if the primal and dual are asymptotically feasible, then

a-opt = dual-opt ≤ opt = a-dual-opt

where opt is the optimal value of the primal and dual-opt is the optimal value of the dual.
To find a case where all four values are equal, we define strong feasibility.

40

Definition 27 (Strongly feasible) The system Ax = b, x ∈ K is strongly feasible if there
exists an ε > 0 such that for all ∆b with ‖∆b‖ < ε, the system Ax = b + ∆b, x ∈ K is
feasible.

In other words, a strongly feasible system remains feasible under any sufficiently small per-
turbation of b. The dual system ATy + s = c, s ∈ K∗ is strongly feasible if there exists an
ε > 0 such that for all ∆c with ‖∆c‖ < ε, the system ATy + s = c + ∆c, s ∈ K∗ is feasible.

Note that if any x ∈ int(K) satisfies Ax = b, then the primal system is strongly feasible.
Similarly, if any s ∈ int(K∗) satisfies ATy + s = c, then the dual system is strongly feasible.

Theorem 40 If either the primal or dual is strongly feasible, then strong duality holds.

Corollary 41 If the primal is feasible and the dual is strongly feasible, then the primal has
an optimal solution.

9.4 Semidefinite programming

Semidefinite programming is a class of conic programming that is widely used in control
theory, statistics, and other fields. We discuss semidefinite programming in the context of
the primal-dual pair

minimize 〈C,X〉
subject to 〈Ak, X〉 = bk, k ∈ {1, . . . ,m}

X � 0

maximize bTy
subject to

∑m
k=1 ykAk + S = C

S � 0
(28, 29)

where XT = X ∈ Rn×n and 〈C,X〉 is the standard inner product on Rn×n,

〈C,X〉 =
n∑
i=1

n∑
j=1

cijxij = tr(CTX).

We will develop a primal-dual path-following method for semidefinite programming, analo-
gous to the LP algorithm in §8.4.

We begin by defining the feasible regions and their interiors,

F(P) =
{
X ∈ Rn×n | AkX = bk, k ∈ {1, . . . ,m} , X � 0

}
F(D) =

{
(y, S) ∈ Rm ×Rn×n

∣∣∣∣∣
m∑
k=1

ykAk + S = C, S � 0

}
F◦(P) =

{
X ∈ Rn×n | AkX = bk, k ∈ {1, . . . ,m} , X � 0

}
F◦(D) =

{
(y, S) ∈ Rm ×Rn×n

∣∣∣∣∣
m∑
k=1

ykAk + S = C, S � 0

}
.

41

where the notation X � 0 means that X is symmetric and positive definite, i.e., XT = X and
for all nonzero v ∈ Rn, vTXv > 0. Equivalently, X is symmetric and all of its eigenvalues
are positive.

We define the logarithmic barrier function for semidefinite programming as

F (X) = − ln(det(X)).

Why this definition? Recall that det(X) =
∏n

i=1 λi, where λ1, . . . , λn are the eigenvalues
of X. Since positive definite matrices have only positive eigenvalues, det(X) > 0 for any
X ∈ F◦(P). Any X on the boundary of F(P), however, is positive semidefinite but not
positive definite. Hence, it must have at least one eigenvalue equal to zero, so its determinant
is also zero. Thus, F (X)→∞ as X approaches the boundary of the feasible region. This is
exactly the “repelling” behavior we want.

To negotiate the trade-off between making progress in the objective function and staying
in the interior of the feasible region, we minimize over F◦(P) the function

Bγ(X) = 〈C,X〉+ γF (X)

parameterized by γ. For large values of γ, the minimizer of Bγ(X) is near the analytic center
of F◦(P). As γ → 0, the minimizer of Bγ(X) tends toward an optimal solution of (28).

Theorem 42 (Existence of a minimizer) There exists a minimizer of Bγ(X) on F◦(P)
if and only if F◦(P) and F◦(D) are nonempty.

Theorem 43 (Uniqueness of the minimizer) Let F◦(P) and F◦(D) be nonempty. A
matrix X is the unique minimizer of Bγ(X) on F◦(P) if and only if there exists a (y, S) ∈
F◦(D) such that

m∑
k=1

ykAk + S = C

〈Ak, X〉 = bk, k ∈ {1, . . . ,m}
XS = γI.

(30)

Solving system (30) amounts to finding a zero of the nonlinear function fγ : Rn×n×Rm×
Rn×n → R2n2+m, with the zero satisfying X,S � 0. We can obtain fγ(X,y, S) by stacking
the columns of the matrix equations in (30):

fγ(X,y, S) =

∑m
k=1 yka

k
1 + s1 − c1
...∑m

k=1 yka
k
n + sn − cn

〈A1X〉 − b1
...

〈AmX〉 − bm
Xs1 − γe1

...
Xsn − γen

42

where aki ∈ Rn is the ith column of Ak, si ∈ Rn is the ith column of S, and ci ∈ Rn is the
ith column of C:

Ak =
[
ak1 . . . akn

]
, S =

[
s1 . . . sn

]
, C =

[
c1 . . . cn

]
.

Suppose that we’re given an X ∈ F◦(P) and (y, S) ∈ F◦(D) and that we’ve chosen σ ∈ [0, 1]
somehow (see §8.4.1), computed µ = 1

n
〈X,S〉, and set γ = σµ. We can follow Newton’s

method by seeking a Newton direction (∆X,∆y,∆S), i.e., a direction that satisfies

Df (X,y, S)

∆x1
...

∆xn
∆y
∆s1

...
∆sn

+ fγ(X,y, S) = 0 (31)

where
∆X =

[
∆x1 . . . ∆xn

]
, ∆S =

[
∆s1 . . . ∆sn

]
and Df (X,y, S) is the Jacobian of fγ(X,y, S). By computing the Jacobian and noting that fγ
simplifies significantly for feasible X and (y, S), one can show that system (31) is equivalent
to

m∑
k=1

∆ykAk + ∆S = 0

〈Ak,∆X〉 = 0, k ∈ {1, . . . ,m}
S∆X +X∆S = −SX + γI.

Once we’ve found a Newton direction, we update the iterates according to

X+ = X + α∆X

y+ = y + α∆y

S+ = S + α∆S.

The step size α is chosen such that X+ ∈ F◦(P) and (y+, S+) ∈ F◦(D). We then compute
a new γ and repeat.

This idea leads to an algorithm that takes O(
√
n ln(c/ε)) iterations to reduce the duality

gap from c to ε.

43

	The linear programming problem
	Duailty
	Geometry
	Optimality conditions
	Answer 1: cTx= bTy for a yF(D)
	Answer 2: complementary slackness holds for a yF(D)
	Answer 3: the verifying y is in F(D)

	The simplex method
	Reformulation
	Algorithm
	Convergence
	Finding an initial basic feasible solution
	Complexity of a pivot
	Pivot rules
	Degeneracy and cycling
	Number of pivots
	Varieties of the simplex method
	Sensitivity analysis
	Solving large-scale linear programs

	Good algorithms
	Ellipsoid methods
	Ellipsoid geometry
	The basic ellipsoid method
	The ellipsoid method with objective function cuts
	Separation oracles

	Interior-point methods
	Finding a descent direction that preserves feasibility
	The affine-scaling direction
	The logarithmic barrier function
	A primal-dual path-following method
	A potential-reduction method

	Conic programming
	Weak duality
	Infimum vs. minimum
	Strong duality
	Semidefinite programming

