Matrix Algebra Review
 Kevin Kircher - Cornell MAE - Spring '14

These notes collect some useful facts from finite dimensional linear algebra.

Contents

1 Working with matrices and vectors 2
2 Square matrices 6
3 Norms 10
4 Useful sets and decompositions 12
5 Derivatives 17

1 Working with matrices and vectors

A vector $\mathbf{v} \in \mathbf{R}^{n}$ is a column of n real scalars:

$$
\mathbf{v}=\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right] \quad \Longleftrightarrow \quad \mathbf{v}^{T}=\left[\begin{array}{lll}
v_{1} & \ldots & v_{n}
\end{array}\right] \in \mathbf{R}^{1 \times n}
$$

where \mathbf{v}^{T} is the transpose of \mathbf{v}. In these notes vectors are denoted by bold, lower case letters.

A matrix $A \in \mathbf{R}^{m \times n}$ contains n columns of m real scalars:

$$
A=\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right] \quad \Longleftrightarrow \quad A^{T}=\left[\begin{array}{ccc}
a_{11} & \ldots & a_{m 1} \\
\vdots & \ddots & \vdots \\
a_{1 n} & \ldots & a_{m n}
\end{array}\right] \in \mathbf{R}^{n \times m}
$$

We sometimes write $A=\left[a_{i j}\right]$ or $(A)_{i j}=a_{i j}$ to mean that A is built from the elements $a_{i j}$. In these notes matrices are denoted by non-bold capital letters.

Some definitions and properties of operations between scalars, vectors and matrices follow.

- Vector addition for $\mathbf{u}, \mathbf{v} \in \mathbf{R}^{n}$:

$$
\mathbf{u}+\mathbf{v}=\left[\begin{array}{c}
u_{1}+v_{1} \\
\vdots \\
u_{n}+v_{n}
\end{array}\right]
$$

- Addition of matrices $A, B \in \mathbf{R}^{m \times n}$:

$$
A+B=\left[\begin{array}{ccc}
a_{11}+b_{11} & \ldots & a_{1 n}+b_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1}+b_{m 1} & \ldots & a_{m n}+b_{m n}
\end{array}\right]
$$

- Vector-scalar multiplication for $\alpha \in \mathbf{R}, \mathbf{v} \in \mathbf{R}^{n}$:

$$
\alpha \mathbf{v}=\left[\begin{array}{c}
\alpha v_{1} \\
\vdots \\
\alpha v_{n}
\end{array}\right]
$$

- Matrix-scalar multiplication for $\alpha \in \mathbf{R}, A \in \mathbf{R}^{n \times m}$:

$$
\alpha A=\left[\begin{array}{ccc}
\alpha a_{11} & \ldots & \alpha a_{1 n} \\
\vdots & \ddots & \vdots \\
\alpha a_{m 1} & \ldots & \alpha a_{m n}
\end{array}\right]
$$

- The inner product of vectors $\mathbf{u}, \mathbf{v} \in \mathbf{R}^{n}$ is

$$
\langle\mathbf{u}, \mathbf{v}\rangle=\mathbf{u} \cdot \mathbf{v}=\mathbf{u}^{T} \mathbf{v}=\sum_{i=1}^{n} u_{i} v_{i} \in \mathbf{R}
$$

Two vectors are orthogonal iff their inner product is zero.

- The angle between \mathbf{u} and $\mathbf{v} \in \mathbf{R}^{n}$ is

$$
\angle(\mathbf{u}, \mathbf{v})=\cos ^{-1}\left(\frac{\mathbf{u}^{T} \mathbf{v}}{\sqrt{\left(\mathbf{u}^{T} \mathbf{u}\right)\left(\mathbf{v}^{T} \mathbf{v}\right)}}\right) \in[0, \pi]
$$

- The orthogonal projection of $\mathbf{v} \in \mathbf{R}^{n}$ onto $\mathbf{u} \in \mathbf{R}^{n}$ is

$$
\operatorname{proj}_{\mathbf{u}} \mathbf{v}=\frac{\mathbf{v}^{T} \mathbf{u}}{\mathbf{u}^{T} \mathbf{u}} \mathbf{u}
$$

This allows decomposition of \mathbf{v} into components parallel and orthogonal to \mathbf{u} :

$$
\mathbf{v}=\mathbf{v}_{\perp}+\mathbf{v}_{\|}
$$

where

$$
\mathbf{v}_{\perp}=\operatorname{proj}_{\mathbf{u}} \mathbf{v}, \quad \mathbf{v}_{\|}=\mathbf{v}-\mathbf{v}_{\perp}
$$

- The outer product of vectors $\mathbf{u} \in \mathbf{R}^{n}$ and $\mathbf{v} \in \mathbf{R}^{m}$ is

$$
|\mathbf{u}\rangle\langle\mathbf{v}|=\mathbf{u} \mathbf{v}^{T}=\left[u_{i} v_{j}\right] \in \mathbf{R}^{n \times m}
$$

- Matrix multiplication of $A \in \mathbf{R}^{m \times n}, B \in \mathbf{R}^{n \times p} \Rightarrow A B \in \mathbf{R}^{m \times p}$

$$
(A B)_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}, \quad i \in\{1, \ldots, m\}, \quad j \in\{1, \ldots, p\}
$$

It can be useful to view matrix multiplication in terms of rows and columns: if

$$
A=\left[\begin{array}{c}
\boldsymbol{\alpha}_{1}^{T} \\
\vdots \\
\boldsymbol{\alpha}_{m}^{T}
\end{array}\right], \quad B=\left[\begin{array}{lll}
\mathbf{b}_{1} & \ldots & \mathbf{b}_{p}
\end{array}\right]
$$

then

$$
(A B)_{i j}=\boldsymbol{\alpha}_{i}^{T} \mathbf{b}_{j} \quad \Longleftrightarrow \quad A B=\left[\begin{array}{c}
\boldsymbol{\alpha}_{1}^{T} B \\
\vdots \\
\boldsymbol{\alpha}_{m}^{T} B
\end{array}\right]=\left[\begin{array}{lll}
A \mathbf{b}_{1} & \ldots & A \mathbf{b}_{p}
\end{array}\right]
$$

Matrix multiplication can also be viewed in terms of outer products. If

$$
A=\left[\begin{array}{lll}
\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}
\end{array}\right], \quad B=\left[\begin{array}{c}
\boldsymbol{\beta}_{1}^{T} \\
\vdots \\
\boldsymbol{\beta}_{n}^{T}
\end{array}\right]
$$

then

$$
A B=\mathbf{a}_{1} \boldsymbol{\beta}_{1}^{T}+\cdots+\mathbf{a}_{n} \boldsymbol{\beta}_{n}^{T}
$$

The transpose of a product is

$$
(A B)^{T}=B^{T} A^{T}
$$

- Multiplication by the identity matrix $I_{n} \in \mathbf{R}^{n \times n}$, for $A \in \mathbf{R}^{n \times m}$:

$$
I_{n}=\left[\begin{array}{lll}
1 & & \\
& \ddots & \\
& & 1
\end{array}\right] \quad \Rightarrow \quad I_{n} A=A I_{m}=A
$$

The identity matrix can be expressed in terms of the Cartesian basis vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$:

$$
\mathbf{e}_{1}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right], \quad \ldots, \quad \mathbf{e}_{n}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right] \quad \Rightarrow \quad I_{n}=\left[\begin{array}{lll}
\mathbf{e}_{1} & \ldots & \mathbf{e}_{n}
\end{array}\right]
$$

- Matrix-vector multiplication of $A \in \mathbf{R}^{m \times n}, \mathbf{x} \in \mathbf{R}^{n} \Rightarrow A \mathbf{x} \in \mathbf{R}^{m}$:

$$
(A \mathbf{x})_{i}=\sum_{j=1}^{n} a_{i j} x_{j}
$$

It can be useful to view matrix-vector multiplication as mixture of the columns of A :

$$
A=\left[\begin{array}{lll}
\mathbf{a}_{1} & \cdots & \mathbf{a}_{n}
\end{array}\right] \Rightarrow A \mathbf{x}=x_{1} \mathbf{a}_{1}+\cdots+x_{n} \mathbf{a}_{n}
$$

- A set of vectors $S=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$ is linearly dependent if there exists an $\mathbf{x} \in \mathbf{R}^{n}$ such that $\mathbf{x} \neq \mathbf{0}$ and

$$
x_{1} \mathbf{a}_{1}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{0} .
$$

If no such \mathbf{x} exists, i.e. if

$$
A \mathbf{x}=\mathbf{0} \quad \Rightarrow \quad \mathbf{x}=\mathbf{0}
$$

where $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}\end{array}\right]$, then S is linearly independent.
A linearly independent set $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ with $\mathbf{a}_{i} \in \mathbf{R}^{n}$ can have at most n elements, i.e. $k \leq n$. Equivalently, any set of $k n$-vectors, with $k>n$, is linearly dependent.

- A set of n linearly independent n-vectors is a basis for \mathbf{R}^{n}. If $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$ is a basis for \mathbf{R}^{n}, then any vector in \mathbf{R}^{n} can be written as a linear combination of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$.
- The column space or range of $A \in \mathbf{R}^{n \times m}$ is the set

$$
\operatorname{col}(A)=\left\{\mathbf{b} \in \mathbf{R}^{n} \mid A \mathbf{x}=\mathbf{b}, \mathbf{x} \in \mathbf{R}^{n}\right\}
$$

The column space of A is the span (the set of all linear combinations) of the columns $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ of A.

- The null space or kernel of $A \in \mathbf{R}^{n \times m}$ is the set

$$
\operatorname{null}(A)=\left\{\mathbf{x} \in \mathbf{R}^{m} \mid A \mathbf{x}=\mathbf{0}\right\}
$$

Fact: $\operatorname{dim}(\operatorname{null}(A))+\operatorname{dim}(\operatorname{col}(A))=n$

- The rank of $A \in \mathbf{R}^{m \times n}$ is the number of linearly independent columns of A, i.e. $\operatorname{rank}(A)=\operatorname{dim}(\operatorname{col}(A)) \leq \min \{m, n\}$. If $\operatorname{rank}(A)=\min \{m, n\}$, then A is called full rank.

Facts:
\diamond the row rank and column rank of a matrix are equal
\diamond if A is full rank, then $A \mathbf{x}=\mathbf{0} \Longleftrightarrow \mathbf{x}=\mathbf{0}$
\diamond if $A \in \mathbf{R}^{n \times n}$ and $B \in \mathbf{R}^{n \times p}$, then $\operatorname{rank}(A B) \leq \min \{\operatorname{rank}(A), \operatorname{rank}(B)\}$
\diamond if $A \in \mathbf{R}^{m \times n}$ is full rank and $B \in \mathbf{R}^{n \times p}$, then $\operatorname{col}(A B)=\operatorname{col}(B)$ and $\operatorname{rank}(A B)=$ $\operatorname{rank}(B)$
\diamond the rank of a diagonal matrix is the number of its nonzero elements
\diamond the rank of a symmetric matrix is the number of its nonzero eigenvalues

2 Square matrices

The definitions and results in this section apply only to square matrices, i.e. to matrices $A \in \mathbf{R}^{n \times n}$.

- The trace of $A \in \mathbf{R}^{n \times n}$ is

$$
\operatorname{tr}(A)=\sum_{i=1}^{n} a_{i i}
$$

Cyclic permutations: for $A \in \mathbf{R}^{m \times n}, B \in \mathbf{R}^{n \times p}, C \in \mathbf{R}^{p \times m}$

$$
\operatorname{tr}(A B C)=\operatorname{tr}(C A B)=\operatorname{tr}(B C A)
$$

- The determinant of $A \in \mathbf{R}^{n \times n}$ is

$$
\operatorname{det}(A)=\sum_{i=1}^{n} a_{i j}(-1)^{i+j} C^{i j}
$$

where the cofactor $C^{i j}$ is the determinant of the $(n-1) \times(n-1)$ matrix formed by deleting the $i^{\text {th }}$ row and $j^{\text {th }}$ column of A. For $n=2$,

$$
\operatorname{det}(A)=a_{11} a_{22}-a_{12} a_{21}
$$

Facts:
\diamond if $A, B \in \mathbf{R}^{n \times n}$, then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
$\diamond \operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$
\diamond if A^{-1} exists, then $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$

- A matrix $A \in \mathbf{R}^{n \times n}$ is singular if $\operatorname{det}(A)=0$ or, equivalently, if $\operatorname{rank}(A)<n$.
- If $A \in \mathbf{R}^{n \times n}$ is nonsingular, then there exists a matrix A^{-1}, called the inverse of A, such that

$$
A^{-1} A=A A^{-1}=I
$$

In practice, computing A^{-1} is expensive (order n^{3} flops) and may be inaccurate if A is ill-conditioned. For small matrices, A^{-1} can be found by hand using Cramer's rule,

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)^{T}
$$

where $\operatorname{adj}(A)$, called the adjutant of A, is the matrix of the cofactors of A :

$$
\operatorname{adj}(A)=\left[(-1)^{i+j} C^{i j}\right]=\left[\begin{array}{cccc}
C^{11} & -C^{12} & \ldots & (-1)^{n+1} C^{1 n} \\
-C^{12} & C^{22} & & \\
\vdots & & \ddots & \vdots \\
(-1)^{n+1} C^{n 1} & \ldots & & C^{n n}
\end{array}\right]
$$

so for $n=2$,

$$
A^{-1}=\frac{1}{a_{11} a_{22}-a_{12} a_{21}}\left[\begin{array}{cc}
a_{22} & -a_{21} \\
-a_{12} & a_{11}
\end{array}\right]
$$

If $A, B \in \mathbf{R}^{n \times n}$ are both non-singular, then

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

- Matrix inversion lemma: if all the relevant inverses exist, then

$$
(A+B C D)^{-1}=A^{-1}-A^{-1} B\left(D A^{-1} B+C^{-1}\right)^{-1} D A^{-1}
$$

- Let A be a square block matrix, and let $A^{-1}=B$, i.e.

$$
A^{-1}=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]^{-1}=\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]=B
$$

where A_{11} and A_{22} are square, $\operatorname{det}\left(A_{11}\right) \neq 0$, and $\operatorname{dim}\left(A_{i j}\right)=\operatorname{dim}\left(B_{i j}\right)$ for all i, j. Assume as well that $\operatorname{det}(\Delta) \neq 0$, where $\Delta=A_{22}-A_{21} A_{11}^{-1} A_{12}$. Then the inverse of A is given by

$$
\begin{aligned}
& B_{11}=A_{11}^{-1}+A_{11}^{-1} A_{12} \Delta^{-1} A_{21} A_{11}^{-1} \\
& B_{12}=-A_{11}^{-1} A_{12} \Delta^{-1} \\
& B_{21}=-\Delta^{-1} A_{21} A_{11}^{-1} \\
& B_{22}=\Delta^{-1}
\end{aligned}
$$

- A matrix $A \in \mathbf{R}^{n \times n}$ is idempotent if $A^{2} \equiv A A=A$.

Facts:
\diamond if A is idempotent, then $\operatorname{tr}(A)=\operatorname{rank}(A)$
\diamond if A is idempotent, then any eigenvalue of A is either 0 or 1
Examples:
$\diamond \bar{J}=\frac{1}{n} \mathbf{1 1}^{T} \in \mathbf{R}^{n \times n}$ is idempotent. \bar{J} is called an averaging matrix because

$$
\bar{J} \mathbf{x}=\frac{1}{n} \mathbf{1 1}^{T} \mathbf{x}=\left(\frac{1}{n} \mathbf{1}^{T} \mathbf{x}\right) \mathbf{1}=\bar{x} \mathbf{1}
$$

where \bar{x} is the mean of the elements of \mathbf{x}.
$\diamond C=I-\bar{J}$ is idempotent. C is called a centering matrix because

$$
C \mathbf{x}=(I-\bar{J}) \mathbf{x}=\mathbf{x}-\bar{x} \mathbf{1}
$$

- (Cayley-Hamilton theorem: A solves its own characteristic polynomial)

Let $A \in \mathbf{R}^{n \times n}$ and $p(\lambda)=\operatorname{det}(\lambda I-A)$, i.e. let $p: \mathbf{C} \rightarrow \mathbf{R}$ be the characteristic polynomial of A. Overload $p: \mathbf{R}^{n \times n} \rightarrow \mathbf{R}$ such that

$$
\Leftrightarrow \quad \begin{aligned}
p(\lambda) & =\alpha_{0}+\alpha_{1} \lambda+\cdots+\alpha_{n} \lambda^{n} \\
\Longleftrightarrow & p(A)
\end{aligned}=\alpha_{0} I+\alpha_{1} A+\cdots+\alpha_{n} A^{n}
$$

then $p(A)=0$. This result allows A^{p} to be expressed as a linear combination of I, A, \ldots, A^{n-1} for any $p \in\{1,2, \ldots\}$ (and for negative integers, if A^{-1} exists).

2.1 Eigenstuff and diagonalization

If A is square, then there exist at least one $\lambda_{i} \in \mathbf{R}$ and $\mathbf{v}_{i} \in \mathbf{R}^{n}$ such that $\mathbf{v}_{i} \neq \mathbf{0}$ and $A \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i}$, i.e. multiplication by A stretches \mathbf{v}_{i} but doesn't rotate it. These special vectors \mathbf{v}_{i} and scalars λ_{i} are called the eigenvectors and eigenvalues of A, respectively. Interesting fact: the image of the unit sphere, transformed by A, is an ellipsoid with principle axes $\lambda_{i} \mathbf{v}_{i}$.

We can find the eigenstuff of A by solving $\operatorname{det}(\lambda I-A)=0$, an $n^{\text {th }}$-order polynomial in λ, for $\lambda_{1}, \ldots, \lambda_{n}$. The eigenvalues of A are generally complex and not necessarily distinct.

Let λ_{i} be an eigenvalue of $A \in \mathbf{R}^{n \times n}$ with corresponding eigenvector \mathbf{v}_{i}. Then

- $\operatorname{tr}(A)=\sum_{i} \lambda_{i}$
(so the eigenvalues of A^{T} and A are the same)
- $\operatorname{det}(A)=\prod_{i} \lambda_{i}$
(so A is singular iff $\lambda_{i}=0$ for some $i \in\{1, \ldots, n\}$)
- if $\operatorname{det}(A) \neq 0$, then $1 / \lambda_{i}$ is an eigenvalue of A^{-1}
- the eigenvalues of A^{k} are $\lambda_{1}^{k}, \ldots, \lambda_{n}^{k}$
(so the linear system $\mathbf{x}(k+1)=A \mathbf{x}(k)$ is stable iff $\left|\lambda_{i}\right|<1$ for all i)
- $\alpha \lambda_{i}+\beta$ is an eigenvalue of $\alpha A+\beta I$ with eigenvector \mathbf{v}_{i}

Other facts:

- if $A \in \mathbf{S}^{n}$, then the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of A are real (but not necessarily distinct), and A has a full set of n linearly independent eigenvectors.
- if $A \in \mathbf{S}_{+}^{n}$, then the eigenvalues of A are real and nonnegative
- if $A \in \mathbf{S}_{++}^{n}$, then the eigenvalues of A are real and positive
- the eigenvalues of the block triangular matrix

$$
\left[\begin{array}{ll}
A & B \\
0 & C
\end{array}\right]
$$

are the eigenvalues of A and the eigenvalues of C

- if every row of A sums to c, then c is an eigenvalue of A with eigenvector $[1, \ldots, 1]^{T}$
- if every column of A sums to c, then c is an eigenvalue of A (no info about the corresponding eigenvector)

A major application of eigenstuff is diagonalization, also called spectral decomposition. For most, but not all, $A \in \mathbf{R}^{n \times n}$, there exist nonsingular T and diagonal Λ such that $A=T^{-1} \Lambda T$. Diagonalization greatly facilitates computations and proofs. Examples:

- matrix exponential

$$
e^{A t}=e^{T^{-1} \Lambda T t}=T^{-1}\left[\begin{array}{lll}
e^{\lambda_{1} t} & & \\
& \ddots & \\
& & e^{\lambda_{n} t}
\end{array}\right] T
$$

- powers

$$
A^{k}=\left(T^{-1} \Lambda T\right)^{k}=T^{-1}\left[\begin{array}{lll}
\lambda_{1}{ }^{k} & & \\
& \ddots & \\
& & \lambda_{n}{ }^{k}
\end{array}\right] T
$$

(always valid for $k \geq 1$, valid for $k<1$ if A is invertible)
Theorem 1 (Spectral decomposition) Let $A \in \mathbf{R}^{n \times n}$ have the n linearly independent eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ with associated eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, and let $T=\left[\mathbf{v}_{1} \ldots \mathbf{v}_{n}\right]$ and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. Then $A=T \Lambda T^{-1}$.

Corollary 2 If $A \in \mathbf{R}^{n \times n}$ has n distinct eigenvalues, then A is diagonalizable.
Note that the converse is not true: there are diagonalizable matrices that do not have full sets of distinct eigenvalues.

It's hard to tell whether a general matrix A satisfies these conditions without computing its eigenstuff. An exception is if A is real and symmetric.

Lemma 3 (Principle axis theorem) If $A=A^{T} \in \mathbf{R}^{n \times n}$, then A is orthogonally diagonalizable, i.e.

$$
A=T \Lambda T^{T}
$$

where T is orthogonal $\left(T T^{T}=T^{T} T=I\right)$ and Λ is diagonal.

3 Norms

- A norm $\|\cdot\|: \mathbf{R}^{n} \rightarrow \mathbf{R}$ of a vector satisfies

1. nonnegativity

$$
\|\mathbf{v}\| \geq 0 \text { for all } \mathbf{v} \in \mathbf{R}^{n}
$$

2. definiteness

$$
\|\mathbf{v}\|=0 \Longleftrightarrow \mathbf{v}=\mathbf{0}
$$

3. homogeneity

$$
\|\alpha \mathbf{v}\|=|\alpha|\|\mathbf{v}\| \text { for all } \mathbf{v} \in \mathbf{R}^{n}, \alpha \in \mathbf{R}
$$

4. triangle inequality

$$
\|\mathbf{u}+\mathbf{v}\| \leq\|\mathbf{u}\|+\|\mathbf{v}\|
$$

There are many vector norms. The most common is the Euclidean norm (also called the l_{2} norm):

$$
\|\mathbf{v}\|_{2}=\sqrt{\mathbf{v}^{T} \mathbf{v}}
$$

Other common examples are the l_{1} norm:

$$
\|\mathbf{v}\|_{1}=\sum_{i=1}^{n}\left|v_{i}\right|
$$

and the l_{∞} norm:

$$
\|\mathbf{v}\|_{\infty}=\max _{i \in\{1, \ldots, n\}}\left|v_{i}\right|
$$

These can be viewed as members of the family of l_{p} norms for $p \geq 1$,

$$
\|\mathbf{v}\|_{p}=\left(\sum_{i=1}^{n}\left|v_{i}\right|^{p}\right)^{1 / p}
$$

with l_{∞} the limiting case as $p \rightarrow \infty$.

- (Schwartz inequality) For vectors $\mathbf{u}, \mathbf{v} \in \mathbf{R}^{n}$,

$$
\left|\mathbf{u}^{T} \mathbf{v}\right| \leq\|\mathbf{u}\|\|\mathbf{v}\|
$$

- The induced norm of a matrix $A \in \mathbf{R}^{m \times n}$ is

$$
\|A\|=\max _{\|\mathbf{v}\|=1}\|A \mathbf{v}\|=\max _{\mathbf{v} \neq \mathbf{0}} \frac{\|A \mathbf{v}\|}{\|\mathbf{v}\|}
$$

Loosely, this measures "the biggest stretch" that multiplication by A induces on a unit vector, with respect to the norm $\|\cdot\|$. In the special case of the l_{2} norm,

$$
\|A\|_{2}=\sqrt{\left.\lambda_{\max (} A^{T} A\right)}=\sigma_{\max }(A)
$$

where $\lambda_{\max }$ and $\sigma_{\max }$ denote the maximum eigenvalue and singular value, respectively.

- The Frobenius norm of $A \in \mathbf{R}^{m \times n}$ is

$$
\|A\|_{F}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}^{2}\right)^{1 / 2}=\sqrt{\operatorname{tr}\left(A^{T} A\right)}
$$

4 Useful sets and decompositions

- Call the set of $n \times n$ real, symmetric matrices \mathbf{S}^{n}, where

$$
\mathbf{S}^{n}=\left\{A \in \mathbf{R}^{n \times n} \mid A=A^{T}\right\}
$$

- Call the set of positive semi-definite (psd) matrices \mathbf{S}_{+}^{n}, where

$$
\mathbf{S}_{+}^{n}=\left\{A \in \mathbf{S}^{n} \mid \mathbf{v}^{T} A \mathbf{v} \geq 0 \text { for all } \mathbf{v} \neq \mathbf{0}\right\}
$$

If $A \in \mathbf{S}_{+}^{n}$, then

- we write $S \succeq 0$
- all eigenvalues of A are nonnegative
- Call the set of positive definite (pd) matrices \mathbf{S}_{++}^{n}, where

$$
\mathbf{S}_{++}^{n}=\left\{A \in \mathbf{S}^{n} \mid \mathbf{v}^{T} A \mathbf{v}>0 \text { for all } \mathbf{v} \neq \mathbf{0}\right\}
$$

If $A \in \mathbf{S}_{++}^{n}$, then

- we write $S \succ 0$. Note that $\mathbf{S}_{++}^{n} \subset \mathbf{S}_{+}^{n} \subset \mathbf{S}^{n}$
$-A$ is invertible and $A^{-1} \in \mathbf{S}_{++}^{n}$
- all eigenvalues of A are positive
- If $P \in \mathbf{S}_{++}^{n}$, the weighted inner product of vectors $\mathbf{u}, \mathbf{v} \in \mathbf{R}^{n}$ is

$$
\mathbf{u}^{T} P \mathbf{v}=\sum_{i=1}^{n} \sum_{j=1}^{n} u_{i} p_{i j} v_{j} \in \mathbf{R}
$$

- If $P \in \mathbf{S}^{n}$, then the product

$$
\mathbf{v}^{T} P \mathbf{v}=\sum_{i=1}^{n} \sum_{j=1}^{n} v_{i} p_{i j} v_{j} \in \mathbf{R}
$$

is called a quadratic form. Without loss of generality, can assume $P=P^{T}$. If $P \neq P^{T}$, then replace P by $\frac{1}{2}\left(P+P^{T}\right)$:

$$
\frac{1}{2} \mathbf{v}^{T}\left(P+P^{T}\right) \mathbf{v}=\frac{1}{2}\left(\mathbf{v}^{T} P \mathbf{v}+\mathbf{v}^{T} P^{T} \mathbf{v}\right)=\frac{1}{2}\left[\mathbf{v}^{T} P \mathbf{v}+\left(\mathbf{v}^{T} P \mathbf{v}\right)^{T}\right]=\mathbf{v}^{T} P \mathbf{v}
$$

- If $Q \in \mathbf{R}^{n \times n}$ and $Q^{T} Q=Q Q^{T}=I$, then Q is orthogonal.

Properties:
\diamond for all column vectors \mathbf{q}_{i} of $Q, \mathbf{q}_{i}^{T} \mathbf{q}_{j}=\delta_{i j}$
\diamond multiplication by Q preserves length: $\|Q \mathbf{x}\|_{2}^{2}=\mathbf{x}^{T} Q^{T} Q \mathbf{x}=\mathbf{x}^{T} \mathbf{x}=\|x\|_{2}^{2}$
\diamond multiplication by Q also preserves angles
\diamond rotation and reflection are orthogonal transformations

- A matrix $A \in \mathbf{R}^{m \times n}$ with $m \geq n$ can be written as the product of an orthogonal matrix $Q \in \mathbf{R}^{m \times m}$ and a block upper triangular matrix $R \in \mathbf{R}^{m \times n}$:

$$
A=\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \ldots & a_{n n} \\
\vdots & & \vdots \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right]=\left[\begin{array}{ccc}
q_{11} & \ldots & q_{1 m} \\
& & \\
\vdots & \ddots & \vdots \\
& & \\
q_{m 1} & \ldots & q_{m m}
\end{array}\right]\left[\begin{array}{ccc}
r_{11} & \ldots & r_{1 n} \\
& \ddots & \vdots \\
& & r_{n n} \\
& &
\end{array}\right]=Q R
$$

This is called the 'full' QR decomposition of A. It's useful for fast, numerically stable algorithms, particularly for matrix inversion and least squares estimation.
The 'compact' QR decomposition of $A \in \mathbf{R}^{m \times n}, m \geq n$, can also be computed, and yields $Q \in \mathbf{R}^{m \times n}$ and $R \in \mathbf{R}^{n \times n}$, where $Q^{T} Q=I$ and R is upper triangular:

$$
A=\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \ldots & a_{n n} \\
\vdots & & \vdots \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right]=\left[\begin{array}{ccc}
q_{11} & \ldots & q_{1 n} \\
& & \\
\vdots & \ddots & \vdots \\
& & \\
q_{m 1} & \ldots & q_{m n}
\end{array}\right]\left[\begin{array}{ccc}
r_{11} & \ldots & r_{1 n} \\
& \ddots & \vdots \\
& & r_{n n}
\end{array}\right]=Q R
$$

How to produce Q and R ? By a series of Householder transformations,

$$
Q=\prod_{i=1}^{p} H_{i}
$$

where $p=\min \{m, n\}$.

- For all $\mathbf{u}, \mathbf{v} \in \mathbf{R}^{n}$ with $\|\mathbf{u}\|=\|\mathbf{v}\|$, there exists a Householder transformation $H \in \mathbf{R}^{n \times n}$, where $H H^{T}=H^{T} H=I$ (i.e. H is orthogonal), such that

$$
H \mathbf{u}=\mathbf{v}
$$

Householder transformations are a key component of many fast, numerically stable algorithms (e.g. for solving systems of linear equations). We can produce the matrix H as follows:

1. define $\mathbf{w}=\mathbf{u}-\mathbf{v}$
2. if $\|\mathbf{w}\|_{2}=0$, then $H=I$
3. if $\|\mathbf{w}\|_{2} \neq 0$, then

$$
H=I-\left(\frac{2}{\|\mathbf{w}\|_{2}^{2}}\right) \mathbf{w} \mathbf{w}^{T}
$$

- The Cholesky decomposition of any $P \in \mathbf{S}_{++}^{n}$ is

$$
P=R^{T} R
$$

where $R \in \mathbf{R}^{n \times n}$ is upper triangular and nonsingular.

- The condition number of $A \in \mathbf{R}^{n \times n}$ is

$$
\operatorname{cond}(A)=\frac{\lambda_{\max }}{\lambda_{\min }}
$$

where $\lambda_{\max }$ and $\lambda_{\min }$ are the largest and smallest eigenvalues of A, respectively. The condition number gives an idea of how close A is to being singular. For instance, in double precision arithmetic (where calculations are accurate to 16 digits), 16 $\log \operatorname{cond}(A)$ useful digits are preserved when solving $A \mathbf{x}=\mathbf{b}$.

- Let $X \in \mathbf{S}^{n}$ be the block matrix

$$
X=\left[\begin{array}{cc}
A & B \\
B^{T} & C
\end{array}\right]
$$

(so A and C are symmetric). The Schur complement of A in X is

$$
S=C-B^{T} A^{-1} B
$$

Facts:

$$
\begin{aligned}
& X \succ 0 \Longleftrightarrow(A \succ 0 \text { and } S \succ 0) \\
& X \succ 0 \Longleftrightarrow\left(C \succ 0 \text { and } A-B C^{-1} B^{T} \succ 0\right) \\
& A \succ 0 \Rightarrow(X \succeq 0 \Longleftrightarrow S \succeq 0) \\
& C \succ 0 \Rightarrow\left(X \succeq 0 \Longleftrightarrow A-B C^{-1} B^{T} \succeq 0\right)
\end{aligned}
$$

The Schur complement is a useful tool for breaking apart quadratic matrix inequalities.

- The 'full' singular value decomposition (SVD) of $A \in \mathbf{R}^{m \times n}$ with $\operatorname{rank}(A)=r$ is $A=U \Sigma V^{T}$, where $U \in \mathbf{R}^{m \times m}$ and $V \in \mathbf{R}^{n \times n}$ are orthogonal and Σ is an $m \times n$ matrix with the singular values $\sigma_{1}, \ldots, \sigma_{r}$ of A on the main diagonal:

$$
\left.\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{1 n} & \cdots & a_{n n} \\
\vdots & & \vdots \\
a_{m n} & \cdots & a_{m n}
\end{array}\right]=\left[\begin{array}{ccc}
u_{11} & \ldots & u_{1 m} \\
& & \\
\vdots & \ddots & \vdots \\
& & \\
u_{m 1} & \cdots & u_{m m}
\end{array}\right]\left[\begin{array}{ccc}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{r} \\
& & \\
& & \\
\vdots & \ddots & \vdots \\
v_{n 1} & \cdots & v_{n n}
\end{array}\right]^{v_{11}} \begin{array}{ccc}
& \ldots & v_{1 n} \\
& &
\end{array}\right]^{T}
$$

where $\sigma_{1} \geq \cdots \geq \sigma_{r} \geq 0$.
The full SVD gives a nice interpretation of multiplication by A : to compute $A \mathbf{x}$, first rotate \mathbf{x} to $\mathbf{y}=V^{T} \mathbf{x}$; then scale components y_{1}, \ldots, y_{r} by $\sigma_{1}, \ldots, \sigma_{r}$ (and zero out the other components) by computing $\mathbf{z}=\Sigma \mathbf{y}$; then rotate \mathbf{z} to $\mathbf{x}=U \mathbf{z}$. The image of the unit sphere, transformed by A, is an ellipsoid with principle axes $\sigma_{i} \mathbf{u}_{i}$.
The SVD is costly to compute, but gives a lot of useful information:
$\diamond r=\operatorname{rank}(A)$ is the number of nonzero elements of Σ (this is how Matlab computes rank)
$\diamond \operatorname{col}(A)=\operatorname{span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right)$
$\diamond \operatorname{null}(A)=\operatorname{span}\left(\mathbf{v}_{r+1}, \ldots, \mathbf{v}_{n}\right)$
$\diamond \sigma_{1}^{2}, \ldots, \sigma_{r}^{2}$ are the eigenvalues of $A^{T} A$:

$$
\begin{aligned}
A^{T} A & =\left(U \Sigma V^{T}\right)^{T}\left(U \Sigma V^{T}\right)=V \Sigma^{T} U^{T} U \Sigma V=V \Sigma^{T} \Sigma V^{T} \\
& =V\left[\begin{array}{lll}
\sigma_{1}^{2} & & \\
& \ddots & \\
& & \sigma_{r}^{2}
\end{array}\right] V^{T}=V \Lambda V^{T}
\end{aligned}
$$

(which is the spectral decomposition of $A^{T} A$)
\diamond the squared Frobenius norm of A is the sum of its squared singular values:

$$
\|A\|_{F}^{2}=\operatorname{tr}\left(A^{T} A\right)=\operatorname{tr}\left(V \Sigma^{T} \Sigma V^{T}\right)=\sum_{i=1}^{r} \sigma_{i}^{2}
$$

As with the QR decomposition, there's a 'compact' form of the SVD: $A=U \Sigma V^{T}$,
where $U \in \mathbf{R}^{m \times r}, U^{T} U=I, V \in \mathbf{R}^{n \times r}, V^{T} V=I$, and $\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}\right)$

$$
\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{1 n} & \ldots & a_{n n} \\
\vdots & & \vdots \\
a_{m n} & \ldots & a_{m n}
\end{array}\right]=\left[\begin{array}{ccc}
u_{11} & \ldots & u_{1 r} \\
& & \\
\vdots & & \vdots \\
& & \\
u_{m 1} & \ldots & u_{m r}
\end{array}\right]\left[\begin{array}{ccc}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{r}
\end{array}\right]\left[\begin{array}{ccc}
v_{11} & \ldots & v_{1 r} \\
\vdots & \ddots & \vdots \\
& & \\
v_{n 1} & \ldots & v_{n r}
\end{array}\right]^{T}
$$

5 Derivatives

- The gradient of a function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ with respect to a vector $\mathbf{v} \in \mathbf{R}^{n}$ is

$$
\nabla f(\mathbf{v})=\left[\begin{array}{c}
\frac{\partial f}{\partial v_{1}} \\
\vdots \\
\frac{\partial f}{\partial v_{n}}
\end{array}\right] \in \mathbf{R}^{n}
$$

The gradient of a vector-valued function $\mathbf{f}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is

$$
\mathbf{f}(\mathbf{v})=\left[\begin{array}{c}
f_{1}(\mathbf{v}) \\
\vdots \\
f_{m}(\mathbf{v})
\end{array}\right] \Rightarrow \nabla \mathbf{f}(\mathbf{v})=\left[\begin{array}{llll}
\nabla f_{1}(\mathbf{v}) & \ldots & \nabla f_{m}(\mathbf{v})
\end{array}\right]=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial v_{1}} & \ldots & \frac{\partial f_{m}}{\partial v_{1}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{1}}{\partial v_{n}} & \ldots & \frac{\partial f_{m}}{\partial v_{n}}
\end{array}\right] \in \mathbf{R}^{n \times m}
$$

- Alternate notation: we sometimes want to work with rows of derivatives instead of columns Why? Because it can make vector-matrix derivatives look more like their scalar analogs. This motivates the notation

$$
\begin{gathered}
D f(\mathbf{v})=\frac{\partial f}{\partial \mathbf{v}}=\nabla f(\mathbf{v})^{T}=\left[\begin{array}{lll}
\frac{\partial f}{\partial v_{1}} & \cdots & \frac{\partial f}{\partial v_{n}}
\end{array}\right] \in \mathbf{R}^{1 \times n} \\
D f(\mathbf{v})=\frac{\partial \mathbf{f}}{\partial \mathbf{v}}=\nabla \mathbf{f}(\mathbf{v})^{T}=\left[\begin{array}{c}
\nabla f_{1}(\mathbf{v})^{T} \\
\vdots \\
\nabla f_{m}(\mathbf{v})^{T}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial v_{1}} & \cdots & \frac{\partial f_{1}}{\partial v_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial v_{1}} & \cdots & \frac{\partial f_{m}}{\partial v_{n}}
\end{array}\right] \in \mathbf{R}^{m \times n}
\end{gathered}
$$

In either case, $D f(\mathbf{v})$ is called the Jacobian matrix of \mathbf{f} with respect to \mathbf{v}.

- Chain rule. Let $\mathbf{f}: \mathbf{R}^{p} \rightarrow \mathbf{R}^{m}, \mathbf{g}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{p}$ and $\mathbf{h}=\mathbf{f}(\mathbf{g}(\mathbf{x}))\left(\right.$ so $\left.\mathbf{h}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}\right)$.

Then

$$
\begin{aligned}
\nabla \mathbf{h}(\mathbf{x}) & =\nabla \mathbf{g}(\mathbf{x}) \nabla \mathbf{f}(\mathbf{g}(\mathbf{x})) \in \mathbf{R}^{n \times m} \\
D \mathbf{h}(\mathbf{x}) & =D \mathbf{f}(\mathbf{g}(\mathbf{x})) D \mathbf{g}(\mathbf{x}) \in \mathbf{R}^{m \times n}
\end{aligned}
$$

- The first-order Taylor expansion of $\mathbf{f}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$, for \mathbf{x} near $\mathbf{x}_{\mathbf{0}}$, is

$$
\mathbf{f}(\mathbf{x}) \approx \mathbf{f}\left(\mathbf{x}_{\mathbf{0}}\right)+\nabla \mathbf{f}\left(\mathbf{x}_{\mathbf{0}}\right)^{T}\left(\mathbf{x}-\mathbf{x}_{\mathbf{0}}\right)
$$

- The Hessian matrix is a generalized second derivative. For $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$,

$$
\nabla^{2} f(\mathbf{v})=\frac{\partial^{2} f}{\partial \mathbf{v}^{2}}=\left[\begin{array}{ccc}
\frac{\partial^{2} f}{\partial v_{1}^{2}} & \cdots & \frac{\partial^{2} f}{\partial v_{1} \partial v_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial v_{n} \partial v_{1}} & \cdots & \frac{\partial^{2} f}{\partial v_{n}^{2}}
\end{array}\right] \in \mathbf{R}^{n \times n}
$$

Note that the equivalence of cross-partials implies that the Hessian is symmetric.

- The second-order Taylor expansion of $\mathbf{f}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$, for \mathbf{x} near $\mathbf{x}_{\mathbf{0}}$, is

$$
\mathbf{f}(\mathbf{x}) \approx \mathbf{f}\left(\mathbf{x}_{\mathbf{0}}\right)+\nabla \mathbf{f}\left(\mathbf{x}_{\mathbf{0}}\right)^{T}\left(\mathbf{x}-\mathbf{x}_{\mathbf{0}}\right)+\frac{1}{2}\left(\mathbf{x}-\mathbf{x}_{\mathbf{0}}\right)^{T} \nabla^{2} \mathbf{f}\left(\mathrm{x}_{\mathbf{0}}\right)\left(\mathbf{x}-\mathbf{x}_{\mathbf{0}}\right)
$$

- Mean value theorem. If $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is continuously differentiable, then for any $\mathbf{x}, \mathbf{y} \in \mathbf{R}^{n}$ there exists a $\lambda \in[0,1]$ such that

$$
f(\mathbf{y})-f(\mathbf{x})=\nabla f(\lambda \mathbf{x}+(1-\lambda) \mathbf{y})^{T}(\mathbf{y}-\mathbf{x})
$$

- Generalized mean value theorem. If $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is twice continuously differentiable, then for any $\mathbf{x}, \mathbf{y} \in \mathbf{R}^{n}$ there exists a $\lambda \in[0,1]$ such that

$$
f(\mathbf{y})-f(\mathbf{x})=\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x})+\frac{1}{2}(\mathbf{y}-\mathbf{x})^{T} H(\lambda \mathbf{x}+(1-\lambda) \mathbf{y})(\mathbf{y}-\mathbf{x})
$$

- Derivatives of quadratic forms. Let $f(\mathbf{v})=\frac{1}{2} \mathbf{v}^{T} P \mathbf{v}+\mathbf{g}^{T} \mathbf{v}$, where $P \in \mathbf{S}_{++}^{n}$ and $\mathbf{g}, \mathbf{v} \in \mathbf{R}^{n}$. Then

$$
\nabla f(\mathbf{v})=P \mathbf{v}+\mathbf{g} \quad \text { and } \quad \nabla^{2} f(\mathbf{v})=P
$$

- Derivative of matrix inverse. Let $A \in \mathbf{R}^{n \times n}$ be nonsingular and depend on a parameter t. Then

$$
\frac{\mathrm{d}}{\mathrm{~d} t} A^{-1}=-A^{-1}\left(\frac{\mathrm{~d}}{\mathrm{~d} t} A\right) A^{-1}
$$

