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These notes collect some useful facts from finite dimensional linear algebra.
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1 Working with matrices and vectors

A vector v ∈ Rn is a column of n real scalars:

v =

v1
...
vn

 ⇐⇒ vT =
[
v1 . . . vn

]
∈ R1×n

where vT is the transpose of v. In these notes vectors are denoted by bold, lower case
letters.

A matrix A ∈ Rm×n contains n columns of m real scalars:

A =

a11 . . . a1n
...

. . .
...

am1 . . . amn

 ⇐⇒ AT =

a11 . . . am1
...

. . .
...

a1n . . . amn

 ∈ Rn×m

We sometimes write A =
[
aij
]

or (A)ij = aij to mean that A is built from the elements aij.
In these notes matrices are denoted by non-bold capital letters.

Some definitions and properties of operations between scalars, vectors and matrices fol-
low.

• Vector addition for u,v ∈ Rn:

u + v =

u1 + v1
...

un + vn


• Addition of matrices A,B ∈ Rm×n:

A+B =

 a11 + b11 . . . a1n + b1n
...

. . .
...

am1 + bm1 . . . amn + bmn


• Vector-scalar multiplication for α ∈ R, v ∈ Rn:

αv =

αv1
...

αvn


• Matrix-scalar multiplication for α ∈ R, A ∈ Rn×m:

αA =

αa11 . . . αa1n
...

. . .
...

αam1 . . . αamn
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• The inner product of vectors u,v ∈ Rn is

〈u,v〉 = u · v = uTv =
n∑
i=1

uivi ∈ R

Two vectors are orthogonal iff their inner product is zero.

• The angle between u and v ∈ Rn is

∠(u,v) = cos−1

(
uTv√

(uTu)(vTv)

)
∈ [0, π]

• The orthogonal projection of v ∈ Rn onto u ∈ Rn is

projuv =
vTu

uTu
u

This allows decomposition of v into components parallel and orthogonal to u:

v = v⊥ + v‖

where
v⊥ = projuv, v‖ = v − v⊥

• The outer product of vectors u ∈ Rn and v ∈ Rm is

|u〉〈v| = uvT =
[
uivj

]
∈ Rn×m

• Matrix multiplication of A ∈ Rm×n, B ∈ Rn×p ⇒ AB ∈ Rm×p

(AB)ij =
n∑
k=1

aikbkj, i ∈ {1, . . . ,m}, j ∈ {1, . . . , p}

It can be useful to view matrix multiplication in terms of rows and columns: if

A =

α
T
1
...

αT
m

 , B =
[
b1 . . . bp

]
then

(AB)ij = αT
i bj ⇐⇒ AB =

α
T
1B
...

αT
mB

 =
[
Ab1 . . . Abp

]
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Matrix multiplication can also be viewed in terms of outer products. If

A =
[
a1 . . . an

]
, B =

β
T
1
...
βTn


then

AB = a1β
T
1 + · · ·+ anβ

T
n

The transpose of a product is
(AB)T = BTAT

• Multiplication by the identity matrix In ∈ Rn×n, for A ∈ Rn×m:

In =

1
. . .

1

 ⇒ InA = AIm = A

The identity matrix can be expressed in terms of the Cartesian basis vectors
e1, . . . , en:

e1 =


1
0
...
0

 , . . . , en =


0
...
0
1

 ⇒ In =
[
e1 . . . en

]

• Matrix-vector multiplication of A ∈ Rm×n, x ∈ Rn ⇒ Ax ∈ Rm:

(Ax)i =
n∑
j=1

aijxj

It can be useful to view matrix-vector multiplication as mixture of the columns of A:

A =
[
a1 . . . an

]
⇒ Ax = x1a1 + · · ·+ xnan

• A set of vectors S = {a1, . . . , an} is linearly dependent if there exists an x ∈ Rn

such that x 6= 0 and
x1a1 + · · ·+ xnan = 0.

If no such x exists, i.e. if
Ax = 0 ⇒ x = 0

where A =
[
a1 . . . an

]
, then S is linearly independent.

A linearly independent set {a1, . . . , ak} with ai ∈ Rn can have at most n elements, i.e.
k ≤ n. Equivalently, any set of k n-vectors, with k > n, is linearly dependent.
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• A set of n linearly independent n-vectors is a basis for Rn. If {a1, . . . , an} is a basis
for Rn, then any vector in Rn can be written as a linear combination of a1, . . . , an.

• The column space or range of A ∈ Rn×m is the set

col(A) = {b ∈ Rn | Ax = b,x ∈ Rn}

The column space of A is the span (the set of all linear combinations) of the columns
a1, . . . , an of A.

• The null space or kernel of A ∈ Rn×m is the set

null(A) = {x ∈ Rm | Ax = 0}

Fact: dim(null(A)) + dim(col(A)) = n

• The rank of A ∈ Rm×n is the number of linearly independent columns of A, i.e.
rank(A) = dim(col(A)) ≤ min{m,n}. If rank(A) = min{m,n}, then A is called full
rank.

Facts:

� the row rank and column rank of a matrix are equal

� if A is full rank, then Ax = 0 ⇐⇒ x = 0

� if A ∈ Rn×n and B ∈ Rn×p, then rank(AB) ≤ min{rank(A), rank(B)}
� if A ∈ Rm×n is full rank and B ∈ Rn×p, then col(AB) = col(B) and rank(AB) =

rank(B)

� the rank of a diagonal matrix is the number of its nonzero elements

� the rank of a symmetric matrix is the number of its nonzero eigenvalues
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2 Square matrices

The definitions and results in this section apply only to square matrices, i.e. to matrices
A ∈ Rn×n.

• The trace of A ∈ Rn×n is

tr(A) =
n∑
i=1

aii

Cyclic permutations: for A ∈ Rm×n, B ∈ Rn×p, C ∈ Rp×m

tr(ABC) = tr(CAB) = tr(BCA)

• The determinant of A ∈ Rn×n is

det(A) =
n∑
i=1

aij(−1)i+jCij

where the cofactor Cij is the determinant of the (n− 1)× (n− 1) matrix formed by
deleting the ith row and jth column of A. For n = 2,

det(A) = a11a22 − a12a21

Facts:

� if A,B ∈ Rn×n, then det(AB) = det(A) det(B)

� det(AT ) = det(A)

� if A−1 exists, then det(A−1) = 1
det(A)

• A matrix A ∈ Rn×n is singular if det(A) = 0 or, equivalently, if rank(A) < n.

• If A ∈ Rn×n is nonsingular, then there exists a matrix A−1, called the inverse of A,
such that

A−1A = AA−1 = I

In practice, computing A−1 is expensive (order n3 flops) and may be inaccurate if A is
ill-conditioned. For small matrices, A−1 can be found by hand using Cramer’s rule,

A−1 =
1

det(A)
adj(A)T

where adj(A), called the adjutant of A, is the matrix of the cofactors of A:

adj(A) =
[
(−1)i+jCij

]
=


C11 −C12 . . . (−1)n+1C1n

−C12 C22

...
. . .

...
(−1)n+1Cn1 . . . Cnn
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so for n = 2,

A−1 =
1

a11a22 − a12a21

[
a22 −a21

−a12 a11

]
If A,B ∈ Rn×n are both non-singular, then

(AB)−1 = B−1A−1

• Matrix inversion lemma: if all the relevant inverses exist, then

(A+BCD)−1 = A−1 − A−1B(DA−1B + C−1)−1DA−1

• Let A be a square block matrix, and let A−1 = B, i.e.

A−1 =

[
A11 A12

A21 A22

]−1

=

[
B11 B12

B21 B22

]
= B

where A11 and A22 are square, det(A11) 6= 0, and dim(Aij) = dim(Bij) for all i, j.
Assume as well that det(∆) 6= 0, where ∆ = A22 − A21A

−1
11 A12. Then the inverse of A

is given by

B11 = A−1
11 + A−1

11 A12∆−1A21A
−1
11

B12 = −A−1
11 A12∆−1

B21 = −∆−1A21A
−1
11

B22 = ∆−1

• A matrix A ∈ Rn×n is idempotent if A2 ≡ AA = A.

Facts:

� if A is idempotent, then tr(A) = rank(A)

� if A is idempotent, then any eigenvalue of A is either 0 or 1

Examples:

� J̄ = 1
n
11T ∈ Rn×n is idempotent. J̄ is called an averaging matrix because

J̄x =
1

n
11Tx =

(
1

n
1Tx

)
1 = x̄1

where x̄ is the mean of the elements of x.

� C = I − J̄ is idempotent. C is called a centering matrix because

Cx = (I − J̄)x = x− x̄1
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• (Cayley-Hamilton theorem: A solves its own characteristic polynomial)

Let A ∈ Rn×n and p(λ) = det(λI − A), i.e. let p : C → R be the characteristic
polynomial of A. Overload p : Rn×n → R such that

p(λ) = α0 + α1λ+ · · ·+ αnλ
n

⇐⇒ p(A) = α0I + α1A+ · · ·+ αnA
n

then p(A) = 0. This result allows Ap to be expressed as a linear combination of
I, A, . . . , An−1 for any p ∈ {1, 2, . . . } (and for negative integers, if A−1 exists).

2.1 Eigenstuff and diagonalization

If A is square, then there exist at least one λi ∈ R and vi ∈ Rn such that vi 6= 0 and
Avi = λivi, i.e. multiplication by A stretches vi but doesn’t rotate it. These special vectors
vi and scalars λi are called the eigenvectors and eigenvalues of A, respectively. Interesting
fact: the image of the unit sphere, transformed by A, is an ellipsoid with principle axes λivi.

We can find the eigenstuff of A by solving det(λI − A) = 0, an nth-order polynomial in
λ, for λ1, . . . , λn. The eigenvalues of A are generally complex and not necessarily distinct.

Let λi be an eigenvalue of A ∈ Rn×n with corresponding eigenvector vi. Then

• tr(A) =
∑

i λi

(so the eigenvalues of AT and A are the same)

• det(A) =
∏

i λi

(so A is singular iff λi = 0 for some i ∈ {1, . . . , n})

• if det(A) 6= 0, then 1/λi is an eigenvalue of A−1

• the eigenvalues of Ak are λk1, . . . , λ
k
n

(so the linear system x(k + 1) = Ax(k) is stable iff |λi| < 1 for all i)

• αλi + β is an eigenvalue of αA+ βI with eigenvector vi

Other facts:

• if A ∈ Sn, then the eigenvalues λ1, . . . , λn of A are real (but not necessarily distinct),
and A has a full set of n linearly independent eigenvectors.

• if A ∈ Sn+, then the eigenvalues of A are real and nonnegative

• if A ∈ Sn++, then the eigenvalues of A are real and positive
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• the eigenvalues of the block triangular matrix[
A B
0 C

]
are the eigenvalues of A and the eigenvalues of C

• if every row of A sums to c, then c is an eigenvalue of A with eigenvector
[
1, . . . , 1

]T
• if every column of A sums to c, then c is an eigenvalue of A (no info about the

corresponding eigenvector)

A major application of eigenstuff is diagonalization, also called spectral decomposi-
tion. For most, but not all, A ∈ Rn×n, there exist nonsingular T and diagonal Λ such that
A = T−1ΛT . Diagonalization greatly facilitates computations and proofs. Examples:

• matrix exponential

eAt = eT
−1ΛTt = T−1

e
λ1t

. . .

eλnt

T
• powers

Ak = (T−1ΛT )k = T−1

λ1
k

. . .

λn
k

T
(always valid for k ≥ 1, valid for k < 1 if A is invertible)

Theorem 1 (Spectral decomposition) Let A ∈ Rn×n have the n linearly independent
eigenvectors v1, . . . ,vn with associated eigenvalues λ1, . . . , λn, and let T =

[
v1 . . .vn

]
and

Λ = diag(λ1, . . . , λn). Then A = TΛT−1.

Corollary 2 If A ∈ Rn×n has n distinct eigenvalues, then A is diagonalizable.

Note that the converse is not true: there are diagonalizable matrices that do not have full
sets of distinct eigenvalues.

It’s hard to tell whether a general matrix A satisfies these conditions without computing
its eigenstuff. An exception is if A is real and symmetric.

Lemma 3 (Principle axis theorem) If A = AT ∈ Rn×n, then A is orthogonally diago-
nalizable, i.e.

A = TΛT T ,

where T is orthogonal (TT T = T TT = I) and Λ is diagonal.
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3 Norms

• A norm ‖·‖ : Rn → R of a vector satisfies

1. nonnegativity
‖v‖ ≥ 0 for all v ∈ Rn

2. definiteness
‖v‖ = 0 ⇐⇒ v = 0

3. homogeneity
‖αv‖ = |α| ‖v‖ for all v ∈ Rn, α ∈ R

4. triangle inequality
‖u + v‖ ≤ ‖u‖+ ‖v‖

There are many vector norms. The most common is the Euclidean norm (also called
the l2 norm):

‖v‖2 =
√

vTv

Other common examples are the l1 norm:

‖v‖1 =
n∑
i=1

|vi|

and the l∞ norm:
‖v‖∞ = max

i∈{1,...,n}
|vi|

These can be viewed as members of the family of lp norms for p ≥ 1,

‖v‖p =

(
n∑
i=1

|vi|p
)1/p

with l∞ the limiting case as p→∞.

• (Schwartz inequality) For vectors u,v ∈ Rn,∣∣uTv
∣∣ ≤ ‖u‖ ‖v‖

• The induced norm of a matrix A ∈ Rm×n is

‖A‖ = max
‖v‖=1

‖Av‖ = max
v 6=0

‖Av‖
‖v‖

Loosely, this measures “the biggest stretch” that multiplication by A induces on a unit
vector, with respect to the norm ‖·‖. In the special case of the l2 norm,

‖A‖2 =
√
λmax(ATA) = σmax(A)

where λmax and σmax denote the maximum eigenvalue and singular value, respectively.
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• The Frobenius norm of A ∈ Rm×n is

‖A‖F =

(
m∑
i=1

n∑
j=1

a2
ij

)1/2

=
√

tr(ATA)
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4 Useful sets and decompositions

• Call the set of n× n real, symmetric matrices Sn, where

Sn = {A ∈ Rn×n | A = AT}

• Call the set of positive semi-definite (psd) matrices Sn+, where

Sn+ = {A ∈ Sn | vTAv ≥ 0 for all v 6= 0}

If A ∈ Sn+, then

– we write S � 0

– all eigenvalues of A are nonnegative

• Call the set of positive definite (pd) matrices Sn++, where

Sn++ = {A ∈ Sn | vTAv > 0 for all v 6= 0}

If A ∈ Sn++, then

– we write S � 0. Note that Sn++ ⊂ Sn+ ⊂ Sn

– A is invertible and A−1 ∈ Sn++

– all eigenvalues of A are positive

• If P ∈ Sn++, the weighted inner product of vectors u,v ∈ Rn is

uTPv =
n∑
i=1

n∑
j=1

uipijvj ∈ R

• If P ∈ Sn, then the product

vTPv =
n∑
i=1

n∑
j=1

vipijvj ∈ R

is called a quadratic form. Without loss of generality, can assume P = P T . If
P 6= P T , then replace P by 1

2
(P + P T ):

1

2
vT (P + P T )v =

1

2
(vTPv + vTP Tv) =

1

2

[
vTPv + (vTPv)T

]
= vTPv

• If Q ∈ Rn×n and QTQ = QQT = I, then Q is orthogonal.

Properties:
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� for all column vectors qi of Q, qTi qj = δij

� multiplication by Q preserves length: ‖Qx‖2
2 = xTQTQx = xTx = ‖x‖2

2

� multiplication by Q also preserves angles

� rotation and reflection are orthogonal transformations

• A matrix A ∈ Rm×n with m ≥ n can be written as the product of an orthogonal matrix
Q ∈ Rm×m and a block upper triangular matrix R ∈ Rm×n:

A =


a11 . . . a1n
...

. . .
...

an1 . . . ann
...

...
am1 . . . amn

 =


q11 . . . q1m

...
. . .

...

qm1 . . . qmm




r11 . . . r1n

. . .
...
rnn

 = QR

This is called the ‘full’ QR decomposition of A. It’s useful for fast, numerically
stable algorithms, particularly for matrix inversion and least squares estimation.

The ‘compact’ QR decomposition of A ∈ Rm×n, m ≥ n, can also be computed, and
yields Q ∈ Rm×n and R ∈ Rn×n, where QTQ = I and R is upper triangular:

A =


a11 . . . a1n
...

. . .
...

an1 . . . ann
...

...
am1 . . . amn

 =


q11 . . . q1n

...
. . .

...

qm1 . . . qmn


r11 . . . r1n

. . .
...
rnn

 = QR

How to produce Q and R? By a series of Householder transformations,

Q =

p∏
i=1

Hi

where p = min{m,n}.

• For all u,v ∈ Rn with ‖u‖ = ‖v‖, there exists a Householder transformation
H ∈ Rn×n, where HHT = HTH = I (i.e. H is orthogonal), such that

Hu = v

Householder transformations are a key component of many fast, numerically stable
algorithms (e.g. for solving systems of linear equations). We can produce the matrix
H as follows:

1. define w = u− v
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2. if ‖w‖2 = 0, then H = I

3. if ‖w‖2 6= 0, then

H = I −

(
2

‖w‖2
2

)
wwT

• The Cholesky decomposition of any P ∈ Sn++ is

P = RTR

where R ∈ Rn×n is upper triangular and nonsingular.

• The condition number of A ∈ Rn×n is

cond(A) =
λmax

λmin

where λmax and λmin are the largest and smallest eigenvalues of A, respectively. The
condition number gives an idea of how close A is to being singular. For instance,
in double precision arithmetic (where calculations are accurate to 16 digits), 16 −
log cond(A) useful digits are preserved when solving Ax = b.

• Let X ∈ Sn be the block matrix

X =

[
A B
BT C

]
(so A and C are symmetric). The Schur complement of A in X is

S = C −BTA−1B

Facts:

X � 0 ⇐⇒ (A � 0 and S � 0)

X � 0 ⇐⇒ (C � 0 and A−BC−1BT � 0)

A � 0⇒ (X � 0 ⇐⇒ S � 0)

C � 0⇒ (X � 0 ⇐⇒ A−BC−1BT � 0)

The Schur complement is a useful tool for breaking apart quadratic matrix inequalities.

• The ‘full’ singular value decomposition (SVD) of A ∈ Rm×n with rank(A) = r is
A = UΣV T , where U ∈ Rm×m and V ∈ Rn×n are orthogonal and Σ is an m×n matrix
with the singular values σ1, . . . , σr of A on the main diagonal:
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a11 . . . a1n

...
. . .

...

a1n . . . ann
...

...
amn . . . amn


=



u11 . . . u1m

...
. . .

...

um1 . . . umm





σ1

. . .

σr




v11 . . . v1n

...
. . .

...

vn1 . . . vnn


T

where σ1 ≥ · · · ≥ σr ≥ 0.

The full SVD gives a nice interpretation of multiplication by A: to compute Ax, first
rotate x to y = V Tx; then scale components y1, . . . , yr by σ1, . . . , σr (and zero out the
other components) by computing z = Σy; then rotate z to x = Uz. The image of the
unit sphere, transformed by A, is an ellipsoid with principle axes σiui.

The SVD is costly to compute, but gives a lot of useful information:

� r = rank(A) is the number of nonzero elements of Σ (this is how Matlab computes
rank)

� col(A) = span(u1, . . . ,ur)

� null(A) = span(vr+1, . . . ,vn)

� σ2
1, . . . , σ

2
r are the eigenvalues of ATA:

ATA = (UΣV T )T (UΣV T ) = V ΣTUTUΣV = V ΣTΣV T

= V

σ
2
1

. . .

σ2
r

V T = V ΛV T

(which is the spectral decomposition of ATA)

� the squared Frobenius norm of A is the sum of its squared singular values:

‖A‖2
F = tr(ATA) = tr(V ΣTΣV T ) =

r∑
i=1

σ2
i

As with the QR decomposition, there’s a ‘compact’ form of the SVD: A = UΣV T ,
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where U ∈ Rm×r, UTU = I, V ∈ Rn×r, V TV = I, and Σ = diag(σ1, . . . , σr)

a11 . . . a1n

...
. . .

...

a1n . . . ann
...

...
amn . . . amn


=



u11 . . . u1r

...
...

um1 . . . umr



σ1

. . .

σr



v11 . . . v1r

...
. . .

...

vn1 . . . vnr


T
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5 Derivatives

• The gradient of a function f : Rn → R with respect to a vector v ∈ Rn is

∇f(v) =


∂f
∂v1
...
∂f
∂vn

 ∈ Rn

The gradient of a vector-valued function f : Rn → Rm is

f(v) =

f1(v)
...

fm(v)

 ⇒ ∇f(v) =
[
∇f1(v) . . . ∇fm(v)

]
=


∂f1
∂v1

. . . ∂fm
∂v1

...
. . .

...
∂f1
∂vn

. . . ∂fm
∂vn

 ∈ Rn×m

• Alternate notation: we sometimes want to work with rows of derivatives instead
of columns Why? Because it can make vector-matrix derivatives look more like their
scalar analogs. This motivates the notation

Df(v) =
∂f

∂v
= ∇f(v)T =

[
∂f
∂v1

. . . ∂f
∂vn

]
∈ R1×n

Df(v) =
∂f

∂v
= ∇f(v)T =

∇f1(v)T

...
∇fm(v)T

 =


∂f1
∂v1

. . . ∂f1
∂vn

...
. . .

...
∂fm
∂v1

. . . ∂fm
∂vn

 ∈ Rm×n

In either case, Df(v) is called the Jacobian matrix of f with respect to v.

• Chain rule. Let f : Rp → Rm, g : Rn → Rp and h = f(g(x)) (so h : Rn → Rm).
Then

∇h(x) = ∇g(x)∇f(g(x)) ∈ Rn×m

Dh(x) = Df(g(x))Dg(x) ∈ Rm×n

• The first-order Taylor expansion of f : Rn → Rm, for x near x0, is

f(x) ≈ f(x0) +∇f(x0)T (x− x0)

• The Hessian matrix is a generalized second derivative. For f : Rn → R,

∇2f(v) =
∂2f

∂v2
=


∂2f
∂v21

. . . ∂2f
∂v1∂vn

...
. . .

...
∂2f

∂vn∂v1
. . . ∂2f

∂v2n

 ∈ Rn×n

Note that the equivalence of cross-partials implies that the Hessian is symmetric.
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• The second-order Taylor expansion of f : Rn → Rm, for x near x0, is

f(x) ≈ f(x0) +∇f(x0)T (x− x0) +
1

2
(x− x0)T∇2f(x0)(x− x0)

• Mean value theorem. If f : Rn → R is continuously differentiable, then for any
x,y ∈ Rn there exists a λ ∈ [0, 1] such that

f(y)− f(x) = ∇f(λx + (1− λ)y)T (y − x)

• Generalized mean value theorem. If f : Rn → R is twice continuously differen-
tiable, then for any x,y ∈ Rn there exists a λ ∈ [0, 1] such that

f(y)− f(x) = ∇f(x)T (y − x) +
1

2
(y − x)TH(λx + (1− λ)y)(y − x)

• Derivatives of quadratic forms. Let f(v) = 1
2
vTPv + gTv, where P ∈ Sn++ and

g,v ∈ Rn. Then
∇f(v) = Pv + g and ∇2f(v) = P

• Derivative of matrix inverse. Let A ∈ Rn×n be nonsingular and depend on a
parameter t. Then

d

dt
A−1 = −A−1

( d

dt
A
)
A−1
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