Matrix Algebra Review

Kevin Kircher —  Cornell MAE —  Spring '14

These notes collect some useful facts from finite dimensional linear algebra.
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1 Working with matrices and vectors

A vector v € R" is a column of n real scalars:
(%1
v=|: = Vv :[vl vn]€R1X”

Un

where v is the transpose of v. In these notes vectors are denoted by bold, lower case

letters.
A matrix A € R™ " contains n columns of m real scalars:

ay; ... A1p a; ... Qmi
A= AT: e R™
Am1 -+ Amn A1y . Qmn
We sometimes write A = [aij:| or (A);; = a;; to mean that A is built from the elements a;;.

In these notes matrices are denoted by non-bold capital letters.
Some definitions and properties of operations between scalars, vectors and matrices fol-

low.

e Vector addition for u,v € R™

up +vp
u+v=
Uy + Uy
e Addition of matrices A, B € R™*™:
a1 + b11 Ce Q1n + bln
A+B= : :
am1 + bml cee Amn + bmn

e Vector-scalar multiplication for « € R, v € R™

(0%}
av =

vy,

e Matrix-scalar multiplication for « € R, A € R™*"™:

aar ... (67057
aA =

A1 -+ Qlgyn



The inner product of vectors u,v € R" is
n
(w,v)=u-v=ulv= Zuivi €eR
i=1
Two vectors are orthogonal iff their inner product is zero.
The angle between u and v € R" is

uTV

Z(u,v) = cos ! 0,7
(u,v) ( (uTu)(vTv)> € (0,7

The orthogonal projection of v € R" onto u € R" is

viu

—u
ulu

Proj,v =
This allows decomposition of v into components parallel and orthogonal to u:

V=vV]+V|

where
V| =pIOj,V, V| =V -V,

The outer product of vectors u € R™ and v € R™ is

lu)(v| =uv’ = [uw;] € R

Matrix multiplication of A € R"™*" B € R"? = AB € R™*?

(AB);; = Zaikbkj, ie{l,....m}, je{l,...,p}
k=1

It can be useful to view matrix multiplication in terms of rows and columns: if

o
A=|:|, B=[b ... b}
o,
then
al'B
(AB)y; =a/b; <= AB=| : | =[Ab; Ab,)]
al B



Matrix multiplication can also be viewed in terms of outer products. If
B
A= [al an], B=]:
,BT
then
AB=a,8] +-- +a,83,

The transpose of a product is
(AB)" = BT AT

Multiplication by the identity matrix I,, € R™*", for A € R™"™:

1
I, = = IL,A=Al,=A

The identity matrix can be expressed in terms of the Cartesian basis vectors
€e1,...,€,!

1 0
0 :

€ = < y ©n = O = In = [el en}
0 1

Matrix-vector multiplication of A € R"™*" x € R" = Ax € R™:

(Ax); = ) aijz
j=1

It can be useful to view matrix-vector multiplication as mixture of the columns of A:

A:[a1 an] = Ax=za;+ --+za,

A set of vectors S = {aj,...,a,} is linearly dependent if there exists an x € R"
such that x # 0 and
ria; + -+ xpa, = 0.

If no such x exists, i.e. if
Ax=0 = x=0

where A = [al e an}, then S is linearly independent.

A linearly independent set {ay, ..., a;} with a; € R" can have at most n elements, i.e.
k < n. Equivalently, any set of k n-vectors, with k > n, is linearly dependent.



A set of n linearly independent n-vectors is a basis for R™. If {a;,...,a,} is a basis
for R™, then any vector in R" can be written as a linear combination of ay, ..., a,.

The column space or range of A € R"*™ is the set
col(A)={beR"| Ax=Db,x € R"}

The column space of A is the span (the set of all linear combinations) of the columns
ai,...,a, of A.

The null space or kernel of A € R is the set
null(4) = {x € R" | Ax =0}
Fact: dim(null(A)) 4+ dim(col(A4)) =n

The rank of A € R™*" is the number of linearly independent columns of A, i.e.
rank(A) = dim(col(A)) < min{m,n}. If rank(A) = min{m,n}, then A is called full
rank.

Facts:

the row rank and column rank of a matrix are equal
if A is full rank, then Ax =0 <= x=0
if Ae R"" and B € R"?, then rank(AB) < min{rank(A),rank(B)}

if A e R™" is full rank and B € R, then col(AB) = col(B) and rank(AB) =
rank(B)

the rank of a diagonal matrix is the number of its nonzero elements

S 000

<

¢ the rank of a symmetric matrix is the number of its nonzero eigenvalues



2 Square matrices

The definitions and results in this section apply only to square matrices, i.e. to matrices
A e RM

e The trace of A € R™" is .
tl"(A) = Z (077}
i=1

Cyclic permutations: for A € R™*" B € R"*P (' € RP*™

tr(ABC) = tr(CAB) = tr(BCA)

e The determinant of A € R™" is
det(A) = " a;(—1)"7CY
i=1

where the cofactor C% is the determinant of the (n — 1) X (n — 1) matrix formed by
deleting the i*® row and ;' column of A. For n = 2,

det(A) = 11Q922 — Q124921

Facts:

o if A, B € R™", then det(AB) = det(A) det(B)
o det(AT) = det(A)

o if A1 exists, then det(A™!) = b

e A matrix A € R™" is singular if det(A) = 0 or, equivalently, if rank(A) < n.
e If A € R™" is nonsingular, then there exists a matrix A~!, called the inverse of A,

such that
ATTA=AA =T

In practice, computing A~! is expensive (order n® flops) and may be inaccurate if A is
ill-conditioned. For small matrices, A~! can be found by hand using Cramer’s rule,

1 1

= ——adj(4)"
der(a) "V
where adj(A), called the adjutant of A, is the matrix of the cofactors of A:
011 _012 L (_1)n+101n
L -2 C??
adj(A) = [(-1)™CV] = : . :
(—=1)nttemt L cnn



so for n = 2,

A1 — 1 [ 22 —a21]

ai1G22 — Q12021 | —d12 11
If A, B € R™" are both non-singular, then

(AB)™ = B~1A™!

e Matrix inversion lemma: if all the relevant inverses exist, then

(A+ BCD) ' = A" —A'B(DAT'B+C7)"'DA™!

e Let A be a square block matrix, and let A~ = B, i.e.

P {An Alz]_l_ lBH 312} 5
A21 A22 BZl BZZ

where Ay and Ay are square, det(A;;) # 0, and dim(A4;;) = dim(B;;) for all 4, j.
Assume as well that det(A) # 0, where A = Agy — A21A1_11A12. Then the inverse of A
is given by

By = A+ A AR AT Ag A

By = — A ApAT!

Bgl = —A_lAglAl_ll

ng - Ail

e A matrix A € R™" is idempotent if A? = AA = A.
Facts:
o if A is idempotent, then tr(A) = rank(A)
¢ if A is idempotent, then any eigenvalue of A is either 0 or 1
Examples:
o J= %11T € R™" is idempotent. J is called an averaging matrix because

- 1 1
Jx = -11"x = (—1Tx) 1=71
n n

where Z is the mean of the elements of x.

o C' =1 —J is idempotent. C is called a centering matrix because

Cx=(I—-J)x=x—-121



e (Cayley-Hamilton theorem: A solves its own characteristic polynomial)

Let A € R™" and p(\) = det(A] — A), i.e. let p : C — R be the characteristic
polynomial of A. Overload p : R™*"™ — R such that

p(A\) =g+ ag A+ -+ a, \"
— pA)=al+a A+ -+ a,A"

then p(A) = 0. This result allows AP to be expressed as a linear combination of
IA,..., A" ! for any p € {1,2,...} (and for negative integers, if A~ exists).

2.1 Eigenstuff and diagonalization

If A is square, then there exist at least one \; € R and v; € R” such that v; # 0 and

Av; = \;v;, i.e. multiplication by A stretches v; but doesn’t rotate it. These special vectors

v; and scalars \; are called the eigenvectors and eigenvalues of A, respectively. Interesting

fact: the image of the unit sphere, transformed by A, is an ellipsoid with principle axes \;v;.
We can find the eigenstuff of A by solving det(\] — A) = 0, an n'"-order polynomial in

A, for A1, ..., \,. The eigenvalues of A are generally complex and not necessarily distinct.
Let \; be an eigenvalue of A € R™" with corresponding eigenvector v;. Then

o tr(4) =3\

(so the eigenvalues of AT and A are the same)

o det(A) =] N
(so A is singular iff \; = 0 for some i € {1,...,n})

e if det(A) # 0, then 1/); is an eigenvalue of A~!

e the cigenvalues of A are \F, ... \E

(so the linear system x(k + 1) = Ax(k) is stable iff |\;| < 1 for all 7)
e a)\; + [ is an eigenvalue of oA + SI with eigenvector v;

Other facts:

e if A € S™, then the eigenvalues A\q,...,\, of A are real (but not necessarily distinct),
and A has a full set of n linearly independent eigenvectors.

e if A€ S, then the eigenvalues of A are real and nonnegative

o if Ac S"_ , then the eigenvalues of A are real and positive



e the eigenvalues of the block triangular matrix
A B
0 C

are the eigenvalues of A and the eigenvalues of C'

e if every row of A sums to ¢, then c is an eigenvalue of A with eigenvector [1, cee 1}T

e if every column of A sums to ¢, then c¢ is an eigenvalue of A (no info about the
corresponding eigenvector)

A major application of eigenstuff is diagonalization, also called spectral decomposi-
tion. For most, but not all, A € R™"™, there exist nonsingular 7" and diagonal A such that
A = T~'AT. Diagonalization greatly facilitates computations and proofs. Examples:

e matrix exponential

At

—1 _
At _ JTTIATE _ -1 T

e powers

AR = (TIATYF =T T

(always valid for k£ > 1, valid for & < 1 if A is invertible)

Theorem 1 (Spectral decomposition) Let A € R™" have the n linearly independent
eigenvectors vy, ..., v, with associated eigenvalues Ay, ..., \,, and let T" = [vl .. .vn] and
A =diag(\y, ..., \n). Then A=TAT .

Corollary 2 If A € R™" has n distinct eigenvalues, then A is diagonalizable.

Note that the converse is not true: there are diagonalizable matrices that do not have full
sets of distinct eigenvalues.

It’s hard to tell whether a general matrix A satisfies these conditions without computing
its eigenstuff. An exception is if A is real and symmetric.

Lemma 3 (Principle axis theorem) If A = AT € R™", then A is orthogonally diago-
nalizable, i.e.

A=TAT?T,
where T is orthogonal (TTT = TTT = 1) and A is diagonal.



3 Norms

e A norm |-|| : R® — R of a vector satisfies

1. nonnegativity
||v]] > 0 for all v e R"

2. definiteness
vl=0 <= v=0

3. homogeneity
lav| = |a|||v|| forallve R" a € R

4. triangle inequality
a4+ v < fful] + [v]

There are many vector norms. The most common is the Euclidean norm (also called
the Iy norm):
vll, = vvtv

Other common examples are the [; norm:

and the [, norm:

These can be viewed as members of the family of /, norms for p > 1,

n 1/p
. (z w)
=1

with [, the limiting case as p — oc.
e (Schwartz inequality) For vectors u,v € R",
[u”v| < [ulf[|v]
e The induced norm of a matrix A € R™*" is

A
14]| = max [[Av] = max LAY]
[v]=1 v20 ||v||

Loosely, this measures “the biggest stretch” that multiplication by A induces on a unit
vector, with respect to the norm ||-||. In the special case of the Iy norm,

[Ally = 1/ Amax(ATA) = Tmax(A)

where Apax and opa, denote the maximum eigenvalue and singular value, respectively.

10



e The Frobenius norm of A € R™*" is

Al = (iz

i=1 j=1

1/2
) = /tr(ATA)

11



4

Useful sets and decompositions
Call the set of n x n real, symmetric matrices S, where

S"={Ac RV | A= AT}

Call the set of positive semi-definite (psd) matrices S'y, where
ST ={Ae€S"|viAv >0 for all v # 0}
If A€ 87, then

— we write S = 0

— all eigenvalues of A are nonnegative

Call the set of positive definite (pd) matrices S’ , where
ST, ={A€S"|viAv > 0 for all v # 0}

If AeSt

., then

— we write S = 0. Note that S, C S} C S"
— Ais invertible and A™! € St

— all eigenvalues of A are positive

If PeS?

., the weighted inner product of vectors u,v € R" is

LITPV = Z Zuipijvj cR
i=1 j=1
If P € S™, then the product
vipv = Z Z vipiiv; €R
i=1 j=1

is called a quadratic form. Without loss of generality, can assume P = PT. If
P # PT, then replace P by (P + PT):

1 1 1
EVT(P + Ph)yv = E(VTPV +vIPlv) = 5 Vi Pv+ (vIPv)T] =v'Pv

If Q € R and QTQ = QQT = I, then Q is orthogonal.

Properties:

12



o for all column vectors q; of @, q q; = d;;

2
x = H-THz

o multiplication by ) preserves length: HQXH% =xTQTQx =x
¢ multiplication by @ also preserves angles
¢ rotation and reflection are orthogonal transformations
e A matrix A € R™*" with m > n can be written as the product of an orthogonal matrix
@ € R™™ and a block upper triangular matrix R € R"*":

ain ... Qip qi1 .. qim ™M1 .- Tin
A=l .. Gu| =1 : : ron| = QR
LOm1  ---  Qmn _le s Qmm_ | i

This is called the ‘full’ QR decomposition of A. It’s useful for fast, numerically
stable algorithms, particularly for matrix inversion and least squares estimation.

The ‘compact’” QR decomposition of A € R™"™ m > n, can also be computed, and
yields @ € R™™ and R € R™", where Q7 Q) = I and R is upper triangular:

din ... i dgin .- in
: o T .o Tin
: : T'nn
LAm1 -+  Qmn _le ce an_

How to produce ) and R? By a series of Householder transformations,

where p = min{m, n}.

e For all u,v € R” with ||u|]| = ||v]|, there exists a Householder transformation
H e RV where HH? = HTH = I (i.e. H is orthogonal), such that

Hu=v

Householder transformations are a key component of many fast, numerically stable
algorithms (e.g. for solving systems of linear equations). We can produce the matrix
H as follows:

1. definew=u—v

13



2. if |wl|], =0, then H = I
3. if ||w]|, # 0, then

2
H=I—-|—5 wwl
[l

n

e The Cholesky decomposition of any P € S | is
P=R'R
where R € R™*" is upper triangular and nonsingular.

The condition number of A € R™*" is

)\max
cond(A) = S

where A\.x and Ay are the largest and smallest eigenvalues of A, respectively. The
condition number gives an idea of how close A is to being singular. For instance,
in double precision arithmetic (where calculations are accurate to 16 digits), 16 —
log cond(A) useful digits are preserved when solving Ax = b.

Let X € S™ be the block matrix

A B
<= Lo ]

(so A and C are symmetric). The Schur complement of A in X is
S=C-B"A™'B
Facts:

X>=0<«<= (A>0and S > 0)
X >0 <+ (C=0and A— BC'BT »0)
A-0=(X>0 < S>0)
C~=0=(X=0 < A-BC'BT »0)

The Schur complement is a useful tool for breaking apart quadratic matrix inequalities.

The ‘full’ singular value decomposition (SVD) of A € R™*" with rank(A) = r is
A =UXVT where U € R™™ and V € R™" are orthogonal and X is an m X n matrix
with the singular values o1, ..., 0, of A on the main diagonal:

14



-all 6Lln- -ull ulm- -0'1 i ~
V11 Uin
Oy
QA1np c. Ann
_Unl Unn
| Amn cee Amn | _uml umm_ L J

where oy > --- >0, > 0.

The full SVD gives a nice interpretation of multiplication by A: to compute Ax, first
rotate x to y = VT x; then scale components yi,...,y, by o1,...,0, (and zero out the
other components) by computing z = Xy; then rotate z to x = Uz. The image of the
unit sphere, transformed by A, is an ellipsoid with principle axes o;u;.

The SVD is costly to compute, but gives a lot of useful information:

o r = rank(A) is the number of nonzero elements of ¥ (this is how Matlab computes

rank)
o col(A) = span(uy, ..., u,)
o null(A) = span(vy,y1,...,Vy)
o 02,...,02 are the eigenvalues of AT A:

ATA= (UxvhHTwsvh) =vy'u'usy =vy'sy”
o
=V VT =vAVT

2

oy

(which is the spectral decomposition of AT A)

¢ the squared Frobenius norm of A is the sum of its squared singular values:

1A} = tr(ATA) = te(VETEVT) = ) o?
=1

As with the QR decomposition, there’s a ‘compact’ form of the SVD: A = UXV7T,

15




where U € R™", UTU =1,V € R, VIV = I, and ¥ = diag(oy, . ..

i

A1n

amn

Q1n

ann

amn

U171

Uy

01

V11

16




5 Derivatives

e The gradient of a function f : R™ — R with respect to a vector v € R" is

of

ov
Viv)=1| : ] €R"

o

Ovp,

The gradient of a vector-valued function f : R* — R™ is

fi(v)
f(v) =1 = ViV)=[VANV) .. ViuWV)] =

fm(V)

Ofm
ovy

Ofm
Ovn

c RnXm

e Alternate notation: we sometimes want to work with rows of derivatives instead
of columns Why? Because it can make vector-matrix derivatives look more like their

scalar analogs. This motivates the notation

Df(v) zg—izvf(v)T: LA 6a_f] c RIX"
of . Vfl.(v)T %
Df(v) = - = Vi(v)" = _

V fn(v)T %fTT

In either case, Df(v) is called the Jacobian matrix of f with respect to v.

e Rmxn

e Chain rule. Let f: R? - R™, g: R" — R? and h = f(g(x)) (so h : R* — R™).

Then
Vh(x) = Vg(x)Vf(g(x)) € R"™

Dh(x) = Df(g(x))Dg(x) € R™*"

e The first-order Taylor expansion of f : R” — R™, for x near Xq, is

f(x) = f(xq) + VF(x0)" (x — o)

e The Hessian matrix is a generalized second derivative. For f : R" — R,

&; >’f

V2f(v) = > _ 81:)1 e
ov? aéf aéf
OvpOvy ov2

E R'I”LX'N,

Note that the equivalence of cross-partials implies that the Hessian is symmetric.



The second-order Taylor expansion of f : R — R™, for x near xq, is
1
f(x) ~ f(x0) + Vf(x0)” (x — x¢) + §(x —x0) TV (x0)(x — Xo)

Mean value theorem. If f : R"™ — R is continuously differentiable, then for any
x,y € R" there exists a A € [0, 1] such that

fy) = fx) =VfOx+ (1= Ny) (y —x)

Generalized mean value theorem. If f : R” — R is twice continuously differen-
tiable, then for any x,y € R" there exists a A € [0, 1] such that

F(¥) — £ = VIR (y =)+ 5y — )T HOx+ (1= N)y)(y %)

Derivatives of quadratic forms. Let f(v) = v Pv + g’v, where P € S7 and
g,v € R". Then
Vfv)=Pv+g and Vif(v)=P

Derivative of matrix inverse. Let A € R"™ " be nonsingular and depend on a

parameter t. Then
d 4 d ~1
AT =—A (EA)A
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