Matrix Algebra Review

Kevin Kircher — Cornell MAE — Spring '14

These notes collect some useful facts from finite dimensional linear algebra.

Contents

1	Working with matrices and vectors	2	
2	Square matrices	6	
3	Norms	10	
4	Useful sets and decompositions	12	
5	Derivatives	17	

1 Working with matrices and vectors

A vector $\mathbf{v} \in \mathbf{R}^n$ is a column of n real scalars:

$$\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \quad \iff \quad \mathbf{v}^T = \begin{bmatrix} v_1 & \dots & v_n \end{bmatrix} \in \mathbf{R}^{1 \times n}$$

where \mathbf{v}^T is the **transpose** of \mathbf{v} . In these notes vectors are denoted by bold, lower case letters.

A matrix $A \in \mathbf{R}^{m \times n}$ contains *n* columns of *m* real scalars:

$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \quad \iff \quad A^T = \begin{bmatrix} a_{11} & \dots & a_{m1} \\ \vdots & \ddots & \vdots \\ a_{1n} & \dots & a_{mn} \end{bmatrix} \in \mathbf{R}^{n \times m}$$

We sometimes write $A = [a_{ij}]$ or $(A)_{ij} = a_{ij}$ to mean that A is built from the elements a_{ij} . In these notes matrices are denoted by non-bold capital letters.

Some definitions and properties of operations between scalars, vectors and matrices follow.

• Vector addition for $\mathbf{u}, \mathbf{v} \in \mathbf{R}^n$:

$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 + v_1 \\ \vdots \\ u_n + v_n \end{bmatrix}$$

• Addition of matrices $A, B \in \mathbf{R}^{m \times n}$:

$$A + B = \begin{bmatrix} a_{11} + b_{11} & \dots & a_{1n} + b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & \dots & a_{mn} + b_{mn} \end{bmatrix}$$

• Vector-scalar multiplication for $\alpha \in \mathbf{R}$, $\mathbf{v} \in \mathbf{R}^n$:

$$\alpha \mathbf{v} = \begin{bmatrix} \alpha v_1 \\ \vdots \\ \alpha v_n \end{bmatrix}$$

• Matrix-scalar multiplication for $\alpha \in \mathbf{R}, A \in \mathbf{R}^{n \times m}$:

$$\alpha A = \begin{bmatrix} \alpha a_{11} & \dots & \alpha a_{1n} \\ \vdots & \ddots & \vdots \\ \alpha a_{m1} & \dots & \alpha a_{mn} \end{bmatrix}$$

• The inner product of vectors $\mathbf{u}, \mathbf{v} \in \mathbf{R}^n$ is

$$\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v} = \sum_{i=1}^n u_i v_i \in \mathbf{R}$$

Two vectors are **orthogonal** iff their inner product is zero.

• The **angle** between **u** and $\mathbf{v} \in \mathbf{R}^n$ is

$$\angle(\mathbf{u}, \mathbf{v}) = \cos^{-1}\left(\frac{\mathbf{u}^T \mathbf{v}}{\sqrt{(\mathbf{u}^T \mathbf{u})(\mathbf{v}^T \mathbf{v})}}\right) \in [0, \pi]$$

• The orthogonal projection of $\mathbf{v} \in \mathbf{R}^n$ onto $\mathbf{u} \in \mathbf{R}^n$ is

$$\operatorname{proj}_{\mathbf{u}}\mathbf{v} = \frac{\mathbf{v}^T\mathbf{u}}{\mathbf{u}^T\mathbf{u}}\mathbf{u}$$

This allows decomposition of ${\bf v}$ into components parallel and orthogonal to ${\bf u}:$

$$\mathbf{v} = \mathbf{v}_\perp + \mathbf{v}_\parallel$$

where

$$\mathbf{v}_{\perp} = \mathrm{proj}_{\mathbf{u}} \mathbf{v}, \quad \mathbf{v}_{\parallel} = \mathbf{v} - \mathbf{v}_{\perp}$$

• The outer product of vectors $\mathbf{u} \in \mathbf{R}^n$ and $\mathbf{v} \in \mathbf{R}^m$ is

$$|\mathbf{u}\rangle\langle\mathbf{v}|=\mathbf{u}\mathbf{v}^{T}=\left[u_{i}v_{j}
ight]\in\mathbf{R}^{n imes m}$$

• Matrix multiplication of $A \in \mathbf{R}^{m \times n}$, $B \in \mathbf{R}^{n \times p} \Rightarrow AB \in \mathbf{R}^{m \times p}$

$$(AB)_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}, \quad i \in \{1, \dots, m\}, \quad j \in \{1, \dots, p\}$$

It can be useful to view matrix multiplication in terms of rows and columns: if

$$A = \begin{bmatrix} \boldsymbol{\alpha}_1^T \\ \vdots \\ \boldsymbol{\alpha}_m^T \end{bmatrix}, \quad B = \begin{bmatrix} \mathbf{b}_1 & \dots & \mathbf{b}_p \end{bmatrix}$$

then

$$(AB)_{ij} = \boldsymbol{\alpha}_i^T \mathbf{b}_j \quad \iff \quad AB = \begin{bmatrix} \boldsymbol{\alpha}_1^T B \\ \vdots \\ \boldsymbol{\alpha}_m^T B \end{bmatrix} = \begin{bmatrix} A\mathbf{b}_1 & \dots & A\mathbf{b}_p \end{bmatrix}$$

Matrix multiplication can also be viewed in terms of outer products. If

$$A = \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_n \end{bmatrix}, \quad B = \begin{bmatrix} \boldsymbol{\beta}_1^T \\ \vdots \\ \boldsymbol{\beta}_n^T \end{bmatrix}$$

then

$$AB = \mathbf{a}_1 \boldsymbol{\beta}_1^T + \dots + \mathbf{a}_n \boldsymbol{\beta}_n^T$$

The transpose of a product is

$$(AB)^T = B^T A^T$$

• Multiplication by the **identity** matrix $I_n \in \mathbf{R}^{n \times n}$, for $A \in \mathbf{R}^{n \times m}$:

$$I_n = \begin{bmatrix} 1 & & \\ & \ddots & \\ & & 1 \end{bmatrix} \quad \Rightarrow \quad I_n A = A I_m = A$$

The identity matrix can be expressed in terms of the **Cartesian basis vectors** $\mathbf{e}_1, \ldots, \mathbf{e}_n$:

$$\mathbf{e}_{1} = \begin{bmatrix} 1\\0\\\vdots\\0 \end{bmatrix}, \quad \dots, \quad \mathbf{e}_{n} = \begin{bmatrix} 0\\\vdots\\0\\1 \end{bmatrix} \quad \Rightarrow \quad I_{n} = \begin{bmatrix} \mathbf{e}_{1} & \dots & \mathbf{e}_{n} \end{bmatrix}$$

• Matrix-vector multiplication of $A \in \mathbf{R}^{m \times n}$, $\mathbf{x} \in \mathbf{R}^n \Rightarrow A\mathbf{x} \in \mathbf{R}^m$:

$$(A\mathbf{x})_i = \sum_{j=1}^n a_{ij} x_j$$

It can be useful to view matrix-vector multiplication as mixture of the columns of A:

$$A = \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_n \end{bmatrix} \Rightarrow A\mathbf{x} = x_1\mathbf{a}_1 + \dots + x_n\mathbf{a}_n$$

• A set of vectors $S = {\mathbf{a}_1, ..., \mathbf{a}_n}$ is **linearly dependent** if there exists an $\mathbf{x} \in \mathbf{R}^n$ such that $\mathbf{x} \neq \mathbf{0}$ and

$$x_1\mathbf{a}_1+\cdots+x_n\mathbf{a}_n=\mathbf{0}$$

If no such \mathbf{x} exists, *i.e.* if

$$A\mathbf{x} = \mathbf{0} \quad \Rightarrow \quad \mathbf{x} = \mathbf{0}$$

where $A = \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_n \end{bmatrix}$, then S is **linearly independent**.

A linearly independent set $\{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ with $\mathbf{a}_i \in \mathbf{R}^n$ can have at most *n* elements, *i.e.* $k \leq n$. Equivalently, any set of *k n*-vectors, with k > n, is linearly dependent.

- A set of *n* linearly independent *n*-vectors is a **basis** for \mathbf{R}^n . If $\{\mathbf{a}_1, \ldots, \mathbf{a}_n\}$ is a basis for \mathbf{R}^n , then any vector in \mathbf{R}^n can be written as a linear combination of $\mathbf{a}_1, \ldots, \mathbf{a}_n$.
- The column space or range of $A \in \mathbf{R}^{n \times m}$ is the set

$$\operatorname{col}(A) = \{ \mathbf{b} \in \mathbf{R}^n \mid A\mathbf{x} = \mathbf{b}, \mathbf{x} \in \mathbf{R}^n \}$$

The column space of A is the span (the set of all linear combinations) of the columns $\mathbf{a}_1, \ldots, \mathbf{a}_n$ of A.

• The null space or kernel of $A \in \mathbb{R}^{n \times m}$ is the set

$$\operatorname{null}(A) = \{ \mathbf{x} \in \mathbf{R}^m \mid A\mathbf{x} = \mathbf{0} \}$$

Fact: $\dim(\operatorname{null}(A)) + \dim(\operatorname{col}(A)) = n$

• The rank of $A \in \mathbb{R}^{m \times n}$ is the number of linearly independent columns of A, *i.e.* rank $(A) = \dim(\operatorname{col}(A)) \leq \min\{m, n\}$. If rank $(A) = \min\{m, n\}$, then A is called full rank.

Facts:

- \diamond the row rank and column rank of a matrix are equal
- \diamond if A is full rank, then $A\mathbf{x} = \mathbf{0} \iff \mathbf{x} = \mathbf{0}$
- \diamond if $A \in \mathbf{R}^{n \times n}$ and $B \in \mathbf{R}^{n \times p}$, then rank $(AB) \le \min\{\operatorname{rank}(A), \operatorname{rank}(B)\}$
- ♦ if $A \in \mathbf{R}^{m \times n}$ is full rank and $B \in \mathbf{R}^{n \times p}$, then col(AB) = col(B) and rank(AB) = rank(B)
- \diamond the rank of a diagonal matrix is the number of its nonzero elements
- \diamond the rank of a symmetric matrix is the number of its nonzero eigenvalues

2 Square matrices

The definitions and results in this section apply only to square matrices, *i.e.* to matrices $A \in \mathbf{R}^{n \times n}$.

• The trace of $A \in \mathbf{R}^{n \times n}$ is

$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}$$

Cyclic permutations: for $A \in \mathbf{R}^{m \times n}$, $B \in \mathbf{R}^{n \times p}$, $C \in \mathbf{R}^{p \times m}$

$$\operatorname{tr}(ABC) = \operatorname{tr}(CAB) = \operatorname{tr}(BCA)$$

• The **determinant** of $A \in \mathbf{R}^{n \times n}$ is

$$\det(A) = \sum_{i=1}^{n} a_{ij} (-1)^{i+j} C^{ij}$$

where the **cofactor** C^{ij} is the determinant of the $(n-1) \times (n-1)$ matrix formed by deleting the i^{th} row and j^{th} column of A. For n = 2,

$$\det(A) = a_{11}a_{22} - a_{12}a_{21}$$

Facts:

- \diamond if $A, B \in \mathbb{R}^{n \times n}$, then $\det(AB) = \det(A) \det(B)$
- $\diamond \det(A^T) = \det(A)$

$$\diamond$$
 if A^{-1} exists, then $\det(A^{-1}) = \frac{1}{\det(A)}$

- A matrix $A \in \mathbf{R}^{n \times n}$ is singular if $\det(A) = 0$ or, equivalently, if $\operatorname{rank}(A) < n$.
- If $A \in \mathbf{R}^{n \times n}$ is nonsingular, then there exists a matrix A^{-1} , called the **inverse** of A, such that

$$A^{-1}A = AA^{-1} = I$$

In practice, computing A^{-1} is expensive (order n^3 flops) and may be inaccurate if A is ill-conditioned. For small matrices, A^{-1} can be found by hand using Cramer's rule,

$$A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)^T$$

where adj(A), called the **adjutant** of A, is the matrix of the cofactors of A:

$$\operatorname{adj}(A) = \left[(-1)^{i+j} C^{ij} \right] = \begin{bmatrix} C^{11} & -C^{12} & \dots & (-1)^{n+1} C^{1n} \\ -C^{12} & C^{22} & & \\ \vdots & & \ddots & \vdots \\ (-1)^{n+1} C^{n1} & \dots & C^{nn} \end{bmatrix}$$

so for n = 2,

$$A^{-1} = \frac{1}{a_{11}a_{22} - a_{12}a_{21}} \begin{bmatrix} a_{22} & -a_{21} \\ -a_{12} & a_{11} \end{bmatrix}$$

If $A, B \in \mathbf{R}^{n \times n}$ are both non-singular, then

$$(AB)^{-1} = B^{-1}A^{-1}$$

• Matrix inversion lemma: if all the relevant inverses exist, then

$$(A + BCD)^{-1} = A^{-1} - A^{-1}B(DA^{-1}B + C^{-1})^{-1}DA^{-1}$$

• Let A be a square block matrix, and let $A^{-1} = B$, *i.e.*

$$A^{-1} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}^{-1} = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = B$$

where A_{11} and A_{22} are square, $\det(A_{11}) \neq 0$, and $\dim(A_{ij}) = \dim(B_{ij})$ for all i, j. Assume as well that $\det(\Delta) \neq 0$, where $\Delta = A_{22} - A_{21}A_{11}^{-1}A_{12}$. Then the inverse of A is given by

$$B_{11} = A_{11}^{-1} + A_{11}^{-1} A_{12} \Delta^{-1} A_{21} A_{11}^{-1}$$

$$B_{12} = -A_{11}^{-1} A_{12} \Delta^{-1}$$

$$B_{21} = -\Delta^{-1} A_{21} A_{11}^{-1}$$

$$B_{22} = \Delta^{-1}$$

- A matrix $A \in \mathbf{R}^{n \times n}$ is **idempotent** if $A^2 \equiv AA = A$. Facts:
 - \diamond if A is idempotent, then tr(A) = rank(A)

 \diamond if A is idempotent, then any eigenvalue of A is either 0 or 1

Examples:

 $\diamond \ \bar{J} = \frac{1}{n} \mathbf{1} \mathbf{1}^T \in \mathbf{R}^{n \times n}$ is idempotent. \bar{J} is called an **averaging matrix** because

$$\bar{J}\mathbf{x} = \frac{1}{n}\mathbf{1}\mathbf{1}^T\mathbf{x} = \left(\frac{1}{n}\mathbf{1}^T\mathbf{x}\right)\mathbf{1} = \bar{x}\mathbf{1}$$

where \bar{x} is the mean of the elements of **x**.

 $\diamond C = I - \overline{J}$ is idempotent. C is called a **centering matrix** because

$$C\mathbf{x} = (I - \bar{J})\mathbf{x} = \mathbf{x} - \bar{x}\mathbf{1}$$

• (Cayley-Hamilton theorem: A solves its own characteristic polynomial)

Let $A \in \mathbf{R}^{n \times n}$ and $p(\lambda) = \det(\lambda I - A)$, *i.e.* let $p : \mathbf{C} \to \mathbf{R}$ be the characteristic polynomial of A. Overload $p : \mathbf{R}^{n \times n} \to \mathbf{R}$ such that

$$p(\lambda) = \alpha_0 + \alpha_1 \lambda + \dots + \alpha_n \lambda^n$$
$$\iff p(A) = \alpha_0 I + \alpha_1 A + \dots + \alpha_n A^n$$

then p(A) = 0. This result allows A^p to be expressed as a linear combination of I, A, \ldots, A^{n-1} for any $p \in \{1, 2, \ldots\}$ (and for negative integers, if A^{-1} exists).

2.1 Eigenstuff and diagonalization

If A is square, then there exist at least one $\lambda_i \in \mathbf{R}$ and $\mathbf{v}_i \in \mathbf{R}^n$ such that $\mathbf{v}_i \neq \mathbf{0}$ and $A\mathbf{v}_i = \lambda_i \mathbf{v}_i$, *i.e.* multiplication by A stretches \mathbf{v}_i but doesn't rotate it. These special vectors \mathbf{v}_i and scalars λ_i are called the **eigenvectors** and **eigenvalues** of A, respectively. Interesting fact: the image of the unit sphere, transformed by A, is an ellipsoid with principle axes $\lambda_i \mathbf{v}_i$.

We can find the eigenstuff of A by solving $det(\lambda I - A) = 0$, an n^{th} -order polynomial in λ , for $\lambda_1, \ldots, \lambda_n$. The eigenvalues of A are generally complex and not necessarily distinct.

Let λ_i be an eigenvalue of $A \in \mathbf{R}^{n \times n}$ with corresponding eigenvector \mathbf{v}_i . Then

• $\operatorname{tr}(A) = \sum_i \lambda_i$

(so the eigenvalues of A^T and A are the same)

- $det(A) = \prod_i \lambda_i$ (so A is singular iff $\lambda_i = 0$ for some $i \in \{1, \dots, n\}$)
- if det(A) $\neq 0$, then $1/\lambda_i$ is an eigenvalue of A^{-1}
- the eigenvalues of A^k are $\lambda_1^k, \ldots, \lambda_n^k$ (so the linear system $\mathbf{x}(k+1) = A\mathbf{x}(k)$ is stable iff $|\lambda_i| < 1$ for all i)
- $\alpha \lambda_i + \beta$ is an eigenvalue of $\alpha A + \beta I$ with eigenvector \mathbf{v}_i

Other facts:

- if $A \in \mathbf{S}^n$, then the eigenvalues $\lambda_1, \ldots, \lambda_n$ of A are real (but not necessarily distinct), and A has a full set of n linearly independent eigenvectors.
- if $A \in \mathbf{S}^n_+$, then the eigenvalues of A are real and nonnegative
- if $A \in \mathbf{S}_{++}^n$, then the eigenvalues of A are real and positive

• the eigenvalues of the block triangular matrix

$$\begin{bmatrix} A & B \\ 0 & C \end{bmatrix}$$

are the eigenvalues of A and the eigenvalues of C

- if every row of A sums to c, then c is an eigenvalue of A with eigenvector $[1, \ldots, 1]^T$
- if every column of A sums to c, then c is an eigenvalue of A (no info about the corresponding eigenvector)

A major application of eigenstuff is **diagonalization**, also called **spectral decomposition**. For most, but not all, $A \in \mathbb{R}^{n \times n}$, there exist nonsingular T and diagonal Λ such that $A = T^{-1}\Lambda T$. Diagonalization greatly facilitates computations and proofs. Examples:

• matrix exponential

$$e^{At} = e^{T^{-1}\Lambda Tt} = T^{-1} \begin{bmatrix} e^{\lambda_1 t} & & \\ & \ddots & \\ & & e^{\lambda_n t} \end{bmatrix} T$$

• powers

$$A^{k} = (T^{-1}\Lambda T)^{k} = T^{-1} \begin{bmatrix} \lambda_{1}^{k} & & \\ & \ddots & \\ & & \lambda_{n}^{k} \end{bmatrix} T$$

(always valid for $k \ge 1$, valid for k < 1 if A is invertible)

Theorem 1 (Spectral decomposition) Let $A \in \mathbf{R}^{n \times n}$ have the *n* linearly independent eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ with associated eigenvalues $\lambda_1, \ldots, \lambda_n$, and let $T = [\mathbf{v}_1 \ldots \mathbf{v}_n]$ and $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$. Then $A = T\Lambda T^{-1}$.

Corollary 2 If $A \in \mathbb{R}^{n \times n}$ has n distinct eigenvalues, then A is diagonalizable.

Note that the converse is not true: there are diagonalizable matrices that do not have full sets of distinct eigenvalues.

It's hard to tell whether a general matrix A satisfies these conditions without computing its eigenstuff. An exception is if A is real and symmetric.

Lemma 3 (Principle axis theorem) If $A = A^T \in \mathbf{R}^{n \times n}$, then A is orthogonally diagonalizable, *i.e.*

$$A = T\Lambda T^{T},$$

where T is orthogonal $(TT^T = T^TT = I)$ and Λ is diagonal.

3 Norms

• A norm $\|\cdot\| : \mathbf{R}^n \to \mathbf{R}$ of a vector satisfies

1. nonnegativity

$$\|\mathbf{v}\| \ge 0$$
 for all $\mathbf{v} \in \mathbf{R}^n$

 $\|\mathbf{v}\| = 0 \iff \mathbf{v} = \mathbf{0}$

- 2. definiteness
- 3. homogeneity

$$\|\alpha \mathbf{v}\| = |\alpha| \|\mathbf{v}\|$$
 for all $\mathbf{v} \in \mathbf{R}^n, \alpha \in \mathbf{R}$

4. triangle inequality

$$\|\mathbf{u}+\mathbf{v}\|\leq \|\mathbf{u}\|+\|\mathbf{v}\|$$

There are many vector norms. The most common is the **Euclidean norm** (also called the l_2 norm):

$$\left\|\mathbf{v}\right\|_2 = \sqrt{\mathbf{v}^T \mathbf{v}}$$

Other common examples are the l_1 norm:

$$\left\|\mathbf{v}\right\|_1 = \sum_{i=1}^n \left|v_i\right|$$

and the l_{∞} norm:

$$\left\|\mathbf{v}\right\|_{\infty} = \max_{i \in \{1, \dots, n\}} |v_i|$$

These can be viewed as members of the family of l_p norms for $p \ge 1$,

$$\left\|\mathbf{v}\right\|_{p} = \left(\sum_{i=1}^{n} \left|v_{i}\right|^{p}\right)^{1/p}$$

with l_{∞} the limiting case as $p \to \infty$.

• (Schwartz inequality) For vectors $\mathbf{u}, \mathbf{v} \in \mathbf{R}^n$,

$$\left|\mathbf{u}^{T}\mathbf{v}\right| \leq \left\|\mathbf{u}\right\| \left\|\mathbf{v}\right\|$$

• The **induced norm** of a matrix $A \in \mathbf{R}^{m \times n}$ is

$$||A|| = \max_{\|\mathbf{v}\|=1} ||A\mathbf{v}|| = \max_{\mathbf{v}\neq\mathbf{0}} \frac{||A\mathbf{v}||}{\|\mathbf{v}\|}$$

Loosely, this measures "the biggest stretch" that multiplication by A induces on a unit vector, with respect to the norm $\|\cdot\|$. In the special case of the l_2 norm,

$$\|A\|_2 = \sqrt{\lambda_{\max}(A^T A)} = \sigma_{\max}(A)$$

where λ_{max} and σ_{max} denote the maximum eigenvalue and singular value, respectively.

• The Frobenius norm of $A \in \mathbf{R}^{m \times n}$ is

$$||A||_F = \left(\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2\right)^{1/2} = \sqrt{\operatorname{tr}(A^T A)}$$

4 Useful sets and decompositions

• Call the set of $n \times n$ real, symmetric matrices \mathbf{S}^n , where

$$\mathbf{S}^n = \{ A \in \mathbf{R}^{n \times n} \mid A = A^T \}$$

• Call the set of **positive semi-definite** (psd) matrices \mathbf{S}_{+}^{n} , where

$$\mathbf{S}_{+}^{n} = \{ A \in \mathbf{S}^{n} \mid \mathbf{v}^{T} A \mathbf{v} \ge 0 \text{ for all } \mathbf{v} \neq \mathbf{0} \}$$

If $A \in \mathbf{S}_{+}^{n}$, then

- we write $S \succeq 0$
- all eigenvalues of A are nonnegative
- Call the set of **positive definite** (pd) matrices \mathbf{S}_{++}^n , where

$$\mathbf{S}_{++}^n = \{ A \in \mathbf{S}^n \mid \mathbf{v}^T A \mathbf{v} > 0 \text{ for all } \mathbf{v} \neq \mathbf{0} \}$$

If $A \in \mathbf{S}_{++}^n$, then

- we write $S \succ 0$. Note that $\mathbf{S}_{++}^n \subset \mathbf{S}_{+}^n \subset \mathbf{S}^n$
- A is invertible and $A^{-1} \in \mathbf{S}_{++}^n$
- all eigenvalues of A are positive
- If $P \in \mathbf{S}_{++}^n$, the weighted inner product of vectors $\mathbf{u}, \mathbf{v} \in \mathbf{R}^n$ is

$$\mathbf{u}^T P \mathbf{v} = \sum_{i=1}^n \sum_{j=1}^n u_i p_{ij} v_j \in \mathbf{R}$$

• If $P \in \mathbf{S}^n$, then the product

$$\mathbf{v}^T P \mathbf{v} = \sum_{i=1}^n \sum_{j=1}^n v_i p_{ij} v_j \in \mathbf{R}$$

is called a **quadratic form**. Without loss of generality, can assume $P = P^T$. If $P \neq P^T$, then replace P by $\frac{1}{2}(P + P^T)$:

$$\frac{1}{2}\mathbf{v}^{T}(P+P^{T})\mathbf{v} = \frac{1}{2}(\mathbf{v}^{T}P\mathbf{v} + \mathbf{v}^{T}P^{T}\mathbf{v}) = \frac{1}{2}\left[\mathbf{v}^{T}P\mathbf{v} + (\mathbf{v}^{T}P\mathbf{v})^{T}\right] = \mathbf{v}^{T}P\mathbf{v}$$

• If $Q \in \mathbf{R}^{n \times n}$ and $Q^T Q = Q Q^T = I$, then Q is **orthogonal**. Properties:

- \diamond for all column vectors \mathbf{q}_i of Q, $\mathbf{q}_i^T \mathbf{q}_j = \delta_{ij}$
- \diamond multiplication by Q preserves length: $||Q\mathbf{x}||_2^2 = \mathbf{x}^T Q^T Q \mathbf{x} = \mathbf{x}^T \mathbf{x} = ||\mathbf{x}||_2^2$
- \diamond multiplication by Q also preserves angles
- \diamond rotation and reflection are orthogonal transformations
- A matrix $A \in \mathbf{R}^{m \times n}$ with $m \ge n$ can be written as the product of an orthogonal matrix $Q \in \mathbf{R}^{m \times m}$ and a block upper triangular matrix $R \in \mathbf{R}^{m \times n}$:

$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} = \begin{bmatrix} q_{11} & \dots & q_{1m} \\ \vdots & & \vdots \\ q_{m1} & \dots & q_{mm} \end{bmatrix} \begin{bmatrix} r_{11} & \dots & r_{1n} \\ & \ddots & \vdots \\ & & r_{nn} \\ & & & \end{bmatrix} = QR$$

This is called the 'full' **QR** decomposition of A. It's useful for fast, numerically stable algorithms, particularly for matrix inversion and least squares estimation.

The 'compact' QR decomposition of $A \in \mathbf{R}^{m \times n}$, $m \ge n$, can also be computed, and yields $Q \in \mathbf{R}^{m \times n}$ and $R \in \mathbf{R}^{n \times n}$, where $Q^T Q = I$ and R is upper triangular:

$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} = \begin{bmatrix} q_{11} & \dots & q_{1n} \\ \vdots & & \vdots \\ \vdots & & \ddots & \vdots \\ q_{m1} & \dots & q_{mn} \end{bmatrix} \begin{bmatrix} r_{11} & \dots & r_{1n} \\ & \ddots & \vdots \\ & & & r_{nn} \end{bmatrix} = QR$$

How to produce Q and R? By a series of Householder transformations,

$$Q = \prod_{i=1}^{p} H_i$$

where $p = \min\{m, n\}$.

• For all $\mathbf{u}, \mathbf{v} \in \mathbf{R}^n$ with $\|\mathbf{u}\| = \|\mathbf{v}\|$, there exists a Householder transformation $H \in \mathbf{R}^{n \times n}$, where $HH^T = H^T H = I$ (*i.e.* H is orthogonal), such that

$$H\mathbf{u} = \mathbf{v}$$

Householder transformations are a key component of many fast, numerically stable algorithms (*e.g.* for solving systems of linear equations). We can produce the matrix H as follows:

1. define $\mathbf{w} = \mathbf{u} - \mathbf{v}$

- 2. if $\|\mathbf{w}\|_2 = 0$, then H = I
- 3. if $\|\mathbf{w}\|_2 \neq 0$, then

$$H = I - \left(\frac{2}{\|\mathbf{w}\|_2^2}\right) \mathbf{w} \mathbf{w}^T$$

• The Cholesky decomposition of any $P \in \mathbf{S}_{++}^n$ is

$$P = R^T R$$

where $R \in \mathbf{R}^{n \times n}$ is upper triangular and nonsingular.

• The condition number of $A \in \mathbf{R}^{n \times n}$ is

$$\operatorname{cond}(A) = \frac{\lambda_{\max}}{\lambda_{\min}}$$

where λ_{max} and λ_{min} are the largest and smallest eigenvalues of A, respectively. The condition number gives an idea of how close A is to being singular. For instance, in double precision arithmetic (where calculations are accurate to 16 digits), $16 - \log \operatorname{cond}(A)$ useful digits are preserved when solving $A\mathbf{x} = \mathbf{b}$.

• Let $X \in \mathbf{S}^n$ be the block matrix

$$X = \begin{bmatrix} A & B \\ B^T & C \end{bmatrix}$$

(so A and C are symmetric). The **Schur complement** of A in X is

$$S = C - B^T A^{-1} B$$

Facts:

$$X \succ 0 \iff (A \succ 0 \text{ and } S \succ 0)$$
$$X \succ 0 \iff (C \succ 0 \text{ and } A - BC^{-1}B^T \succ 0)$$
$$A \succ 0 \Rightarrow (X \succeq 0 \iff S \succeq 0)$$
$$C \succ 0 \Rightarrow (X \succeq 0 \iff A - BC^{-1}B^T \succeq 0)$$

The Schur complement is a useful tool for breaking apart quadratic matrix inequalities.

• The 'full' singular value decomposition (SVD) of $A \in \mathbb{R}^{m \times n}$ with rank(A) = r is $A = U\Sigma V^T$, where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal and Σ is an $m \times n$ matrix with the singular values $\sigma_1, \ldots, \sigma_r$ of A on the main diagonal:

$\begin{bmatrix} a_1 \end{bmatrix}$		a_{1n}			u_{1m}	$\begin{bmatrix} \sigma_1 \\ & \cdot \end{bmatrix}$	$\int \int v_{11}$		$v_{1n} \rceil^T$
:	·	÷	=			σ_r			
a_1	$n \cdots$	α_{nn}		·	:			•••	
$\begin{bmatrix} \vdots \\ a_m \end{bmatrix}$	m	\vdots a_{mn}	u_{m1}		u_{mm}		v_{n1}		v_{nn}

where $\sigma_1 \geq \cdots \geq \sigma_r \geq 0$.

The full SVD gives a nice interpretation of multiplication by A: to compute $A\mathbf{x}$, first rotate \mathbf{x} to $\mathbf{y} = V^T \mathbf{x}$; then scale components y_1, \ldots, y_r by $\sigma_1, \ldots, \sigma_r$ (and zero out the other components) by computing $\mathbf{z} = \Sigma \mathbf{y}$; then rotate \mathbf{z} to $\mathbf{x} = U\mathbf{z}$. The image of the unit sphere, transformed by A, is an ellipsoid with principle axes $\sigma_i \mathbf{u}_i$.

The SVD is costly to compute, but gives a lot of useful information:

- ♦ $r = \operatorname{rank}(A)$ is the number of nonzero elements of Σ (this is how Matlab computes rank)
- $\diamond \operatorname{col}(A) = \operatorname{span}(\mathbf{u}_1, \dots, \mathbf{u}_r)$
- $\diamond \operatorname{null}(A) = \operatorname{span}(\mathbf{v}_{r+1}, \dots, \mathbf{v}_n)$
- $\diamond \sigma_1^2, \ldots, \sigma_r^2$ are the eigenvalues of $A^T A$:

$$\begin{split} A^T A &= (U\Sigma V^T)^T (U\Sigma V^T) = V\Sigma^T U^T U\Sigma V = V\Sigma^T \Sigma V^T \\ &= V \begin{bmatrix} \sigma_1^2 & \\ & \ddots & \\ & & \sigma_r^2 \end{bmatrix} V^T = V\Lambda V^T \end{split}$$

(which is the spectral decomposition of $A^T A$)

 \diamond the squared Frobenius norm of A is the sum of its squared singular values:

$$||A||_F^2 = \operatorname{tr}(A^T A) = \operatorname{tr}(V\Sigma^T \Sigma V^T) = \sum_{i=1}^r \sigma_i^2$$

As with the QR decomposition, there's a 'compact' form of the SVD: $A = U\Sigma V^T$,

where $U \in \mathbf{R}^{m \times r}$, $U^T U = I$, $V \in \mathbf{R}^{n \times r}$, $V^T V = I$, and $\Sigma = \text{diag}(\sigma_1, \dots, \sigma_r)$

a_{11}		a_{1n}	$\begin{bmatrix} u_{11} & \dots \end{bmatrix}$	u_{1r}			-		- <i>T</i>
					$\left[\sigma_{1}\right]$		v_{11}	•••	v_{1r}
	•.	: =	:	:		•.		•_	:
a_{1n}		a_{nn}	:	:		·. σ.		•	:
		.				0 1	v_{n1}		\vdots v_{nr}
a_{mn}		$\begin{bmatrix} \vdots \\ a_{mn} \end{bmatrix}$	u_{m1}	u_{mr}			-		-

5 Derivatives

• The gradient of a function $f : \mathbf{R}^n \to \mathbf{R}$ with respect to a vector $\mathbf{v} \in \mathbf{R}^n$ is

$$\nabla f(\mathbf{v}) = \begin{bmatrix} \frac{\partial f}{\partial v_1} \\ \vdots \\ \frac{\partial f}{\partial v_n} \end{bmatrix} \in \mathbf{R}^n$$

The gradient of a vector-valued function $\mathbf{f}:\mathbf{R}^n\to\mathbf{R}^m$ is

$$\mathbf{f}(\mathbf{v}) = \begin{bmatrix} f_1(\mathbf{v}) \\ \vdots \\ f_m(\mathbf{v}) \end{bmatrix} \quad \Rightarrow \quad \nabla \mathbf{f}(\mathbf{v}) = \begin{bmatrix} \nabla f_1(\mathbf{v}) & \dots & \nabla f_m(\mathbf{v}) \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial v_1} & \dots & \frac{\partial f_m}{\partial v_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_1}{\partial v_n} & \dots & \frac{\partial f_m}{\partial v_n} \end{bmatrix} \in \mathbf{R}^{n \times m}$$

• Alternate notation: we sometimes want to work with rows of derivatives instead of columns Why? Because it can make vector-matrix derivatives look more like their scalar analogs. This motivates the notation

$$Df(\mathbf{v}) = \frac{\partial f}{\partial \mathbf{v}} = \nabla f(\mathbf{v})^T = \begin{bmatrix} \frac{\partial f}{\partial v_1} & \dots & \frac{\partial f}{\partial v_n} \end{bmatrix} \in \mathbf{R}^{1 \times n}$$
$$Df(\mathbf{v}) = \frac{\partial \mathbf{f}}{\partial \mathbf{v}} = \nabla \mathbf{f}(\mathbf{v})^T = \begin{bmatrix} \nabla f_1(\mathbf{v})^T \\ \vdots \\ \nabla f_m(\mathbf{v})^T \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial v_1} & \dots & \frac{\partial f_1}{\partial v_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial v_1} & \dots & \frac{\partial f_m}{\partial v_n} \end{bmatrix} \in \mathbf{R}^{m \times n}$$

In either case, $Df(\mathbf{v})$ is called the **Jacobian matrix** of \mathbf{f} with respect to \mathbf{v} .

• Chain rule. Let $\mathbf{f} : \mathbf{R}^p \to \mathbf{R}^m$, $\mathbf{g} : \mathbf{R}^n \to \mathbf{R}^p$ and $\mathbf{h} = \mathbf{f}(\mathbf{g}(\mathbf{x}))$ (so $\mathbf{h} : \mathbf{R}^n \to \mathbf{R}^m$). Then

$$\nabla \mathbf{h}(\mathbf{x}) = \nabla \mathbf{g}(\mathbf{x}) \nabla \mathbf{f}(\mathbf{g}(\mathbf{x})) \in \mathbf{R}^{n \times m}$$
$$D\mathbf{h}(\mathbf{x}) = D\mathbf{f}(\mathbf{g}(\mathbf{x})) D\mathbf{g}(\mathbf{x}) \in \mathbf{R}^{m \times n}$$

• The first-order Taylor expansion of $\mathbf{f}: \mathbf{R}^n \to \mathbf{R}^m$, for \mathbf{x} near \mathbf{x}_0 , is

$$\mathbf{f}(\mathbf{x}) \approx \mathbf{f}(\mathbf{x_0}) + \nabla \mathbf{f}(\mathbf{x_0})^T (\mathbf{x} - \mathbf{x_0})$$

• The Hessian matrix is a generalized second derivative. For $f : \mathbf{R}^n \to \mathbf{R}$,

$$\nabla^2 f(\mathbf{v}) = \frac{\partial^2 f}{\partial \mathbf{v}^2} = \begin{bmatrix} \frac{\partial^2 f}{\partial v_1^2} & \cdots & \frac{\partial^2 f}{\partial v_1 \partial v_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial v_n \partial v_1} & \cdots & \frac{\partial^2 f}{\partial v_n^2} \end{bmatrix} \in \mathbf{R}^{n \times n}$$

Note that the equivalence of cross-partials implies that the Hessian is symmetric.

• The second-order Taylor expansion of $\mathbf{f}: \mathbf{R}^n \to \mathbf{R}^m$, for \mathbf{x} near $\mathbf{x_0}$, is

$$\mathbf{f}(\mathbf{x}) \approx \mathbf{f}(\mathbf{x}_0) + \nabla \mathbf{f}(\mathbf{x}_0)^T (\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^T \nabla^2 \mathbf{f}(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0)$$

• Mean value theorem. If $f : \mathbf{R}^n \to \mathbf{R}$ is continuously differentiable, then for any $\mathbf{x}, \mathbf{y} \in \mathbf{R}^n$ there exists a $\lambda \in [0, 1]$ such that

$$f(\mathbf{y}) - f(\mathbf{x}) = \nabla f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y})^T (\mathbf{y} - \mathbf{x})$$

• Generalized mean value theorem. If $f : \mathbf{R}^n \to \mathbf{R}$ is twice continuously differentiable, then for any $\mathbf{x}, \mathbf{y} \in \mathbf{R}^n$ there exists a $\lambda \in [0, 1]$ such that

$$f(\mathbf{y}) - f(\mathbf{x}) = \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{1}{2} (\mathbf{y} - \mathbf{x})^T H(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y})(\mathbf{y} - \mathbf{x})$$

• Derivatives of quadratic forms. Let $f(\mathbf{v}) = \frac{1}{2}\mathbf{v}^T P \mathbf{v} + \mathbf{g}^T \mathbf{v}$, where $P \in \mathbf{S}_{++}^n$ and $\mathbf{g}, \mathbf{v} \in \mathbf{R}^n$. Then

$$\nabla f(\mathbf{v}) = P\mathbf{v} + \mathbf{g}$$
 and $\nabla^2 f(\mathbf{v}) = P$

• Derivative of matrix inverse. Let $A \in \mathbf{R}^{n \times n}$ be nonsingular and depend on a parameter t. Then

$$\frac{\mathrm{d}}{\mathrm{d}t}A^{-1} = -A^{-1}\left(\frac{\mathrm{d}}{\mathrm{d}t}A\right)A^{-1}$$