
Model-Based Estimation Notes

Lecturer: Mark Psiaki, Cornell MAE
Scribe: Kevin Kircher, Cornell MAE

These are class notes from MAE 6780, Model-Based Estimation, at Cornell University
in the spring of 2014. We consider the problem of estimating the parameters and states of
a stochastic dynamical system from noisy or incomplete measurements.

The general process for solving such a problem:

1. Use physics, geometry and kinematics to model the system

• encode dynamics in a differential or difference equation

• understand how model parameters influence measurements

• characterize model uncertainty

2. Analyze observability: assuming our sensors are perfectly accurate, can we uniquely
determine the states/parameters from our measurements?

3. If the system is observable, apply an estimation technique to approximate the states/parameters
based on the data. Also determine the accuracy of the estimate

4. Use the estimates to answer questions about the physical system

These notes cover step 3 and, to a lesser extent, step 2. The primary source is Prof. Mark
Psiaki’s lecture notes. The secondary source is Estimation with Applications to Tracking and
Navigation by Yaakov Bar-Shalom, X. Rong Li and Thiagalingam Kirubarajan.

1

http://gps.mae.cornell.edu//
http://kircher.mae.cornell.edu//


Contents

1 Parameter estimation basics 4
1.1 Fisher estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Bayesian estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Estimator precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Linear least squares parameter estimation 8
2.1 Single observation, Gaussian prior . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Multiple observations, no prior . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Nonlinear least squares parameter estimation 13
3.1 Numerical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Solution uniqueness and observability . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Covariance matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Stochastic linear dynamical systems 18
4.1 Continuous-time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Discrete-time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Pre-whitening colored noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 State estimation in linear Gaussian dynamical systems 23
5.1 The LG system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Definitions and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 The KF algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4 Some KF properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.5 KF derivation 1: MMSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.6 KF derivation 2: MAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.7 Tests of KF correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.8 KF initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.9 Model mismatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 The square-root information filter 40
6.1 The IF algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2 SRIF background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3 The SRIF algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7 Smoothing 49
7.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2 Covariance-based fixed interval smoothing . . . . . . . . . . . . . . . . . . . 50
7.3 Information-based fixed interval smoothing . . . . . . . . . . . . . . . . . . . 53

2



8 State estimation in stochastic nonlinear dynamical systems 56
8.1 Discretization of nonlinear differential equations . . . . . . . . . . . . . . . . 56
8.2 The extended Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.3 The iterated EKF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.4 The unscented Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
8.5 The particle filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3



1 Parameter estimation basics

Imagine you have a big vector of observations

zk =

z(1)
...

z(k)

 ∈ Rknz

where each z(i) ∈ Rnz is a realization of a random vector whose distribution has an unknown
parameter x ∈ Rnx . How would you use zk to estimate x? This section presents a few
techniques:

• maximum likelihood

• least squares

• maximum a posteriori

• minimum mean squared error

It also covers some metrics for quantifying “how good” an estimator is:

• error

• bias

• covariance

• mean squared error

1.1 Fisher estimation

• in Fisher estimation (named after the British statistician Ronald Fisher, 1890-1962),
we treat x as an unknown, deterministic constant

• the primary tool of Fisher estimation is the likelihood function p(zk|x), which mea-
sures how likely the observations are for a given parameter value

• the maximum likelihood estimator (MLE) of x is

x̂ML(zk) = arg max
x

p(zk|x)

• if the likelihood function can be separated according to

p(zk|x) = f1(g(zk),x)f2(zk)

then
x̂ML(zk) = arg max

x
p(zk|z) = arg max

x
f1(g(zk),x)

So f2(zk) does not affect the minimization of p(zk|x). In such cases, the MLE will
depend only on g(zk), which we call the sufficient statistic

4



• if each observation is modeled as a function of the parameter plus some measurement
noise,

z(i) = h(i,x) + w(i) i ∈ {1, . . . , k}
where E[w(i)] = 0 and cov(w(i)) = R for all i, then we can define the least squares
cost

CLS(x, zk) =
1

2

k∑
i=1

(
z(i)− h(i,x)

)T
R−1

(
z(i)− h(i,x)

)
which penalizes deviations of the observations from the deterministic model h(i,x).
The least squares estimator (LSE) of x minimizes this cost:

x̂LS(zk) = arg min
x
CLS(x, zk)

If h(i,x) = H(i)x for some matrices H(i) ∈ Rnz×nx , then this is called a linear least
squares problem.

• if the measurement noises w(i) are Gaussian and the measurement maps are linear,
then the MLE and LSE coincide

1.2 Bayesian estimation

• in Bayesian estimation (named after the British statistician Thomas Bayes, 1702-
1761), we treat x as a random variable. The a priori distribution p(x) encodes our
prior assumptions or knowledge about x.

• the primary tool of Bayesian estimation is the posterior distribution,

p(x|zk) =
p(zk|x)p(x)

p(zk)

where p(zk) can be (but rarely needs to be) calculated using the Law of Total Proba-
bility

• the maximum a posteriori estimator (MAPE) of x is

x̂MAP(zk) = arg max
x

p(x|zk)

• define the mean squared error cost

CMSE(x̂, zk) = E[(x̂− x)T (x̂− x)|zk]

then the minimum mean squared error estimator (MMSEE) of x is

x̂MMSE(zk) = arg min
x̂
CMSE(x̂, zk)

= E[x|zk]

• if the posterior distribution is Gaussian, then the MAP and MSE agree. This is because
the mean and mode of a Gaussian pdf coincide.

5



1.3 Estimator precision

• the estimation error of an estimate x̂ of x is

x̃ = x− x̂

• the bias of x̂ is
bias(x̂) = E[x̃]

x̂ is called unbiased if

bias(x̂) = 0

⇐⇒ E[x̂] = x (Fisher)

⇐⇒ E[x̂] = E[x] (Bayes)

x̂ is called asymptotically unbiased if it’s unbiased in the limit k →∞

• the covariance of x̂ is
cov(x̂) = E[x̃x̃T ]− E[x̃] E[x̃]T

• the mean squared error (MSE) of x̂ is

MSE(x̂) = E[x̃x̃T ]

For an unbiased estimator, MSE(x̂) = cov(x̂).

• x̂ is consistent if
lim
k→∞

MSE(x̂) = 0

“the estimator improves with the number of observations, and becomes perfect in the
MSE sense as k →∞”

• in Fisher estimation, the Fisher information matrix (FIM) is

Jf = −E[
∂2

∂x2
ln p(zk|x)

∣∣∣
x
]

= E[
( ∂
∂x

ln p(zk|x)
∣∣∣
x

)T ( ∂
∂x

ln p(zk|x)
∣∣∣
x

)
]

where x is the true (deterministic) parameter value, and expectation is taken over the
randomness in zk.

• in Bayesian estimation, the FIM is

Jb = −E[
∂2

∂x2
ln p(x, zk)]

= E[
( ∂
∂x

ln p(zk|x)
)T ( ∂

∂x
ln p(zk|x)

)
]

where expectation is taken over the randomness in both zk and in x, using the prior
distribution p(x).

6



• the Cramér-Rao lower bound (CRLB) of an unbiased estimator is

cov(x̂) � J−1

where J = Jf or J = Jb, depending on the estimation approach. There’s a different
version of the CRLB for biased estimators.

• an estimator that achieves the CRLB is called efficient

7



2 Linear least squares parameter estimation

Consider the problem of estimating the parameter x ∈ Rnx based on the measurement model

z(i) = H(i)x + w(i) ∈ Rnz

where, by assumption, w(i) ∼ N (0, R) and w(i) ⊥⊥ x for all i.
This section solves this problem in the case of a single observation with a Gaussian prior

on x, and then in the case of multiple observations with no prior. We solve the case of
multiple observations by two approaches: batch and recursive.

2.1 Single observation, Gaussian prior

In the case of a single observation z, the measurement model is

z = Hx + w ∈ Rnz

where w ∼ N (0, R), and w ⊥⊥ x.
We take the Bayesian approach, assuming a Gaussian prior distribution p(x) = N (x; x̄, Pxx),

and derive the MAPE.

• the expectation and covariances of the measurement are

E[z] ≡ z̄ = Hx̄

cov(x, z) ≡ Pxz = PxxH
T

cov(z, z) ≡ Pzz = HPxxH
T +R

• the MAPE is
x̂MAP(z) = x̄ + PxzP

−1
zz (z− z̄)

“the a priori mean plus a feedback term, based on the difference between the mea-
surement and its expectation”

• the MAPE is unbiased with cov(x̂MAP(z)) ≡ Px̂x̂, where

Px̂x̂ = Pxx − PxzP−1
zz P

T
xz

• NB. For the problem z = h(x) + w, where w and x are general random vectors, not
necessarily Gaussian, the estimator

x̂(z) = x̄ + PxzP
−1
zz (z− z̄)

Px̂x̂ = Pxx − PxzP−1
zz P

T
xz

(1)

is the linear minimum mean-square error (LMMSE) estimator of x, i.e. the best
unbiased estimator (in the MSE sense) of the form

x̂(z) = Az + b

for some A ∈ Rnx×nz and b ∈ Rnx . The LMMSE equations (1) are called the funda-
mental equations of linear estimation.

8



2.2 Multiple observations, no prior

In the case of multiple observations z(1), . . . , z(k) ∈ Rnz , the measurement model is

z(i) = H(i)x + w(i) ∈ Rnz

Assume that w(i) ∼ N (0, R(i)), w(i) ⊥⊥ x for all i, and E[w(i)w(j)T ] = 0 for all i 6= j.
We’ll use the Fisher approach, assuming no prior information about x, and derive the

MLE. Since the noise is Gaussian and the measurement map is linear, the MLE is also the
LSE.

Define the cost

CLS(k) =
1

2

k∑
i=1

(
z(i)−H(i)x

)T
R(i)−1

(
z(i)−H(i)x

)
and the stacked vector of observations

zk =

z(1)
...

z(k)

 ∈ Rknz

The likelihood of zk for a given x is

p(zk|x) = ce−CLS(k)

⇐⇒ CLS(k) = ln c− ln p(zk|x))

where c is independent of x.
Maximizing the likelihood is therefore equivalent to minimizing CLS(k):

x̂ML(zk) = arg max
x

p(zk|x) = arg min
x
CLS(k) (2)

We’ll solve problem (2) by two approaches: batch, where we lift the problem into a higher
dimension and solve it on one shot, and recursive, where we iteratively solve k subproblems.

2.2.1 Batch solution

Define the lifted matrices

Hk =

H(1)
...

H(k)

 ∈ Rknz×nx , wk =

w(1)
...

w(k)

 ∈ Rknz , Rk =

R(1)
. . .

R(k)

 ∈ Rknz×knz

Then
zk = Hkx + wk

9



where wk ∼ N (0, Rk), and

CLS(k) =
1

2

(
zk −Hkx

)T
(Rk)−1

(
zk −Hkx

)
Minimizing CLS(k) gives

x̂ML(zk) =
(
(Hk)T (Rk)−1Hk

)−1
(Hk)T (Rk)−1zk

The MLE is unbiased, with cov(x̂ML(zk)) ≡ Px̂x̂, where

Px̂x̂ =
(
(Hk)T (Rk)−1Hk

)−1

NB. To ensure that (Hk)T (Rk)−1Hk exists and is invertible, we require that Rk � 0 and
that Hk have full column rank, i.e. rank(Hk) = nx.

2.2.2 On computing
(
(Hk)T (Rk)−1Hk

)−1

Suppose you’re given an Hk with goofy units – some measurements are in microns, others
are in parsecs. Then

(
(Hk)T (Rk)−1Hk

)
will probably be ill-conditioned, i.e. the conditioning

number

cond
(
(Hk)T (Rk)−1Hk

)
=
λmax

λmin

will be large. Here λmax and λmin are the largest and smallest eigenvalues of
(
(Hk)T (Rk)−1Hk

)
,

respectively.
Inverting an ill-conditioned matrix is a bad idea, because only

∼ 16− log10 cond
(
(Hk)T (Rk)−1Hk

)
useful digits are retained in the calculation (for a computer with 16-digit precision).

Square root methods – Cholesky and QR factorization – avoid these difficulties.

1. Cholesky factorization

Since Rk � 0, a Cholesky factorization Ra exists, where Ra is upper triangular and
nonsingular and RT

aRa = Rk. Let R−Ta = (RT
a )−1, and define

za = R−Ta zk, Ha = R−Ta Hk, wa = R−Ta wk

Under this transformation, the measurement model and cost become

za = Hax + wa

CLS(k) = (za −Hax)T (za −Hax)

so we’ve exchanged our weighted LS problem for an unweighted one.

10



2. QR factorization

The QR factorization of Ha is

Ha = Qb

[
Rb

0

]
where Qb is orthonormal and Rb ∈ Rnx×nx is upper triangular and, because Hk is full
column rank, also invertible. Define

QT
b za =

[
zb1
zb2

]
, QT

b wa =

[
wb1

wb2

]
then the measurement model and cost become[

zb1
zb2

]
=

[
Rb

0

]
x +

[
wb1

wb2

]
CLS(k) = (zb1 −Rbx)T (zb1 −Rbx) + zTb2zb2

Minimizing CLS(k) gives the MLE and its covariance,

x̂ML(zk) = R−1
b zk

Px̂x̂ = R−1
b R−Tb

2.2.3 Recursive solution

Suppose you’ve taken k observations and used them to compute the MLE of x and its
covariance. Could you incorporate the incremental observation

z(k + 1) = H(k + 1)x + w(k + 1)

without reprocessing the entire batch of data? The answer, unsurprisingly, is yes. There are
simple update formulas for the estimator and its covariance.

For clarity, denote the MLE given k observations by x̂ML(k, zk)), and its error covariance
by P̂ (k, zk) ≡ cov(x̂ML(k, zk)). Our goal is to write x̂ML(k + 1, zk+1) and P̂ (k + 1, zk+1) in
terms of x̂ML(k, zk) and P̂ (k, zk).

The augmented vector of observations is

zk+1 =


z(1)

...
z(k)

z(k + 1)

 =

[
zk

z(k + 1)

]

Similarly,

Hk+1 =

[
Hk

H(k + 1)

]
, wk+1 =

[
wk

w(k + 1)

]
, Rk+1 =

[
Rk

R(k + 1)

]

11



With these definitions (and after a lot of algebra), the cost becomes

CLS(k + 1) = CLS(k) + (z(k + 1)−H(k + 1)x)TR(k + 1)−1(z(k + 1)−H(k + 1)x)

= . . .

= (x− x̂ML(k, zk))T P̂ (k, zk)−1(x− x̂ML(k, zk))

+ (z(k + 1)−H(k + 1)x)TR(k + 1)−1(z(k + 1)−H(k + 1)x) + c

where c is constant with respect to x.
Minimizing CLS(k + 1) gives the estimator update formula

x̂ML(k + 1, zk+1) = x̂ML(k, zk) +W (k + 1)
(
z(k + 1)−H(k + 1)x̂ML(k, zk)

)
The MLE remains unbiased, and the covariance update formula is given by either of

P̂ (k + 1, zk+1) =
(
P̂ (k, zk)−1 +H(k + 1)TR(k + 1)−1H(k + 1)

)−1

=
(
I −W (k + 1)H(k + 1)

)
P̂ (k, zk)

The correction gain matrix in the above formulas is given by either of

W (k + 1) = P̂ (k, zk)H(k + 1)T
(
H(k + 1)P̂ (k, zk)H(k + 1)T +R(k + 1)

)−1

= P̂ (k + 1, zk+1)H(k + 1)TR(k + 1)−1

12



3 Nonlinear least squares parameter estimation

Consider the problem of estimating the parameter x ∈ Rnx based on the measurement model

z̃ = h̃(x) + w̃ ∈ Rnz

where, by assumption, w̃ ∼ N (0, R) and w̃ ⊥⊥ x. (Why the tildes? Because we’re going to
transform the problem shortly.)

Real estimation problems are almost always overdetermined, meaning nz > nx. In
overdetermined systems, no x will ever satisfy all the nz equations in z̃ = h̃(x) exactly, so
we need to choose an x that, on average, satisfies as many equations as possible, as closely
as possible.

With that in mind, we define the nonlinear weighted least squares cost

CNLS(x) =
1

2

(
z̃− h̃(x)

)T
R−1

(
z̃− h̃(x)

)
Since R � 0, CNLS(x) is nonnegative for all x and zero iff z̃ = h̃(x). This suggests that
minimizing CNLS(x) should give us a good estimate of x.

The first step in solving a weighted least squares problem is to reformulate it as an
unweighted least squares cost by Cholesky factorization as in Section 2.2.2. Let RT

aRa = R
and R−Ta = (R−1

a )T . Under the transformation z = R−Ta z̃, h(x) = R−Ta h̃(x), and w = R−Ta w̃,
the measurement model becomes

z = h(x) + w ∈ Rnz

where w ∼ N (0, Inz) and w ⊥⊥ x. The transformed cost is now unweighted:

CNLS(x) =
1

2

(
z− h(x)

)T (
z− h(x)

)
and the NLS estimator is

x̂NLS(z) = arg min
x
CNLS(x)

3.1 Numerical solution

The first-order condition (FOC)( ∂

∂x
CNLS(x)

)T ∣∣
x̂NLS(z)

= 0

is necessary (but not sufficient) for the optimality of x̂NLS(z).
The Jacobian of CNLS(x) is

∂

∂x
CNLS(x) = −

(
z− h(x)

)T ∂h

∂x

Let D(x) = ∂h
∂x

and f(x) = −D(x)T (z− h(x)). Then the FOC is

f(x̂NLS(z)) = 0

which is a nonlinear root-finding problem.

13



3.1.1 Newton’s method

The go-to algorithm for nonlinear root-finding problems is Newton’s method, where we make
an initial guess xg, linearize f(x̂NLS(z)) about xg, solve the corresponding linear problem,
update xg and iterate. Assuming the initial guess is good, Newton’s method will converge
to the true solution, i.e. xg → x̂NLS(z).

The linearization of f(x̂NLS(z)) about xg is

f(x̂NLS(z)) ≈ f(xg) +
∂f

∂x

∣∣∣
xg

(
x̂NLS(z)− xg

)
⇐⇒ f(xg + ∆x) ≈ f(xg) +

∂f

∂x

∣∣∣
xg

∆x

where ∆x = x̂NLS(z)− xg. Combining the FOC and Taylor approximation gives

∆x = −
( ∂f

∂x

∣∣∣
xg

)−1

f(xg)

so the update equation is

xg, new = xg + ∆x = xg −
( ∂f

∂x

∣∣∣
xg

)−1

f(xg)

In the NLS problem,

∂f

∂x
=

∂

∂x

(
−D(x)T (z− h(x))

)
= − ∂

∂x

(∂h

∂x

T

(z− h(x))
)

= −∂
2h

∂x2

T (
z− h(x)

)
+
∂h

∂x

T ∂h

∂x
= −H(x)T

(
z− h(x)

)
+D(x)TD(x)

where H(x) = ∂2h
∂x2 is the Hessian of h(x).

The update equation is therefore

xg, new = xg + ∆x = xg −
( ∂f

∂x

∣∣∣
xg

)−1

f(xg)

= xg +
[
−H(xg)T

(
z− h(xg)

)
+D(xg)TD(xg)

]−1

D(xg)T
(
z− h(xg)

)
3.1.2 The Gauss-Newton method

Newton’s method is powerful and general. In the neighborhood of the true solution, it
converges extremely quickly. However, Newton’s method poses two difficulties for practical
implementation.

14



1. The Hessian H(x) = ∂2h
∂x2 is costly to compute, and may lose its positive definiteness

due to roundoff error.

2. For a bad initial guess, Newton’s method may fail to converge to the global optimum.

The second problem is a fundamental difficulty of global optimization; see Section 3.2
for details. The first problem is more easily dealt with; Gauss’s solution was to make two
changes to Newton’s method.

1. Ignore the term
−H(xg)

(
z− h(xg)

)
when computing xg, new.

This is a plausible thing to do, since in the neighborhood of the true solution x̂NLS(z),
the term z − h(xg)) is small. Why? Because x̂NLS(z), the minimizer of CNLS(x), was
specifically designed to make z− h(x̂NLS(z)) as small as possible.

2. Scale ∆x in the update equation by a factor α ∈ (0, 1].

Here α is chosen such that each iteration incurs a lower cost, i.e.

CNLS(xg, new) < CNLS(xg)

With these modifications, the Gauss-Newton update equation is

xg, new = xg + α
[
D(xg)TD(xg)

]−1

D(xg)T
(
z− h(xg)

)
NB. The best practice for calculating the inverse matrix square (D(xg)TD(xg))−1 is to

use Cholesky and QR factorizations as in Section 2.2.2.
How to choose α in the Gauss-Newton algorithm? There’s an optimal but computation-

ally intensive method (see Gill, Murray and Wright: “optimal line searches”). A simpler,
effective approach is to start a loop with α = 1 and keep halving α until it yields a cost
decrease.

3.1.3 The Levenberg-Marquardt method

Another modification of Newton’s method is the Levenberg-Marquardt method. It’s similar
to the Gauss-Newton method, except rather than scaling ∆xg by a parameter α, we insert
a matrix λI into the matrix inversion.

The Levenberg-Marquardt update equation is

xg, new = xg +
[
D(xg)TD(xg) + λI

]−1

D(xg)T
(
z− h(xg)

)
If α = 1 and λ = 0, then the Gauss-Newton and Levenberg-Marquardt update equations
agree.

15



The challenge of implementing the Levenberg-Marquardt method is deciding what λ to
use. It can be shown that there always exists a λ > 0 (possibly very large) that yields a cost
decrease, but finding a good λ is not as easy as finding a good α in Gauss-Newton. There are
sophisticated rules for updating λ (see Gill, Murray and Wright “trust region” for details).

3.2 Solution uniqueness and observability

The nonlinear least squares estimation problem is called observable if the problem

x̂NLS(z) = arg min
x
CNLS(x) = arg min

x

1

2
(z− h(x))T (z− h(x))

has a unique global minimum. Since h(x) is an arbitrary nonlinear function of x, CNLS(x)
is not generally convex and the NLS problem is not generally observable.

In unobservable problems, the quality of the numerical solution depends strongly on the
initial guess. The art of NLS batch estimation often boils down to using physics and intuition
to arrive at a “good” initial guess: one that will result, with high probability, in convergence
to the global minimum.

In unobservable systems, we can still verify that the result of our root-finding algorithm
is locally unique. A local minimum x̂ of CNLS(x) is called locally unique if there exists an
ε > 0 such that for all x ∈ {x | ‖x− x̂‖ < ε}, CNLS(x) > CNLS(x̂). In English: every point
in the punctured ε-ball centered at x̂ incurs a cost that’s strictly greater than the cost of x̂.

A sufficient condition for the local uniqueness of x̂ is that the Hessian of CNLS(x) be
positive definite:

∂2

∂x2
CNLS(x)

∣∣∣
x̂
� 0 ⇒ x̂ locally unique

Expanding this condition,

∂2

∂x2
CNLS(x) =

∂2

∂x2

1

2
(z− h(x))T (z− h(x))

= −H(x)(z− h(x)) +D(x)TD(x)

where D(x) and H(x) are the Jacobian and Hessian of h(x), respectively. So

−H(x̂)(z− h(x̂)) +D(x̂)TD(x̂) � 0 ⇒ x̂ locally unique (3)

To rigorously determine the local uniqueness of x̂, we need to check condition (3). However,
H(x̂) is costly to compute. In many practical cases, we make the simplifying assumption
that the term H(x̂)(z−h(x̂)) is negligible. This assumption gives the “first-cut” uniqueness
check

D(x̂)TD(x̂) � 0 ⇐⇒ rank(D(x̂)) = nx ⇒ x̂ locally unique

We can justify neglecting the H(x̂)(z− h(x̂)) term in two ways:

1. At a local minimum x̂, z − h(x̂) should be small. This is the same reason we neglect
this term in the Gauss-Newton method.

16



2. If D(x̂)TD(x̂) � 0, the system likely has problems for other reasons. This is a good
check to do regardless.

3.3 Covariance matrix

Given a unique global minimum x̂NLS(z) of CNLS(x), the estimator error covariance is

Px̂x̂ = E[(x− x̂NLS(z))(x− x̂NLS(z))T ]

≡ J−1

≈
[
D(x̂NLS(z))TD(x̂NLS(z))

]−1

where D(x̂NLS(z))TD(x̂NLS(z)) approximates J , the FIM. The inverse of the matrix square
is best calculated using QR factorization as in Section 2.2.2.

17



4 Stochastic linear dynamical systems

A quick recap of stochastic linear systems follows, as a precursor to state estimation.

4.1 Continuous-time

Consider the continuous-time linear stochastic dynamical system

ẋ(t) = A(t)x(t) +B(t)u(t) +D(t)ṽ(t)

z(t) = C(t)x(t) + w̃(t)
(4)

where

• x(t) ∈ Rnx is the state

• u(t) ∈ Rnu is the input or control

• ṽ(t) ∈ Rnv is the disturbance or process noise

• z(t) ∈ Rnz is the output or measurement

• w̃(t) ∈ Rnz is the noise or measurement noise

4.1.1 Solution

Given an initial condition x(t0), the solution to (4) is

x(t) = F (t, t0)x(t0) +

∫ t

t0

F (t, τ)
[
B(τ)u(τ) +D(τ)ṽ(τ)

]
dτ

where F (t, τ) is the state transition matrix (STM) from τ to t. The STM solves the
matrix initial value problem (IVP)

∂

∂t
F (t, τ) = A(t)F (t, τ)

F (τ, τ) = I
(5)

Solving this IVP is the only way to produce the STM for the general, time-varying system
(4).

Properties of the STM:

F (t2, t0) = F (t1, t0)F (t2, t1)

F (t, t0) = F (t0, t)
−1

In the special case of time-invariant open-loop dynamics, the STM is the matrix exponen-
tial:

A(t) ≡ A for all t ∈ [0, τ ] ⇒ F (t, τ) = F (t− τ, 0) = eA(t−τ)

which can be calculated by series expansion, Laplace transform, or a dozen other ways
(expm(A) in Matlab).

18



4.1.2 Mean and covariance of the state

Consider system (4), driven by (non-stationary, non-zero-mean) white process noise,

E[ṽ(t)] = ¯̃v(t)

E[(ṽ(t)− ¯̃v(t))(ṽ(τ)− ¯̃v(τ))T ] = V (t)δ(t− τ)

The mean of the state evolves according to

x̄(t) = E[x(t)]

= F (t, t0)x̄(t0) +

∫ t

t0

F (t, τ)
[
B(τ)u(τ) +D(τ)¯̃v(τ)

]
dτ

⇒ ˙̄x(t) = A(t)x̄(t) +B(t)u(t) +D(t)¯̃v(t)

The covariance of the state evolves according to

Pxx(t) = E[(x(t)− x̄(t))(x(t)− x̄(t))T ]

= F (t, t0)Pxx(t, t0)F (t, t0)T +

∫ t

t0

F (t, τ)D(τ)V (τ)D(τ)TF (t, τ)dτ

⇒ Ṗxx(t) = A(t)Pxx(t) + Pxx(t)A(t)T +D(t)V (t)D(t)T

In the special case of

1. stable unforced dynamics: λi < 0 for all eigenvalues λi of A

2. time-invariant dynamics: A(t) ≡ A, D(t) ≡ D, V (t) ≡ V

the state covariance will tend to the steady-state value P ss
xx as t → ∞. That value is given

by the Lyapunov equation
AP ss

xx + P ss
xxA

T +DVDT = 0

which is solvable in Matlab by P ss
xx = lyap(A,DV DT ).

4.2 Discrete-time

4.2.1 Discretization of dynamics

If the control u(t) in (4) is a zero-order hold (staircase), i.e. u(t) = u(tk) for all t ∈
[tk, tk+1), then we can develop an equivalent discrete-time model. For simplicity, let x(tk) ≡
x(k), u(tk) ≡ u(k), v(tk) ≡ v(k), F (tk+1, tk) ≡ F (k), and G(tk+1, tk) ≡ G(k). Then the
discrete-time dynamics are

x(k + 1) = F (k)x(k) +G(k)u(k) + v(k)

19



where

G(k) =

∫ tk+1

tk

F (tk+1, τ)B(τ)dτ

E[v(k)] = v̄(k) =

∫ tk+1

tk

F (tk+1, τ)D(τ)¯̃v(τ)dτ

E[(v(k)− v̄(k))(v(j)− v̄(j))T ] = δjkQ(k)

= δjk

∫ tk+1

tk

F (tk+1, τ)D(τ)V (τ)D(τ)TF (tk+1, τ)Tdτ

and F (k) is the STM from tk to tk+1.
For a general time-varying stochastic system, the process of discretization involves cal-

culating the above integrals. For real-time control, that means online numerical integration,
for instance with Runge-Kutta methods. This may or may not be feasible, depending on the
application and the available computing power.

In the special case of

1. constant step sizes: tk+1 − tk = ∆t for all k

2. time-invariant dynamics in the underlying continuous-time system: A(t) ≡ A, B(t) ≡
B, D(t) ≡ D, and V (t) ≡ V for all t

the corresponding discrete-time system is also time-invariant:

F (k) ≡ F = eA∆t

G(k) ≡ G =

∫ ∆t

0

eA(∆t−τ)Bdτ

Q(k) ≡ Q =

∫ ∆t

0

eA(∆t−τ)DVDT eA
T (∆t−τ)dτ

These integrals can be done offline, which reduces the real-time calculations to matrix alge-
bra.

4.2.2 Discretization of observations

The measurements in (4) can also be discretized, although sampling data from a continuous-
time sensor requires an anti-aliasing filter.

Consider the case of zero-mean, continuous white sensor noise:

E[w̃(t)] = 0

E[w̃(t)w̃(τ)T ] = R̃(t)δ(t− τ)

20



A good anti-aliasing filter produces (approximately) a noise sequence

w(k) =
1

2∆t

∫ tk+∆t

tk−∆t

w̃(τ)dτ

⇒ E[w(k)w(k)T ] ≈ 1

2∆t
R̃(tk) = R(k)

which gives the discrete-time measurement model

z(k) = H(k)x(k) + w(k)

where

H(k) =
1

∆t

∫ tk

tk−1

F (tk, tk−1)C(t)dt

4.2.3 Solution

Consider general discrete-time linear stochastic system

x(k + 1) = F (k)x(k) +G(k)u(k) + v(k)

z(k) = H(k)x(k) + w(k)
(6)

The solution to (6) is

x(k) = F (k − 1)F (k − 2) · · ·F (0)x(0) +
k−1∑
i=0

F (k − 1)F (k − 2) · · ·F (i+ 1)(G(i)u(i) + v(i))

If v(k), w(k) and x(0) are mutually independent and v(k) and w(k) are white, then the
mean and covariance of the state evolve according to

x̄(k + 1) = F (k)x̄(k) +G(k)u(k) + v̄(k)

Pxx(k + 1) = F (k)Pxx(k)F (k)T +Q(k)

In the special case of

1. time-invariant dynamics: F (k) ≡ F and Q(k) ≡ Q for all k

2. stable unforced dynamics: |λi| < 1 for all eigenvalues λi of F

the state covariance will tend to the steady-state value P ss
xx as k → ∞. That value is given

by the discrete-time Lyapunov equation

P ss
xx = FP ss

xxF
T +Q

which is solvable in Matlab by P ss
xx = dylap(F,Q).

21



4.3 Pre-whitening colored noise

If ṽ(t) is white noise, then the state x(t) is Markovian and the above results (both continuous-
and discrete-time) hold. If ṽ(t) is not white noise, then they generally do not. In the case
of colored noise, the typical approach is to add some clever variables to x(t) to produce a
system driven by a different noise sequence, now white. This process of “Markov-ization” is
one application of state augmentation.

Consider system (4) driven by stationary, colored noise with autocorrelation

E[ṽ(t)ṽ(τ)T ] = Rṽṽ(t− τ)

and power spectral density

Sṽṽ(ω) =

∫ ∞
−∞

Rṽṽ(τ)e−iωτdτ

Suppose that by studying the structure of ṽ(t), we can derive1 the linear model

˙̃v(t) = C(t)ṽ(t) + q(t)

where q(t) is stationary white noise with autocorrelation

E[q(t)q(τ)T ] = V δ(t− τ)

Then the state of the augmented system[
ẋ(t)
˙̃v(t)

]
=

[
A(t) D(t)

0 C(t)

] [
x(t)
ṽ(t)

]
+

[
B(t)

0

]
u(t) +

[
0
I

]
q(t)

is a Markov process.

1How to derive such a model? See spectral factorization in Bar-Shalom, e.g. the example on p. 193-4.

22



5 State estimation in linear Gaussian dynamical sys-

tems

So far, these notes have dealt with static parameter estimation. In this section, we shift our
focus to estimating the state of a linear dynamical system.

There are three generic state estimation problems in dynamical systems:

1. filtering: given observations zk, find an estimator x̂(k|zk) of the current state x(k)

2. smoothing: given observations zk, find an estimator x̂(j|zk) of the state x(j) at some
previous time j < k (a non-causal problem)

3. prediction: given observations zk, find an estimator xk(j|zk) of the state x(j) at some
future time j > k

In general, prediction is a harder problem than filtering, which is a harder problem than
smoothing. In terms of algorithm performance, smoothing > filtering > prediction.

5.1 The LG system

Consider the discrete-time stochastic linear time-varying dynamical system

x(k + 1) = F (k)x(k) +G(k)u(k) + Γ(k)v(k), k ∈ T0

z(k) = H(k)x(k) + w(k), k ∈ T1

where T0 = {0, 1, 2, 3, . . . , N − 1} and T1 = {1, 2, 3, . . . , N}.
Let the process and measurement noise sequences be zero-mean, Gaussian and white:

E[v(k)] = 0

E[v(k)v(j)T ] = δjkQ(k) for all j, k ∈ T0

E[w(k)] = 0

E[w(k)w(j)T ] = δjkR(k) for all j, k ∈ T1

Let the initial state x(0) be Gaussian with known mean x̂(0) and covariance P (0):

E[x(0)] = x̂(0)

E[(x(0)− x̂(0))(x(0)− x̂(0)T )] = P (0)

Finally, let all the random variables be mutually uncorrelated:

E[w(k)v(j)T ] = 0 for all j ∈ T0, k ∈ T1

E[w(k)(x(0)− x̂(0))T ] = 0 for all k ∈ T1

E[v(k)(x(0)− x̂(0))T ] = 0 for all k ∈ T0

This is called the linear Gaussian (LG) system: linear dynamics, Gaussian randomness. It’s
an extremely common model because it’s

23



1. tractable: linear systems and Gaussian random variables are the easiest dynamical
systems and random variables to work with

2. broadly applicable: nonlinear systems can be linearized, and the CLT justifies treat-
ing many (not all, but many) random variables as Gaussian

Since linear transformation preserves normality, the LG system is a Gauss-Markov process.
The optimal MMSE and MAP estimator for the LG system is the Kalman filter (KF).
The KF is a recursive algorithm that uses feedback on the measurement prediction error to
continually update the state estimate.

5.2 Definitions and notation

For each of the basic quantities in the Kalman filter, there are a few different notations used
in the estimation literature. These notes will use the notation on the right-hand side.

• current estimate

E[x(k)|zk] ≡ x̂(k|zk) ≡ x̂(k|k) ≡ x̂(k)

• covariance of current estimate

E[(x(k)− x̂(k|zk))(x(k)− x̂(k|zk))T | zk]
≡ P (k|zk) ≡ P (k|k) ≡ P (k)

• predicted state

E[x(k + 1)|zk] ≡ x̂(k + 1|zk) ≡ x̂(k + 1|k) ≡ x̄(k + 1)

• covariance of predicted state

E[(x(k + 1)− x̂(k + 1|zk))(x(k + 1)− x̂(k + 1|zk))T | zk]
≡ P (k + 1|zk) ≡ P (k + 1|k) ≡ P̄ (k + 1)

• predicted measurement

E[z(k + 1)|zk] ≡ ẑ(k + 1|zk) ≡ ẑ(k + 1|k) ≡ z̄(k + 1)

• covariance of predicted measurement

E[(z(k + 1)− ẑ(k + 1|zk))(z(k + 1)− ẑ(k + 1|zk))T | zk]
≡ Pzz(k + 1|zk) ≡ Pzz(k + 1|k) ≡ P̄zz(k + 1)

• covariance between predicted state and predicted measurement

E[(x(k + 1)− x̂(k + 1|zk))(z(k + 1)− ẑ(k + 1|zk))T | zk]
≡ Pxz(k + 1|zk) ≡ Pxz(k + 1|k) ≡ P̄xz(k + 1)

24



5.3 The KF algorithm

Given the mean x̂(0) and covariance P (0) of the initial state, the KF algorithm is

1. set k = 0

2. dynamic propagation

(a) predict the next state

x̄(k + 1) = F (k)x̂(k) +G(k)u(k)

(b) calculate the covariance of this prediction

P̄ (k + 1) = F (k)P (k)F (k)T + Γ(k)Q(k)Γ(k)T

3. measurement update

(a) calculate the measurement error covariance

P̄zz(k + 1) ≡ S(k + 1) = H(k + 1)P̄ (k + 1)H(k + 1)T +R(k + 1)

(b) calculate the filter gain

W (k + 1) = P̄ (k + 1)H(k + 1)TS(k + 1)−1

(c) measure z(k + 1) and calculate the innovation

ν(k + 1) = z(k + 1)−H(k + 1)x̄(k + 1)

(d) update the state estimate

x̂(k + 1) = x̄(k + 1) +W (k + 1)ν(k + 1)

(e) update the state estimate error covariance

P (k + 1) = P̄ (k + 1)−W (k + 1)S(k + 1)W (k + 1)T

4. increment k and return to step 2

Note that P̄ (k+1), S(k+1), W (k+1) and P (k+1) depend only on P (0) and the system
matrices, so they can be calculated offline.

25



5.3.1 Interpretation of the filter gain

Note that the filter gain

W (k + 1) = P̄ (k + 1)H(k + 1)S(k + 1)−1

= P̄ (k + 1)H(k + 1)
[
H(k + 1)P̄ (k + 1)H(k + 1)T +R(k + 1)

]−1

is “small” (in some matrix sense) if the covariance of the predicted state is “small.” Inter-
pretation: if the state prediction is very accurate, then the estimator update doesn’t change
much.

On the other hand, W (k + 1) is large if R(k + 1), the covariance of the measurement
noise, is small (meaning its inverse is large). Interpretation: if the measurements are very
accurate, then the estimator update makes a big change.

The idea here is that the filter gain weights the estimator update based on the relative
accuracies of the estimator and the measurements.

5.3.2 Alternate formulas

There are a couple of alternate formulas for the estimator error covariance update:

P (k + 1) =
[
P̄ (k + 1)−1 +H(k + 1)TR(k + 1)−1H(k + 1)

]−1

=
[
I −W (k + 1)H(k + 1)

]
P̄ (k + 1)

[
I −W (k + 1)H(k + 1)

]T
+W (k + 1)R(k + 1)W (k + 1)T

These are useful for numerically stable covariance updates when the measurement is very
accurate. In that case, the formula given in the KF algorithm,

P (k + 1) = P̄ (k + 1)−W (k + 1)S(k + 1)W (k + 1)T

suffers from roundoff error because W (k + 1)S(k + 1)W (k + 1)T ≈ P̄ (k + 1).
There’s also an alternate formula for the gain matrix,

W (k + 1) = P (k + 1)H(k + 1)TR(k + 1)−1

which avoids inverting S(k + 1).

5.4 Some KF properties

5.4.1 Error stability

If v(k) ≡ 0 for all k ∈ T0 and w(k) ≡ 0 for all k ∈ T1, and if the LG system is detectable,
then the estimation error is BIBO stable.

To see this, define the estimation error e(k) = x(k) − x̂(k). Then the error dynamics
are e(k + 1) =

[
I −W (k + 1)H(k + 1)

]
F (k)e(k). We can show the stability of the error

dynamics using the Lyapunov function V (k, e(k)) = e(k)TP (k)−1e(k).

26



5.4.2 Separation principle

If the LG system is detectable, and if the control law u(k) = C(k)x(k) stabilizes the closed-
loop system assuming perfect state information, then the control law u(k) = C(k)x̂(k)
stabilizes the Kalman-filtered closed-loop system.

To see this, define the augmented state[
x(k)
e(k)

]
=

[
I 0
I −I

] [
x(k)
x̂(k)

]
then take v(k) ≡ 0 for all k ∈ T0 and w(k) ≡ 0 for all k ∈ T1 and show that the augmented
dynamics are stable.

This is an important result, because it allows us to tackle the problems of estimation and
controller design independently.

5.4.3 Matrix Riccati equation and steady-state solution

Assuming everything but P̄ (k + 1) is known, the covariance update equation

P̄ (k + 1) = F (k)
[
P̄ (k)− P̄ (k)H(k)T

(
H(k)P̄ (k)H(k)T +R(k)

)−1
H(k)P̄ (k)

]
F (k)T

+ Γ(k)Q(k)Γ(k)T

is a dynamic difference equation for the evolution of P̄ (k + 1) in terms of P̄ (k). It’s
quadratic in P̄ (k). Any such difference or differential equation that contains both con-
stant and quadratic terms in the variable is called a Riccati equation, named after the
Italian mathematician Jacopo Riccati (1676 - 1754).

In the special case of

• time-invariance, F (k) ≡ F, Γ(k) ≡ Γ, H(k) ≡ H, Q(k) ≡ Q, R(k) ≡ R for all k

• (F,H) completely observable and (F,Γ) completely controllable

the estimator covariance P̄ (k) tends to a steady-state value P̄ss as k →∞. P̄ss satisfies the
discrete-time algebraic Riccati equation

P̄ss = F
[
P̄ss − P̄ssH

T
(
HP̄ssH

T +R
)−1

HP̄ss

]
F T + ΓQΓT

which can be solved accurately and efficiently using Matlab’s digital linear quadratic esti-
mator function,

[Wss, P̄ss, Pss] = dlqe(F,Γ, H,Q,R)

For completely controllable and observable, time-invariant systems, the estimator and error
dynamics are

x̂(k + 1) = x̄(k + 1) +Wss[z(k + 1)−Hx̄(k + 1)]

e(k + 1) = (I −WssH)Fe(k)

where |λi| < 1 for all eigenvalues λi of (I −WssH)F , i.e. the error dynamics are stable.

27



5.5 KF derivation 1: MMSE

This derivation uses the fundamental equations of linear estimation (1) to calculate the
MMSE state estimator. The basic steps are:

• use expectation properties and LG statistical assumptions to calculate x̄(k + 1) and
P̄ (k + 1)

• by the same methods, write z̄(k + 1), P̄zz(k + 1), and P̄xz(k + 1) in terms of x̄(k + 1)
and P̄ (k + 1)

• using the fundamental equations of linear estimation, write

x̂(k + 1) = x̄(k + 1) + P̄xz(k + 1)P̄zz(k + 1)−1
[
z(k + 1)− z̄(k + 1)

]
P (k + 1) = P̄ (k + 1)− P̄xz(k + 1)P̄zz(k + 1)−1P̄xz(k + 1)T

• define intermediate matrices W (k + 1), S(k + 1), ν(k + 1) and simplify the results to
reproduce the KF equations

5.6 KF derivation 2: MAP

Although the MMSE and MAP estimators are equivalent for LG systems, this is not the case
for a nonlinear system or one with non-Gaussian randomness. MAP estimation is useful in
such cases. This section sketches the steps in the MAP derivation.

• find the posterior distribution using Bayes’ rule:

p(x(k + 1),v(k)|z(k + 1)) =
p(z(k + 1)|x(k + 1)),v(k))p(x(k + 1),v(k))

p(z(k + 1))

– write down p(z(k + 1)|x(k + 1),v(k)) (easy since z(k + 1) is a linear function of
Gaussian RVs x(k + 1) and w(k + 1))

– ignore p(z(k + 1)); it will drop out when we maximize

• define the cost

Ja(x(k),v(k),x(k + 1), k) = − ln p(x(k + 1),v(k)|z(k + 1))

• solve the unconstrained convex optimization problem

x̂MAP(k + 1) = arg max p(x(k + 1),v(k)|z(k + 1)) = arg min Ja(x(k),v(k),x(k + 1), k)

28



– use the inverse dynamics

x(k) = F (k)−1[x(k + 1)−G(k)u(k)− Γ(k)v(k)]

to eliminate x(k) from Ja. Define the cost function

Jb(v(k),x(k+1), k) = Ja

(
F (k)−1[x(k+1)−G(k)u(k)−Γ(k)v(k)],v(k),x(k+1), k

)
– solve the optimization problem

v̂(k) = arg min
v(k)

Jb(v(k),x(k + 1), k)

and plug v̂(k) into Jb to define the cost function

Jc(x(k + 1), k + 1) = Jb(v̂(k), x̂(k + 1), k)

– solve the optimization problem

x̂MAP(k + 1) = arg min
x(k+1)

Jc(x(k + 1), k + 1)

• simplify x̂MAP(k + 1) to reproduce the KF equations

5.7 Tests of KF correctness

In static estimation, we defined an estimator as consistent if it converged to the true value
in the limit of large k:

lim
k→∞

E[‖x̃(k)‖2] = 0

For the Kalman filter, however, the estimation error covariance P (k) settles into a steady
state Pss 6= 0 as k →∞, so consistency in this sense is unattainable.

There are two other metrics we’d like the KF to satisfy, however:

1. unbiasedness:

E[x̃(k)] = 0 for all k

2. predicted and measured MSE match:

E[x̃(k)x̃(k)T ] = P (k) for all k

29



5.7.1 Sources of error

If our state estimator is biased, or if the measured MSE fails to match the predicted estima-
tion error covariance, then something is wrong. Some possible sources of error:

1. programming error (fix: adequate testing)

2. numerical error (fix: square root techniques for matrix inversion)

3. modeling error, such as

• F (k) or H(k) may have parameter errors

• the system model may be a reduced-order approximate the true system, with
some states neglected in the interest of fast computation

• the assumptions of linear dynamics and Gaussian random variables may not be
correct

• the disturbance covariance matrix Q(k) may be wrong

The final point is a persistent difficulty. While R(k), the measurement error covariance,
can usually be found in sensor spec sheets, empirical data on Q(k) are rarely available. Q(k)
is often viewed as a tunable parameter that encodes our a priori beliefs about the dynamic
model: if the dynamic model is very accurate, then a small Q(k) is probably justifiable. If
the dynamics are highly simplified, on the other hand, or if the system is subject to lots of
disturbances, then Q(k) may be large. There’s a whole literature on tuning Q(k).

5.7.2 Likelihood of the filter

One method for comparing two KF models is to compute the likelihood (the probability
density of the observations given the model parameters) of each model.

Let Ki be the set of filter parameters (system matrices, measurement matrices, and
covariance matrices) in KF implementation i. Then the likelihood of the ith filter is

p(zk|Ki) =
k∏
j=1

p(νi(j))

where νi(j) is the jth innovation in the ith filter implementation. Conveniently, the infor-
mation contained in the observations and in the innovations is equivalent. Since νi(j) ∼
N (0, Si(j)), where Si(j) is the jth measurement prediction error covariance in the ith filter,
the likelihood can be written as

p(zk|Ki) = (2π)−k/2
( k∏
j=1

√
detSi(j)

)
exp

{
− 1

2

k∑
j=1

νi(j)T (Si(j))−1νi(j)
}

⇒ − ln p(zk|Ki) =
k

2
ln(2π) +

1

2

k∑
j=1

(
νi(j)T (Si(j))−1νi(j)− ln detSi(j)

)

30



The filter likelihood gives a coarse measure of the filter’s performance. All else being equal, a
filter with a higher likelihood (or, equivalently, a smaller negative log-likelihood) is typically
better. Problems associated with over-fitting can arise, however, so it’s best to use a formal
hypothesis test to evaluate the filter’s performance. Five common tests are presented next.

5.7.3 Simulation: normalized estimation error squared

If the true state x(k) is known, then we can compute the estimation error x̃(k) = x(k)− x̂(k)
and conduct statistical tests. This is rarely the case in experiments, unless we have a second,
extremely accurate sensor array for use in the lab. In Monte Carlo simulation, however, the
true state is accessible.

Consider the normalized estimation error squared (NEES) of the state,

ε(k) = x̃(k)TP (k)−1x̃(k)

For an unbiased estimator, x̃(k) ∼ N (0, P (k)), which implies that ε(k) ∼ χ2
nx

.
Suppose we generate N histories of v(k) and w(k) (and by extension, x(k) and z(k)),

and run our KF on each history, computing N different histories of x̂(k) and ε(k). Call the
ith ε(k) history εi(k), and define the N -run average NEES

ε̄(k) =
1

N

N∑
i=1

εi(k)

then Nε̄(k) ∼ χ2
Nnx

, and we can test the hypothesis

H0 : the state estimation errors are consistent with the KF covariances

The optimal Neyman-Pearson test of size α is

reject H0 if ε̄(k) /∈ [r1, r2]

where
P
(
ε̄(k) /∈ [r1, r2] | H0

)
= α

The critical region is given by

r1 =
1

N
F−1

(α
2

)
, r2 =

1

N
F−1

(
1− α

2

)
where F−1(·) is the inverse χ2

Nnx
cdf, chi2inv( · , Nnx) in Matlab.

NB. “Truth-model simulations are doomed to succeed.” Why? Because the “true” state
and observations are generated from the same dynamic, measurement, and statistical models
that the KF uses. If these models don’t accurately reflect reality, then the KF may pass
truth-model tests but perform terribly in real experiments.

31



5.7.4 Multiple experiments: normalized innovation squared

Unlike truth-model simulations, experiments don’t give access to the true state x(k). The
innovations ν(k) and their covariance matrices S(k), however, are always available.

Define the normalized innovation squared (NIS),

εν(k) = ν(k)TS(k)−1ν(k)

Since ν ∼ N (0, S(k)), the NIS is chi-square distributed: εν(k) ∼ χ2
nz

.
Suppose we do N experiments and record the NIS histories εiν(k), i ∈ {1, . . . , N}. Define

the N -run average NIS

ε̄ν(k) =
1

N

N∑
i=1

εiν(k)

Then Nε̄ν(k) ∼ χ2
Nnz

, and we can test the hypothesis

H0 : the innovations are consistent with the KF covariances

The optimal Neyman-Pearson test of size α is

reject H0 if ε̄ν(k) /∈ [r1, r2]

where
P
(
ε̄ν(k) /∈ [r1, r2] | H0

)
= α

The critical region is given by

r1 =
1

N
F−1

(α
2

)
, r2 =

1

N
F−1

(
1− α

2

)
where F−1(·) is the inverse χ2

Nnz
cdf, chi2inv( · , Nnz) in Matlab.

5.7.5 Multiple experiments: whiteness of the innovations

It can be shown that for all j, k

E[ν(k)] = 0

E[ν(k)ν(j)T ] = δjkS(k)

i.e. the innovations are zero mean and white. This gives us another correctness test that
can be conducted with either simulations or experiments.

Suppose we do N experiments and record the innovations νi(k) for each experiment
i ∈ {1, . . . , N}. Define the sample statistic

ρ̄lm(j, k) =

∑N
i=1 ν

i
l (j)ν

i
m(k)√(∑N

i=1 ν
i
l (j)

2
)(∑N

i=1 ν
i
m(k)2

)

32



where νil (j) is the lth element of the jth innovation in the ith experiment. Thus, ρ̄lm(j, k)
is the sample correlation coefficient between the lth and mth elements of the innovation at
times j and k.

(The above is general but confusing. A common simplification is to look only at the
correlation between a particular element of the innovation at one time and the next, i.e. to
take l = m and k = j + 1.)

If the innovation sequence is white then for j 6= k, ρ̄lm(j, k) should obey

E[ρ̄lm(j, k)] = 0

E[ρ̄lm(j, k)2] =
1

N

so var(ρ̄lm(j, k)) = 1/N . The distribution of ρ̄lm(j, k) is non-trivial to compute, but in light
of the CLT it’s plausible to treat it as Gaussian. Under this approximation, we can test the
hypothesis

H0 : the innovation sequence is white

with optimal Neyman-Pearson test of size α,

reject H0 if ρ̄lm(j, k) /∈ [−r, r]

where
P
(
ρ̄lm(j, k) /∈ [−r, r] | H0

)
= α

The critical region is given by

r = F−1
(

1− α

2

)
where F−1(·) is the inverse normal cdf with mean 0 and variance 1/N , norminv( · , 0, 1/

√
N)

in Matlab.
NB. If the system is TI and has settled into a steady state, we can visually test the

whiteness of the innovations by looking at the power spectral density of the innovation
sequence using the fast Fourier transform, fft.m in Matlab.

5.7.6 Single experiment: normalized innovation squared

Sometimes we’d like to do an experimental test, but only have the resources to run a single
experiment. In these situations, the innovation tests are inaccessible because we don’t have
N experiments to average over. The best we can do is use an ergodicity argument to exchange
averages over experiments for averages over time. This ergodicity argument is not justified
for a general system, since the innovation sequence need not be stationary, but in practice
the method often works.

33



Suppose we do a single experiment, letting our filter run for k ∈ {0, 1, . . . , K}. The
time-averaged NIS is

ε̄ν =
1

K

K∑
k=1

ν(k)TS(k)−1ν(k)

Then Kε̄ν ∼ χ2
Knz

, and we can test the hypothesis

H0 : the innovations are consistent with the KF covariances

The optimal Neyman-Pearson test of size α is

reject H0 if ε̄ν /∈ [r1, r2]

where
P
(
ε̄ν /∈ [r1, r2] | H0

)
= α

The critical region is given by

r1 =
1

K
F−1

(α
2

)
, r2 =

1

K
F−1

(
1− α

2

)
where F−1(·) is the inverse χ2

Knz
cdf, chi2inv( · , Knz) in Matlab.

5.7.7 Single experiment: whiteness of the innovations

We can also exchange averages over experiments with averages over time for the innovation
whiteness test.

Suppose we do a single experiment, letting our filter run for k ∈ {0, 1, . . . , K}. The
time-averaged correlation coefficient between the lth and mth elements of the innovation at
times k and k + j is

ρ̄lm(j) =

∑K
k=1 νl(k)νm(k + j)√(∑K

k=1 νl(k)2
)(∑K

k=1 νm(k + j)2
)

If K is large, then in light of the CLT it’s plausible to approximate ρ̄lm(j) as Gaussian. If
the innovations are white, then the sample mean of ρ̄lm(j) should be zero for all j 6= 0, and
its sample variance should be 1/K. We can therefore test the hypothesis

H0 : the innovations are white

with optimal Neyman-Pearson test of size α,

reject H0 if ρ̄lm(j) /∈ [−r, r]

where
P
(
ρ̄lm(j) /∈ [−r, r] | H0

)
= α

34



The critical region is given by

r = F−1
(

1− α

2

)
where F−1(·) is the inverse normal cdf with mean 0 and variance 1/K, norminv( · , 0, 1/

√
K)

in Matlab.

5.8 KF initialization

The KF takes as inputs the initial estimate x̂(0) and estimation error covariance P (0). In
homework problems these are given, but in a real estimation application we need some
practical way to come up with them. This is particularly important in nonlinear filtering,
where the estimation error may diverge for a bad initial guess.

A few initialization scenarios:

1. All elements of x̂(0) may be measured by sensors with known error covariances, giving
P (0).

• this is wonderful but very rare in practice

2. You may have some a priori knowledge of the system’s initial state.

• more common, but hardly ubiquitous

3. You can solve a batch estimation problem using the first few measurements.

• similar to calculating an initial guess for a nonlinear least squares problem

This section explores scenario 3, which is a bit laborious but often necessary for good
filter performance. Note that information filtering, a modification of Kalman filtering, is a
simpler alternative to the following.

Consider the first k measurements,

z(1) = H(1)x(1) + w(1)

= H(1)
[
F (0)x(0) +G(0)u(0) + Γ(0)v(0)

]
+ w(1)

z(2) = H(2)x(2) + w(2)

= H(2)
[
F (1)

(
F (0)x(0) +G(0)u(0) + Γ(0)v(0)

)
+G(1)u(1) + Γ(1)v(1)

]
+ w(2)

...

z(k) = H(k)x(k) + w(k)

= H(k)
[
(a big ugly expression)

]
+ w(k)

35



By a process similar to that in section 2.2.1, the lifted measurement vector zk can be written
in terms of x(0), the known controls uk−1, and the state and measurement disturbances:

zk = Hkx(0) +Gk−1uk−1 + Ck−1vk−1 + wk

where

zk =

z(1)
...

z(k)

 ∈ Rknz , Hk =

 H(1)F (0)
...

H(k)F (k − 1) · · ·F (0)

 ∈ Rknz×nx

uk−1 =

 u(0)
...

u(k − 1)

 ∈ Rknu , vk−1 =

 v(0)
...

v(k − 1)

 ∈ Rknv , wk−1 =

w(1)
...

w(k)

 ∈ Rknz

Gk−1 =


H(1)G(0)

H(2)F (1)G(0) H(2)G(1)
...

. . .

H(k)F (k − 1) · · ·F (1)G(0) H(k)F (k − 1) · · ·F (2)G(1) . . . H(k)G(k − 1)



Ck−1 =


H(1)Γ(0)

H(2)F (1)Γ(0) H(2)Γ(1)
...

. . .

H(k)F (k − 1) · · ·F (1)Γ(0) H(k)F (k − 1) · · ·F (2)Γ(1) . . . H(k)Γ(k − 1)


so Gk−1 ∈ Rknz×knu and Ck−1 ∈ Rknz×knv .
The lifted covariance matrices are

Rk =

R(1)
. . .

R(k)

 ∈ Rknz×knz , Qk−1 =

Q(0)
. . .

Q(k − 1)

 ∈ Rknv×knv

Given these definitions, we can define the least-squares cost function

CLS(x(0),vk−1) =
1

2

(
zk −Hkx(0)−Gk−1uk−1 − Ck−1vk−1

)T
(Rk)−1

∗
(
zk −Hkx(0)−Gk−1uk−1 − Ck−1vk−1

)
+

1

2
(vk−1)T (Qk−1)−1vk−1

and solve the first-order conditions( ∂

∂x(0)
CLS(x(0),vk−1)

)T
= 0,

( ∂

∂vk−1
CLS(x(0),vk−1)

)T
= 0

for the smoothed initial estimate x̂(0|k) and the estimated process noise v̂k−1|k.

36



The smoothed initial error covariance P (0|k) can be produced from[
Px(0)x(0) Px(0)vk−1

P T
x(0)vk−1 Pvk−1vk−1

]
=

[
∂2CLS

∂x(0)2
∂2CLS

∂x(0)∂vk−1(
∂2CLS

∂x(0)∂vk−1

)T ∂2CLS

∂(vk−1)2

]−1

(The above comes from the fact that CLS(x(0),vk−1) is essentially the negative log-likelihood
of a Gaussian distribution.)

It may be tempting at this point to initialize the KF at k = 0 with x̂(0|k) and P (0|k) =
Px(0)x(0), but doing so would mean double counting the first k samples. This causes a bias
in the future estimates – a Bad Thing.

The right way to use the results of the batch estimation is to propagate x̂(0|k) and
P (0|k) forward through the dynamics equation, and start the KF with at stage k. The state
propagation equation is

x̂(k) = F (k − 1) · · ·F (1)x̂(0|k) +
k−1∑
j=0

F (k − 1) · · ·F (j + 1)
[
G(j)u(j) + Γ(j)v(j)

]
= Dx̂(0|k) + Evk−1|k + g

=
[
D E

] [x̂(0|k)
vk−1|k

]
where

D = F (k − 1) · · ·F (1) ∈ Rnx×nx

E =
[
F (k − 1) · · ·F (1)Γ(0), F (k − 1) · · ·F (2)Γ(1), . . . , Γ(k − 1)

]
∈ Rnx×knv

g =
k−1∑
j=0

F (k − 1) · · ·F (j + 1)G(j)u(j) ∈ Rnx

By the transformation rule cov(Ax + b) = Acov(x)AT , the estimation error covariance
propagation is

P (k) =
[
D E

] [Px(0)x(0) Px(0)vk−1

P T
x(0)vk−1 Pvk−1vk−1

] [
DT

ET

]

=
[
D E

] [ ∂2CLS

∂x(0)2
∂2CLS

∂x(0)∂vk−1(
∂2CLS

∂x(0)∂vk−1

)T ∂2CLS

∂(vk−1)2

]−1 [
DT

ET

]
Summarizing, the initialization steps are

• solve a batch estimation problem with the first k samples for x̂(0|k) and v̂k−1|k

• compute the estimation error covariance by inverting the Hessian of CLS(x̂(0|k), v̂k−1|k)

• propagate x̂(0|k) through the dynamics equation k times to calculate x̂(k)

• use the covariance transformation formula to calculate P (k)

• initialize the KF at sample k with x̂(k) and P (k)

37



5.9 Model mismatch

So far we’ve assumed that our dynamic and measurement models exactly reflect the under-
lying physics of the system we’re studying. This is never the case in practice – our models
are always inaccurate to some degree. This section explores the robustness of the KF to
modeling errors.

Suppose we implement a KF based on the model

x(k + 1) = Ff (k)x(k) +Gf (k)u(k) + Γf (k)vf (k)

z(k) = Hf (k)x(k) + wf (k)

with the typical statistical assumptions on vf (k) and wf (k):

E[vf (k)] = 0

E[vf (k)vf (j)
T ] = δkjQf (k)

E[wf (k)] = 0

E[wf (k)wf (j)
T ] = δkjRf (k)

along with the lack of correlation between the disturbance, noise and initial state.
What happens if we implement this filter on a LG system that’s actually governed by

F (k), G(k),Γ(k), H(k), Q(k) and R(k)?
Let e−(k) and e+(k) be the a priori and a posteriori errors, respectively:

e−(k) = x(k)− x̄(k)

e+(k) = x(k)− x̂(k)

It can be shown that for the mismatched KF, these errors evolve according to

e−(k + 1) = Ff (k)e+(k) + [F (k)− Ff (k)]x(k) + [G(k)−Gf (k)]u(k) + Γ(k)v(k)

e+(k + 1) = [I −Wf (k + 1)Hf (k + 1)]e−(k + 1)

+Wf (k + 1)[Hf (k + 1)−H(k + 1)]x(k + 1) +Wf (k + 1)w(k + 1)

The a posteriori error equation can be written as

e+(k + 1) = [I −Wf (k + 1)Hf (k + 1)]Ff (k)e+(k) + f(v(k),w(k + 1)) + g(x(k) + u(k))

where f(v(k),w(k + 1)) includes the usual disturbance and noise terms, but g(x(k),u(k))
consists of non-homogenous forcing terms. These terms can drive e+(k) into instability.

It’s complicated to fully analyze limk→∞ e+(k), because the time histories of x(k) and
u(k) are needed as inputs (see Bar-Shalom for details). The punchline is this:

P true(k + 1) � Pf (k + 1)

i.e. the state estimation MSE given by the mismatched filter is upper bounded by the true
state estimation error covariance (meaning you think your estimates are more accurate than
they really are).

38



If P true(k + 1) is acceptably small, then the model mismatch may still give good results
despite the systematic modeling error. Sometimes, however, the results are unacceptable
and you need to derive a better physical model, for instance by

• improving the model calibration (e.g. tuning Q(k))

• including some previously neglected states

NB. The model mismatch analysis assumes that the true physics (F (k), G(k),Γ(k), H(k))
and the true statistics (Q(k) and R(k)) are known. In reality, however, we don’t know them
exactly – if we did, we’d use them in the KF! Still, analyses of this kind are useful in testing,
because we can test a candidate filter against a variety of potentially “true” physics and
statistics. A good filter will be robust to a broad spectrum of mismatch scenarios.

39



6 The square-root information filter

The Kalman filter algorithm in section 5.3 can run into numerical issues. Each cycle involves
squaring F (k),Γ(k), H(k + 1), and W (k + 1). If any of these matrices are ill-conditioned,
then iteratively squaring them can quickly lead to roundoff errors. The innovation calculation
and the state estimation error covariance update equation also involve subtractions. If the
quantities being differenced are of similar magnitude, then iteratively subtracting them can
quickly accumulate roundoff errors. A solution to the numerical instability problem is to use
square-root techniques (QR and Cholesky factorization).

Another difficulty with implementing the KF in practice is initialization. The batch
initialization procedure outlined in section 5.8 can be time-consuming, and may not give
particularly good results. Ideally, we’d like to be able to initialize the KF with the diffuse
prior – that is, with an infinite state estimation error covariance matrix P (0) – but this is
not achievable in practice. A solution to the initialization problem is to use an information
filter, which reformulates the KF algorithm in terms of inverse covariance matrices.

This section develops the square-root information filter (SRIF), which combines
square-root computational techniques with the information filter formulation. We begin
with the (non-square-root) information filter, then add in square-root techniques.

6.1 The IF algorithm

Consider again the LG system

x(k + 1) = F (k)x(k) +G(k)u(k) + Γ(k)v(k)

z(k) = H(k)x(k) + w(k)

with the usual statistical assumptions on v(k), w(k) and x(0).
Instead of processing x̂(k), P (k), x̄(k + 1), P̄ (k + 1), in the information filter we process

the following:

ŷ(k) = P (k)−1x̂(k)

ȳ(k) = P̄ (k)−1x̄(k)

I(k) = P (k)−1

Ī(k) = P̄ (k)−1

where the inverse covariance matrices I(k) and Ī(k) are called information matrices. The
intuition is that there’s an inverse relationship between the “size” of a covariance matrix,
and the amount of information contained in the corresponding RV. The nomenclature is
meant to evoke the Fisher information matrix.

By following the steps of the MMSE KF derivation and making use of the matrix inversion
lemma, we can derive dynamic propagation and measurement update formulas in terms of
the information matrices and transformed vectors. Given ŷ(0) and I(0), the KF algorithm
is:

40



1. set k = 0

2. dynamic propagation

(a) for convenience, define the intermediate matrix

A(k) = F (k)−TI(k)F (k)−1

(b) predict the next (transformed) state

ȳ(k+1) =
{
I−A(k)Γ(k)

[
Γ(k)TA(k)Γ(k)+Q(k)−1

]−1
Γ(k)T

}[
F (k)−T ŷ(k)+A(k)G(k)u(k)

]
(c) calculate the corresponding information matrix

Ī(k + 1) = A(k)− A(k)Γ(k)
[
Γ(k)TA(k)Γ(k) +Q(k)−1

]−1
Γ(k)TA(k)

3. measurement update

(a) update the (transformed) state estimate

ŷ(k + 1) = ȳ(k + 1) +H(k + 1)TR(k + 1)−1z(k + 1)

(b) calculate the corresponding information matrix

I(k + 1) = Ī(k + 1) +H(k + 1)TR(k + 1)−1H(k + 1)

4. inverse transformation

(a) recover the state estimate

x̂(k + 1) = I(k + 1)−1ŷ(k + 1)

(b) recover the state estimation error covariance

P (k + 1) = I(k + 1)−1

5. increment k and return to step 2

6.1.1 Remarks

1. If all of the following hold:

• nx < nz (more measurements than states)

• nv < nz (more measurements than process noise elements)

• R(k + 1) is diagonal (no correlation between elements of w(k + 1))

41



then the IF is computationally faster than the KF.

2. If we have no prior information about x(0), then in the IF algorithm we only need
to set I(0) = 0 (which implies ŷ(0) = 0). This is a major advantage of the IF: it
avoids the batch initialization problem in the KF. The downside is that I(k) won’t be
invertible for the first few stages, so we won’t be able to recover P (k) or x̂(k) for a
little while.

NB. This is less of an advantage in nonlinear estimation, because we need an initial
state estimate to linearize the dynamics and measurement model about.

3. KF ↔ IF duality.

In the dynamic propagation step of the KF algorithm, we typically find that P (k) →
P̄ (k + 1) � P (k), because the state disturbance tends to diffuse our knowledge of
x(k + 1). Similarly, in the measurement update step of the IF algorithm, Ī(k + 1)→
I(k + 1) � Ī(k + 1), because we gain information when we measure z(k + 1).

Similarly, in the measurement update step of the KF algorithm, P̄ (k+1)→ P (k+1) ≺
P̄ (k + 1), because we gain information when we measure z(k + 1). In the dynamic
propagation step of the IF algorithm, we typically find that I(k) → Ī(k + 1) ≺ I(k)
because we lose information due to the state disturbance.

The big idea: the dynamic propagation step of the KF is informationally equivalent to
the measurement update step of the IF, and vice versa.

6.2 SRIF background

The IF algorithm avoids the initialization problem, but it still involves squaring matrices
and subtraction. The SRIF solves these numerical problems by using QR and Cholesky
factorizations. The two guiding principles of the SRIF:

1. only admit RVs with zero mean and identity covariance

2. only manipulate matrices through orthonormal transformations2

6.2.1 SRIEs

In the SRIF, we require that zx(k),wx(k) and wv(k) satisfy the square-root information
equations (SRIEs)

0 = Rvv(k)v(k) + wv(k)

zx(k) = Rxx(k)x(k) + wx(k)

2With one exception: we allow inversion of the dynamics matrices F (k).

42



where wx(k) and wv(k) are zero mean with identity covariances,

E

[ [
wx(k)
wv(k)

] ]
= 0

E

[ [
wx(k)
wv(k)

] [
wx(j)

T wv(j)
T
] ]

= δkj

[
I 0
0 I

]
and where Rxx(k) ∈ Rnx×nx and R̄xx(k) ∈ Rnx×nx are some as yet unknown matrices,
assumed to be invertible.

From the second SRIE, x(k) = Rxx(k)−1(zx(k)−wx(k)), so the state estimate is

x̂(k) = E[x(k)|k] = E[Rxx(k)−1(zx(k)−wx(k))|k]

= Rxx(k)−1zx(k)

and the estimation error covariance is

P (k) = E[(x(k)− x̂(k))(x(k)− x̂(k))T |k] = Rxx(k)−1
E[wx(k)wx(k)T |k]Rxx(k)−

T

= Rxx(k)−1Rxx(k)−T

which gives the relationship

Rxx(k)TRxx(k) = P (k)−1 = I(k)

so Rxx(k) must be a Cholesky factor of the information matrix I(k).
Similarly, the first SRIE implies that v(k) = −R−1

vv wv(k), so

E[v(k)|k] = 0

Q(k) = E[v(k)v(k)T |k] = Rvv(k)−1
E[wv(k)wv(k)T |k]Rvv(k)−T

= Rvv(k)−1Rvv(k)−T

which gives the relationship
Rvv(k)TRvv(k) = Q(k)−1

so Rvv(k) must be a Cholesky factor of the inverse of the disturbance covariance matrix
Q(k). Note that Rvv(k) is best calculated using inv(chol(Q(k)))T in Matlab.

6.2.2 Dynamic propagation

How to conduct the dynamic propagation step such that the SRIEs are satisfied?
If F (k) is non-singular, then we can solve the dynamics equation for x(k):

x(k) = F (k)−1[x(k + 1)−G(k)u(k)− Γ(k)v(k)]

43



Eliminating x(k) from the SRIEs gives the system[
0

zx(k) +Rxx(k)F (k)−1G(k)u(k)

]
=

[
Rvv(k) 0

−Rxx(k)F (k)−1Γ(k) Rxx(k)F (k)−1

] [
v(k)

x(k + 1)

]
+

[
wv(k)
wx(k)

]
from which we’d like to produce an expression for the predicted, transformed state z̄x(k+1).

To avoid inverting the coefficient matrix, we can QR factorize it by finding an orthonormal
Ta(k) ∈ R(nx+nv)×(nx+nv) and upper triangular, non-singular R̄vv(k) ∈ Rnv×nv and R̄xx(k +
1) ∈ Rnx×nx such that[

Rvv(k) 0
−Rxx(k)F (k)−1Γ(k) Rxx(k)F (k)−1

]
= Ta(k)T

[
R̄vv(k) R̄vx(k + 1)

0 R̄xx(k + 1)

]
Plugging this into the SRIE system gives[

z̄v(k)
z̄x(k + 1)

]
=

[
R̄vv(k) R̄vx(k + 1)

0 R̄xx(k + 1)

] [
v(k)

x(k + 1)

]
+

[
w̄v(k)

w̄x(k + 1)

]
where [

z̄v(k)
z̄x(k + 1)

]
= Ta(k)

[
0

zx(k) +Rxx(k)F (k)−1G(k)u(k)

]
[

w̄v(k)
w̄x(k + 1)

]
= Ta(k)

[
wv(k)
wx(k)

]
Note that overbars here indicate transformation, not expectation.

As required, the transformed RVs have zero mean and identity covariance:

E

[ [
w̄v(k)

w̄x(k + 1)

] ]
= 0

E

[ [
w̄v(k)

w̄x(k + 1)

] [
w̄v(k)T w̄x(k + 1)T

] ]
=

[
I 0
0 I

]
Solving the transformed SRIEs for z̄x(k + 1) gives

z̄x(k + 1) = R̄xx(k + 1)x(k + 1) + w̄x(k + 1)

The second SRIE equation,

z̄v(k) = R̄vv(k)v(k) + R̄vx(k + 1)x(k + 1) + w̄v(k)

can be set aside until we study smoothing.

44



6.2.3 Measurement update

How to conduct the measurement update such that the SRIEs are satisfied?
We’ll use the Cholesky factorizations of the noise covariance matrices,

Ra(k + 1)TRa(k + 1) = R(k + 1)

where Ra(k + 1) ∈ Rnz×nz is upper triangular and non-singular.
Under the transformations

za(k + 1) = Ra(k + 1)−Tz(k + 1) ∈ Rnz

wa(k + 1) = Ra(k + 1)−Tw(k + 1) ∈ Rnz

Ha(k + 1) = Ra(k + 1)−TH(k + 1) ∈ Rnz×nx

the measurement model becomes

za(k + 1) = Ha(k + 1)x(k + 1) + wa(k + 1)

where

E[wa(k + 1)] = 0, E[wa(k + 1)wa(k + 1)T ] = I

Combining the state SRIE and the measurement equation gives the system[
z̄x(k + 1)
za(k + 1)

]
=

[
R̄xx(k + 1)
Ha(k + 1)

]
x(k + 1) +

[
w̄x(k + 1)
wa(k + 1)

]
To avoid inverting the coefficient matrix, we can QR factorize it by finding an orthonormal
Tb(k + 1) ∈ R(nx+nv)×(nx+nv) and upper triangular, non-singular Rxx(k + 1) ∈ Rnx×nx such
that [

R̄xx(k + 1)
Ha(k + 1)

]
= Tb(k + 1)T

[
Rxx(k + 1)

0

]
The SRIE-measurement system then becomes[

zx(k + 1)
zr(k + 1)

]
=

[
Rxx(k + 1)

0

]
x(k + 1) +

[
wx(k + 1)
wr(k + 1)

]
where [

zx(k + 1)
zr(k + 1)

]
= Tb(k + 1)

[
z̄x(k + 1)
za(k + 1)

]
[
wx(k + 1)
wr(k + 1)

]
= Tb(k + 1)

[
w̄x(k + 1)
wa(k + 1)

]

45



As required, the transformed RVs have zero mean and identity covariance:

E

[ [
wx(k + 1)
wr(k + 1)

] ]
= 0

E

[ [
wx(k + 1)
wr(k + 1)

] [
wx(k + 1)T wr(k + 1)T

] ]
=

[
I 0
0 I

]
Solving the transformed SRIE-measurement system for zx(k + 1) gives

zx(k + 1) = Rxx(k + 1)x(k + 1) + wx(k + 1)

The second equation,
zr(k + 1) = wr(k + 1)

gives the measurement residual (hence the subscript r), which is closely related to the inno-
vation in the standard KF algorithm. It can be shown that

1

2
zr(k + 1)T zr(k + 1) =

1

2
ν(k + 1)TS(k + 1)−1ν(k + 1)

The residuals can be used in the tests of filter correctness described in section 5.7.

6.3 The SRIF algorithm

Instead of keeping track of x̂(k), P (k) and ν(k), in the SRIF algorithm we keep track of
zx(k), Rxx(k), and zr(k).

Given Rxx(0)TRxx(0) = I(0) and zx(0) = Rxx(0)x̂(0), the SRIF algorithm is:

1. offline calculations

(a) for each k, compute F (k)−1

(b) disturbance Cholesky factorization: for each k, find an upper triangular Rvv(k) ∈
Rnv×nv such that

Rvv(k)TRvv(k) = Q(k)−1

(c) noise Cholesky factorization: for each k, find an upper triangular Ra(k) ∈ Rnz×nz

such that
Ra(k)TRa(k) = R(k)

then transform the measurement matrices,

Ha(k) = Ra(k)−TH(k)

2. set k = 0

3. dynamic propagation

46



(a) QR factorization: find an orthonormal Ta(k) ∈ R(nx+nv)×(nx+nv) and upper trian-
gular, non-singular R̄vv(k) ∈ Rnv×nv and R̄xx(k + 1) ∈ Rnx×nx such that[

Rvv(k) 0
−Rxx(k)F (k)−1Γ(k) Rxx(k)F (k)−1

]
= Ta(k)T

[
R̄vv(k) R̄vx(k + 1)

0 R̄xx(k + 1)

]
(b) predict the (transformed) state[

z̄v(k)
z̄x(k + 1)

]
= Ta(k)

[
0

zx(k) +Rxx(k)F (k)−1G(k)u(k)

]
4. measurement update

(a) QR factorization: find an orthonormal Tb(k+ 1) ∈ R(nx+nz)×(nx+nz) and an upper
triangular Rxx(k + 1) ∈ Rnx×nx such that[

R̄xx(k + 1)
Ha(k + 1)

]
= Tb(k + 1)T

[
Rxx(k + 1)

0

]
(b) compute the (transformed) state estimate[

zx(k + 1)
zr(k + 1)

]
= Tb(k + 1)

[
z̄x(k + 1)
za(k + 1)

]
5. inverse transformation

(a) recover the state estimate

x̂(k + 1) = Rxx(k + 1)−1zx(k + 1)

(b) recover the state estimation error covariance

P (k + 1) = Rxx(k + 1)−1Rxx(k + 1)−T

6. increment k and return to step 3

6.3.1 Remarks

1. The SRIF algorithm never squares or inverts a matrix unless it’s upper triangular
(and hence numerically stable to square or invert). The exception to this rule is the
dynamics matrix F (k), which we assume to be non-singular and well-conditioned. The
SRIF can be modified to accommodate singular dynamics matrices, but the algorithm
is much more complicated.

2. The SRIF also never takes the difference of two quantities that may be of similar
magnitude.

47



3. It can be shown that the SRIF and KF are equivalent.

4. Punchline: the SRIF is a numerically stable implementation of the optimal filter for
the LG system.

5. Other numerically stable KF implementations exist, such as the square-root covariance
filter (SRCF) presented in Bar-Shalom. The SRCF is generally better suited to high-
dimensional problems than the SRIF.

48



7 Smoothing

In filtering, we estimate the current state of a dynamical system based on information up
to and including the current measurement. In smoothing, we use current information to
estimate a past state. A common application of smoothing is processing data from an
experiment after the fact.

The general smoothing problem is to compute the estimate

x̂(k|j) = E[x(k)|zj]

for some j > k.
Smoothing problems come in three flavors.

1. In fixed point smoothing, k is a fixed time of interest and we continually refine our
estimate of x(k) as more and more data become available. We compute

x̂(k|j), x̂(k|j + 1), x̂(k|j + 1), . . .

2. In fixed lag smoothing, we estimate the state based on data that run a fixed interval
i > 0 into the future. We compute

x̂(k|k + i), x̂(k + 1|k + i+ 1), x̂(k + 2|k + i+ 2), . . .

3. In fixed interval smoothing, we have a batch of data z(1), . . . , z(N) and we use all
the data to estimate the state at each stage. We compute

x̂(0|N), x̂(1|N), x̂(2|N), . . . , x̂(N |N)

In this section, we’ll solve the fixed interval smoothing problem. Incidentally, the fixed
interval smoothing solution will provide a brute-force approach for the fixed point and fixed
lag smoothing problems, although better algorithms for these problems exist.

7.1 Notation

Just like filtering, there are a variety of notational conventions for smoothing in the literature.
A few are listed here; these notes will use the last notation presented.

• smoothed state estimate

E[x(k)|zN ] ≡ x̂(k|zN) ≡ x̂(k|N)

≡ x∗(k)

• smoothed state estimate covariance

E[(x(k)− x̂(k|zN))(x(k)− x̂(k|zN))T | zN ] ≡ P (k|zN) ≡ P (k|N)

≡ P ∗(k)

49



• smoothed disturbance

E[v(k)|zN ] ≡ v̂(k|zN) ≡ v̂(k|N)

≡ v∗(k)

• smoothed disturbance covariance

E[(v(k)− v̂(k|zN))(v(k)− v̂(k|zN))T | zN ] ≡ Pvv(k|zN) ≡ Pvv(k|N)

≡ P ∗vv(k)

• smoothed disturbance-state covariance

E[(v(k)− v̂(k|zN))(x(k)− x̂(k|zN))T | zN ] ≡ Pvx(k|zN) ≡ Pvx(k|N)

≡ P ∗vx(k)

7.2 Covariance-based fixed interval smoothing

The covariance-based fixed interval smoother presented here consists of a forward and back-
ward pass. Filters of this type are known as Rauch-Tung-Striebel (RTS) smoothers. There
are other approaches to smoothing. For example, some smoothing algorithms run two filters
simultaneously, one starting from k = 0 and the other from k = N and converging in the
middle. In practice, however, most smoothing is done using RTS methods.

The covariance-based RTS smoother consists of the following steps.

1. forward (filtering) pass: given x̂(0) and P (0), solve the filtering problem and store
the resulting x̂(k), P (k), x̄(k), and P̄ (k) for all k ∈ {1, . . . , N}.

2. backward (smoothing) pass

(a) initialize x∗(N) = x̂(N) and P ∗(N) = P (N)

(b) set k = N − 1

(c) determine v∗(k), P ∗vv(k), and P ∗vx(k + 1) from x̂∗(k + 1) and P ∗(k + 1).

(d) determine x∗(k) and P ∗(k) from v∗(k), P ∗vv(k), and P ∗vx(k + 1)

(e) if k = 0, stop; otherwise, decrement k and go to step (c)

Chapters 5 and 6 presented several filtering methods, so we only need to figure out steps
(c) and (d) in the smoothing pass. The next two subsections show how to accomplish these.

7.2.1 Smoothed disturbance and associated covariances

This section gives a sketch of the MAP derivation of the formulas for step 2(c).

• smoothed disturbance

50



– using Bayes’ rule and the definition of the conditional pdf, express the posterior
pdf as

p(v(k),x(k + 1)|zN) =
p(v(k),x(k + 1)|zk+1)p(zNk+1|x(k + 1))

p(zNk+1|zk+1)

– define the cost

Jks (v(k),x(k + 1)) = − ln p(v(k),x(k + 1)|zN)

= − ln p(v(k),x(k + 1)|zk+1)− ln p(zNk+1|x(k + 1)) + ln p(zNk+1|zk+1)

so that (from the definition of the MAPE)

v∗(k) = arg max
v(k)

p(v(k),x∗(k + 1)|zN)

= arg min
v(k)

Jks (v(k),x∗(k + 1))

= arg min
v(k)

{
− ln p(v(k),x∗(k + 1)|zk+1)− ln p(zNk+1|x∗(k + 1))

}
– note that we’ve already solved this problem in the KF MAP derivation; the result

is
v∗(k) = Q(k)Γ(k)TP (k + 1)−1

[
x∗(k + 1)− x̄(k + 1)

]
• covariances

– note that [
P ∗vv(k) P ∗vx(k + 1)

P ∗vx(k + 1)T P ∗(k + 1)

]
=

(
∂2Jks
∂a2

)−1

where

a =

[
v(k)

x∗(k + 1)

]
– write the Hessian of Jks as

∂2Jks
∂a2

=

[
C11 C12

C21 C22

]
where

C11 =
∂2Jks
∂v(k)2

= Q(k)−1 + Γ(k)TF (k)−1P (k)−1F (k)−1Γ(k)

and

C12 =
∂2Jks

∂v(k)∂x(k + 1)
= −Γ(k)TF (k)−1P (k)−1F (k)−1

51



– using the block inversion formula, solve for

P ∗vv(k) = C−1
11 + C−1

11 C12P
∗(k + 1)CT

12C
−1
11

P ∗vx(k + 1) = −C−1
11 C12P

∗(k + 1)

and simplify to produce

P ∗vv(k) = Q(k)−Q(k)Γ(k)T P̄ (k + 1)−1
[
P̄ (k + 1)− P ∗(k + 1)

]
∗ P̄ (k + 1)−1Γ(k)Q(k)

P ∗vx(k + 1) = Q(k)Γ(k)T P̄ (k + 1)−1P ∗(k + 1)

7.2.2 Smoothed state estimate and covariance

This section gives a sketch of the MAP derivation of the formulas for step (d) in the smoothing
pass.

• smoothed state estimate: take the expectation, conditioned on zN , of the inverse
dynamics to find that

x∗(k) = F (k)−1
[
x∗(k + 1)−G(k)u(k)− Γ(k)v∗(k)

]
• covariance

– define the error

x̃∗(k) = x(k)− x∗(k) = F (k)−1
[
x̃∗(k + 1)− Γ(k)ṽ∗(k)

]
where

ṽ∗(k) = v(k)− v∗(k)

– compute

P ∗(k) = E[x̃∗(k)x̃∗(k)T |zN ]

= F (k)−1
[
P ∗k+1 − P ∗vx(k + 1)TΓ(k)T

− Γ(k)P ∗vx(k + 1) + Γ(k)P ∗vv(k)Γ(k)T
]
F (k)−T

and simplify

7.2.3 Summary

The covariance-based smoothing algorithm is

1. forward (filtering) pass: given x̂(0) and P (0), solve the filtering problem and store
the resulting x̂(k), P (k), x̄(k), and P̄ (k) for all k ∈ {1, . . . , N}.

52



2. backward (smoothing) pass

(a) initialize x∗(N) = x̂(N) and P ∗(N) = P (N)

(b) set k = N − 1

(c) compute the smoother gain

C(k) = P (k)F (k)T P̄ (k + 1)−1

(d) compute the smoothed state estimate

x∗(k) = x̂(k) + C(k)
[
x∗(k + 1)− x̄(k + 1)

]
(e) compute the smoothed state covariance

P ∗(k) = P (k)− C(k)
[
P̄ (k + 1)− P ∗(k + 1)

]
C(k)T

(f) if k = 0, stop; otherwise, decrement k and go to step (c)

7.3 Information-based fixed interval smoothing

The covariance-based fixed interval smoother algorithm includes matrix squares and subtrac-
tions, which can be numerically unstable. We’ll address this once again using square-root
techniques.

The square-root information smoother (SRIS) algorithm consists of the following steps:

1. forward (filtering) pass: given x̂(0) and P (0), solve the SRIF problem and store
Rxx(k), Rvv(k) and z̄v(k) for all k ∈ {0, . . . , N − 1} as well as zx(N)

2. backward (smoothing) pass

(a) Initialize z∗x(N) = zx(N) and R∗xx(N) = Rxx(N) and compute

x∗(N) = R∗xx(N)−1z∗x(N)

and
P ∗(N) = R∗xx(N)−1R∗xx(N)−T

(b) set k = N − 1

(c) use dynamics to eliminate x(k+1) from the smoothed SRIEs for v(k) and x(k+1)
to yield SRIEs for v(k) and x(k)

(d) recover the smoothed state and its covariance:

x∗(k) = R∗xx(k)−1z∗x(k)

P ∗(k) = R∗xx(k)−1R∗xx(k)−T

(e) if k = 0, stop; otherwise, decrement k and go to (c)

The next subsection shows how to accomplish step 2(c).

53



7.3.1 Eliminating x(k + 1)

At stage k in the smoothing pass, we have the SRIE system[
z̄v(k)

z∗x(k + 1)

]
=

[
R̄vv(k) R̄vx(k)

0 R∗xx(k + 1)

] [
v(k)

x(k + 1)

]
+

[
w̄v(k)

wx(k + 1)

]
Replacing x(k + 1) with F (k)x(k) +B(k)u(k) + Γ(k)v(k) gives[
z̄v(k)− R̄vx(k + 1)G(k)u(k)

zx(k + 1)−R∗xx(k + 1)G(k)u(k)

]
=

[
R̄vv(k) + R̄xx(k + 1)Γ(k) R̄vx(k + 1)F (k)

R∗xx(k + 1)Γ(k) R∗xx(k + 1)F (k)

] [
v(k)
x(k)

]
+

[
w̄v(k)

w∗x(k + 1)

]
where [

w̄v(k)
w∗x(k + 1)

]
∼ N (0, I)

To avoid inverting the coefficient matrix, we can QR factorize it by finding an orthonormal
Tc(k) ∈ R(nx+nv)×(nx+nv) and upper triangular, non-singular R∗vv(k) ∈ Rnv×nv and R∗xx(k) ∈
Rnx×nx such that[

R̄vv(k) + R̄xx(k + 1)Γ(k) R̄vx(k + 1)F (k)
R∗xx(k + 1)Γ(k) R∗xx(k + 1)F (k)

]
= Tc(k)T

[
R∗vv(k) R∗vx(k)

0 R∗xx(k)

]
The transformed, smoothed noise and state are given by[

z∗v(k)
z∗x(k)

]
= Tc(k)

[
z̄v(k)− R̄vx(k + 1)G(k)u(k)

z∗x(k + 1)−R∗xx(k + 1)G(k)u(k)

]
With R∗vv(k), R∗xx(k), z∗v(k) and z∗x(k), we can recover the smoothed disturbance and state
and their covariances.

7.3.2 SRIS summary

The SRIS algorithm is:

1. forward (filtering) pass: given x̂(0) and P (0), solve the SRIF problem and store
R̄vv(k), R̄vx(k), R̄xx(k), z̄v(k) for each k. Also store Rxx(N) and zx(N).

2. backward (smoothing) pass

(a) Initialize z∗x(N) = zx(N) and R∗xx(N) = Rxx(N) and compute

x∗(N) = R∗xx(N)−1z∗x(N)

P ∗(N) = R∗xx(N)−1R∗xx(N)−T

54



(b) set k = N − 1

(c) eliminate x(k + 1) from the SRIE system

i. QR factorization: find an orthonormal Tc(k) ∈ R(nx+nv)×(nx+nv) and upper
triangular, non-singular R∗vv(k) ∈ Rnv×nv and R∗xx(k) ∈ Rnx×nx such that

Tc(k)T
[
R∗vv(k) R∗vx(k)

0 R∗xx(k)

]
=

[
R̄vv(k) + R̄xx(k + 1)Γ(k) R̄vx(k + 1)F (k)

R∗xx(k + 1)Γ(k) R∗xx(k + 1)F (k)

]
ii. Compute the transformed, smoothed disturbance and state:[

z∗v(k)
z∗x(k)

]
= Tc(k)

[
z̄v(k)− R̄vx(k + 1)G(k)u(k)

z∗x(k + 1)−R∗xx(k + 1)G(k)u(k)

]
(d) recover the smoothed state and its covariance:

x∗(k) = R∗xx(k)−1z∗x(k)

P ∗(k) = R∗xx(k)−1R∗xx(k)−T

and (if desired) the smoothed disturbance and associated covariances:

v∗(k) = R∗vv(k)−1
[
z∗v(k)−R∗vx(k)x∗(k)

]
P ∗vv(k) = R∗vv(k)−1

[
I +R∗vx(k)R∗xx(k)−1R∗xx(k)−TR∗vx(k)T

]
R∗vv(k)−T

P ∗vx(k) = −R∗vv(k)−1R∗vx(k)R∗xx(k)−1R∗xx(k)−T

(e) if k = 0, stop; otherwise, decrement k and go to (c)

NB. The smoothed disturbances may be useful for refining the probabilistic model of
the state disturbance, which in most applications is not particularly well modeled.

55



8 State estimation in stochastic nonlinear dynamical

systems

The filtering and smoothing algorithms developed in sections 5, 6 and 7 apply only to
discrete-time systems that

• have linear dynamics and linear measurement maps

• contain only Gaussian random variables

In practice, however, one often encounters systems where either the dynamics or the mea-
surement map is nonlinear. In such cases, even if all the variables injected into the system
– the initial state and the disturbance and noise sequences – are Gaussian, the state and
measurements will not, in general, be Gaussian.

This section will develop state estimation techniques for such systems. We’ll begin by
showing how to discretize a continuous-time nonlinear stochastic system, then we’ll develop
the following nonlinear filters:

• the extended Kalman filter

• the iterated extended Kalman filter

• the unscented Kalman filter

• the particle filter

8.1 Discretization of nonlinear differential equations

Consider the nonlinear differential equation

ẋ(t) = f (t,x(t),u(t), ṽ(t)) (7)

where the disturbance sequence is zero mean and white:

E[ṽ(t)] = 0, E[ṽ(t)ṽ(τ)T ] = δ(t− τ)Q̃(t)

We restrict our attention to systems where the disturbance enters only as an additive3 linear
combination, i.e. to systems where

f (t,x(t),u(t), ṽ(t)) = ψ(t,x(t),u(t)) +D(t)ṽ(t)

for some nonlinear function ψ : R×Rnx ×Rnu and some matrix D(t) ∈ Rnx ×Rnv .

3Since continuous white noise has infinite (delta-function) covariance, theoretical problems may arise if
it enters nonlinearly.

56



Note that the scripted symbol f is not the same as the printed symbol f . The scripted
version denotes the continuous-time dynamics map. The printed version will represent the
dynamics map of the discretized system.

In the sequel we will show how to convert the ODE (7) into a difference equation. Note
that a nonlinear continuous-time measurement map can be discretized using the methods in
Section 4.2.2.

Suppose we divide up the time axis into uniform intervals of length ∆t, and we apply to
system (7) the zero-order hold controls

u(t) =



...

u(k − 1), t ∈ [(k − 1)∆t, k∆t)

u(k), t ∈ [k∆t, (k + 1)∆t)

u(k + 1), t ∈ [(k + 1)∆t, (k + 2)∆t)
...

Suppose as well that at t = k∆t, we know the true state x(k∆t) ≡ x(k) exactly. If
we can find an expression for x((k + 1)∆t) ≡ x(k + 1) in terms of x(k), then we will have
discretized the continuous-time dynamics.

If ∆t is small, then we can plausibly model the true, time-varying disturbance ṽ(t) as
approximately constant over each time step,

ṽ(t) ≈



...

v(k − 1), t ∈ [(k − 1)∆t, k∆t)

v(k), t ∈ [k∆t, (k + 1)∆t)

v(k + 1), t ∈ [(k + 1)∆t, (k + 2)∆t)
...

where the v(k) are zero mean and white,

E[v(k)] = 0, E[v(k)v(j)T ] = δkjQ(k)

NB. By comparing the random components of the forward Euler approximation of the
dynamics in 7 and the random component of the approximate dynamics of xk(t) derived
below, one can show that the correct covariance relationship (for small ∆t) is

Q(k) =
1

∆t
Q̃(k∆t)

Let xk(t) be the approximate state of the system driven by the approximate noise v(k)
during the kth time step, t ∈ [k∆t, (k + 1)∆t). Note that xk(t) 6= x(t) in general. Although
both x(t) and xk(t) are driven by the zero-order hold control u(k), the true state x(t) is
driven by the true disturbance ṽ(t) which may vary between t = k∆t and t = (k+ 1)∆t. On

57



the other hand, the approximate state xk(t) is driven by the approximate noise v(k), which
is constant throughout the kth time step.

Given these definitions, we can propagate xk(t) forward in time by solving the IVP

ẋk(t) = f (t,xk(t),u(k),v(k))

xk(k∆t) = x(k)
(8)

There are fast, accurate techniques for solving such nonlinear IVPs. The most popular is
the Runge-Kutta fourth-order method.

If the dynamics function f is known for all t ∈ [k∆t, (k + 1)∆t), then we can consider
this procedure of numerical integration as a function that takes as inputs

• the initial condition x(k)

• the control u(k)

• the disturbance v(k)

and that produces the output x(k+ 1). Thus, numerical integration (along with the approx-
imation of ṽ(t)) serves exactly the role of f in the nonlinear difference equation

x(k + 1) = f(k,x(k),u(k),v(k))

so our task of discretizing the nonlinear ODE is complete.

8.1.1 Derivatives of the discrete-time dynamics

In nonlinear filtering algorithms for discrete-time systems, we’ll also need the partial deriva-
tives of the discrete-time dynamics function f with respect to x(k) and v(k). These will serve
roles analogous to those of F (k) and Γ(k) in the covariance dynamic propagation formula.

Differentiating the differential equation in (8) with respect to x(k) gives

∂

∂x(k)

[
ẋk(t)

]
=

∂

∂x(k)

[
f (t,xk(t),u(k),v(k))

]
⇐⇒ d

dt

[
∂xk(t)

∂x(k)

]
=

∂

∂xk(t)

[
f (t,xk(t),u(k),v(k))

][
∂xk(t)

∂x(k)

]
Differentiating the initial condition with respect to x(k) gives

∂

∂x(k)

[
xk(k∆t)

]
=

∂

∂x(k)

[
x(k)

]
= I

For convenience, let

A(t) =
∂

∂xk(t)

[
f (t,xk(t),u(k),v(k))

]
∈ Rnx×nx

58



Then we have the following IVP for the desired partial derivative,

d

dt

[
∂xk(t)

∂x(k)

]
= A(t)

∂xk(t)

∂x(k)

∂xk(t)

∂x(k)

∣∣∣∣
k∆t

= I

which is a state transition IVP like the one in section 5. We can numerically integrate
forward in time to t = (k + 1)∆t, and then set

∂xk(t)

∂x(k)

∣∣∣∣
t=(k+1)∆t

≡ ∂

∂x(k)
f(k,x(k),u(k),v(k))

which gives the partial of the discrete-time dynamics with respect to x(k).
We can find the partial of f with respect to v(k) similarly. Differentiating the ODE in

(8) with respect to v(k) gives

∂

∂v(k)

[
ẋk(t)

]
=

∂

∂v(k)

[
f (t,xk(t),u(k),v(k))

]
⇐⇒ d

dt

[
∂xk(t)

∂v(k)

]
=

∂

∂xk(t)

[
f (t,xk(t),u(k),v(k))

][
∂xk(t)

∂v(k)

]
+

∂

∂v(k)

[
f (t,xk(t),u(k),v(k))

]
⇐⇒ d

dt

[
∂xk(t)

∂v(k)

]
= A(t)

∂xk(t)

∂v(k)
+D(t)

Differentiating the initial condition gives

∂

∂v(k)

[
xk(k∆t)

]
=

∂

∂v(k)

[
x(k)

]
= 0

Thus, we have another matrix IVP:

d

dt

[
∂xk(t)

∂v(k)

]
= A(t)

∂xk(t)

∂v(k)
+D(t)

∂xk(t)

∂v(k)

∣∣∣∣
k∆t

= 0

which we can numerically integrate to produce

∂xk(t)

∂v(k)

∣∣∣∣
t=(k+1)∆t

≡ ∂

∂v(k)
f(k,x(k),u(k),v(k))

59



8.1.2 One-shot discretization algorithm

This subsection presents an algorithm for simultaneously computing the discretized dynamics
map and its partials with respect to x(k) and v(k).

For convenience, define the following column decompositions:

∂xk(t)

∂x(k)
=
[
φ1(t) φ2(t) . . . φnx

(t)
]
∈ Rnx×nx

where φj(t) ∈ Rnx , and

∂xk(t)

∂v(k)
=
[
γ1(t) γ2(t) . . . γnv

(t)
]
∈ Rnx×nv

where γj(t) ∈ Rnx .
Define the stacked vector

xbig(t) =



xk(t)
φ1(t)

...
φnx

(t)
γ1(t)

...
γnv

(t)


∈ Rnx(1+nx+nv)

We will numerically integrate a single IVP for xbig(t) to produce xbig((k+ 1)∆t). Define
the standard Cartesian basis vectors ej ∈ Rnx such that[

e1 e2 . . . enx

]
= I

Then the initial condition for the IVP is

xbig(k∆t) =



x(k)
e1
...

enx

0
...
0


We also need the lifted continuous-time dynamics map f big such that

ẋbig = f big(t,xbig(t),u(k),v(k))

60



With the above definition of A(t),

A(t) =
∂

∂xk(t)

[
f (t,xk(t),u(k),v(k))

]
∈ Rnx×nx

and with the decomposition of the disturbance matrix D(t),

D(t) =
[
d1(t) d2(t) . . . dnv(t)

]
∈ Rnx×nv

where dj(t) ∈ Rnx , the lifted dynamics map is

f big(t,xbig(t),u(k),v(k)) =



f (t,xk(t),u(k),v(k))
A(t)φ1(t)

...
A(t)φnx

(t)
A(t)γ1(t) + d1(t)

...
A(t)γnv

(t) + dnv(t)


This gives us an IVP in xbig(t) that we can numerically integrate to produce xbig((k +

1)∆t), which contains all useful information for the discretized nonlinear dynamical system.

8.2 The extended Kalman filter

Consider the nonlinear system defined for k ∈ {0, . . . , N − 1},

x(k + 1) = f(k,x(k),u(k),v(k))

z(k + 1) = h(k + 1,x(k + 1)) + w(k + 1)
(9)

where the disturbance and noise sequences are zero mean and white,

E[v(k)] = 0, E[v(k)v(j)T ] = δkjQ(k)

E[w(k)] = 0, E[w(k)w(j)T ] = δkjR(k)

Note that such a system may be defined directly, or may be the result of discretizing a
continuous-time nonlinear system.

The extended Kalman filter (EKF) is the simplest nonlinear filter for this problem. It
relies on a Taylor series expansion of the dynamics and measurement map about the current
state estimate. This section presents the first-order EKF algorithm, although a second-order
EKF algorithm also exists. The first-order EKF keeps only first-order terms in the Taylor
expansion. The second-order EKF keeps terms up to second order.

61



8.2.1 EKF derivation

While the optimal estimator for the nonlinear dynamical system (9) is likely a nonlinear
function of the measurements, we can calculate the LMMSE estimator using the fundamental
equations of linear estimation, cf. Section 2.1.

The LMMSE equations are

x̂(k + 1) = x̄(k + 1) + Pxz(k + 1)Pzz(k + 1)−1[z(k + 1)− z̄(k + 1)]

P (k + 1) = P̄ (k + 1)− P̄xz(k + 1)P̄zz(k + 1)−1P̄xz(k + 1)T

For a general nonlinear system, the above expectations and MSE matrices may be difficult
to compute. In the EKF, we simplify the calculations by Taylor expanding f and h and
keeping only higher order terms.

If the true state x(k) and the true disturbance v(k) are “close” to x̂(k) and E[v(k)] = 0
– meaning the MSE matrix P (k) and the disturbance covariance Q(k) are “small” in some
matrix sense – then the first-order Taylor expansion of f about x̂(k) and v(k) = 0 should
be a reasonable approximation of f . Given this approximation, the state prediction is

x̄(k + 1) = E[f(k,x(k),u(k),v(k))|zk]

≈ E[f(k, x̂(k),u(k),0) +
∂f

∂x

∣∣∣∣
k

[x(k)− x̂(k)]

+
∂f

∂v

∣∣∣∣
k

[v(k)− 0) |zk]

= f(k, x̂(k),u(k),0)

where the last line follows from the fact that E[x(k)|zk] = x̂(k) and E[v(k)|zk] = 0.
A similar calculation gives the prediction MSE

P̄ (k + 1) = F (k)P (k)F (k)T + Γ(k)Q(k)Γ(k)T

where we define

F (k) =
∂

∂x(k)
f(k,x(k),u(k),v(k))

∣∣∣∣
k,x̂(k),u(k),v(k)=0

Γ(k) =
∂

∂v(k)
f(k,x(k),u(k),v(k))

∣∣∣∣
k,x̂(k),u(k),v(k)=0

The above are the desired formulas for x̄(k+ 1) and P̄ (k+ 1). In the LMMSE equations,
we also need to compute z̄(k + 1) and the associated MSE matrices.

If P̄ (k + 1) is “small”, then the first-order Taylor expansion of the measurement map
about x̄(k + 1) should be a reasonable approximation of h. Given this approximation, the

62



predicted measurement is

z̄(k + 1) = E[h(k + 1,x(k + 1)) + w(k + 1)|zk]
= E[h(k + 1,x(k + 1))|zk]

≈ E[h(k + 1, x̄(k + 1)) +
∂h

∂x(k + 1)

∣∣∣∣
k+1

[x(k + 1)− x̄(k + 1)]|zk]

= h(k + 1, x̄(k + 1))

where the last follows from the fact that E[x(k + 1)|zk] = x̄(k + 1).
Similar calculations give the MSE matrices

P̄xz(k + 1) = P̄ (k + 1)H(k + 1)T

P̄zz(k + 1) = H(k + 1)P̄ (k + 1)H(k + 1)T +R(k + 1)

where we define

H(k + 1) =
∂

∂x(k + 1)
h(k + 1,x(k + 1))

∣∣∣∣
k+1,x̄(k+1)

This concludes the derivation of the EKF, interpreted as the LMMSE estimator using
first-order Taylor approximations of the dynamics and measurement maps.

8.2.2 EKF algorithm

The EKF can be put into a form that closely resembles the KF algorithm in Section 5. Given
the mean x̂(0) and covariance P (0) of the initial state, the EKF algorithm is

1. set k = 0

2. dynamic propagation

(a) predict the next state

x̄(k + 1) = f(k, x̂(k),u(k),0)

(b) calculate the MSE of this prediction

P̄ (k + 1) = F (k)P (k)F (k)T + Γ(k)Q(k)Γ(k)T

where

F (k) =
∂

∂x(k)
f(k,x(k),u(k),v(k))

∣∣∣∣
k,x̂(k),u(k),v(k)=0

Γ(k) =
∂

∂v(k)
f(k,x(k),u(k),v(k))

∣∣∣∣
k,x̂(k),u(k),v(k)=0

63



3. measurement update

(a) predict the measurement

z̄(k + 1) = h(k + 1, x̄(k + 1))

(b) calculate the MSE of this prediction

P̄zz(k + 1) ≡ S(k + 1) = H(k + 1)P̄ (k + 1)H(k + 1)T +R(k + 1)

where

H(k + 1) =
∂

∂x(k + 1)
h(k + 1,x(k + 1))

∣∣∣∣
k+1,x̄(k+1)

(c) measure z(k + 1) and calculate the innovation

ν(k + 1) = z(k + 1)− z̄(k + 1)

(d) calculate the filter gain

W (k + 1) = P̄ (k + 1)H(k + 1)TS(k + 1)−1

(e) update the state estimate

x̂(k + 1) = x̄(k + 1) +W (k + 1)ν(k + 1)

(f) update the state estimate MSE

P (k + 1) = P̄ (k + 1)−W (k + 1)S(k + 1)W (k + 1)T

4. increment k and return to step 2

8.2.3 Remarks

• Since the estimates x̂(k) and predictions x̄(k+1) and z̄(k+1) depend on linearizations
of the dynamics and measurement maps, they will probably be biased. The associated
error matrices are therefore MSEs, not covariances.

• In the EKF, the matrices F (k) and Γ(k) are calculated at each stage by evaluating the
Jacobians of f with respect to x(k) and v(k), respectively, at the state estimate x̂(k)
and the mean disturbance v(k) = 0.

Similarly, the matrix H(k+1) is calculated by evaluating the Jacobian of h with respect
to x(k + 1) at the predicted state x̄(k + 1).

Although the Jacobians of f and h can be computed symbolically in advance, the
state estimates x̂(k) and predictions x̄(k + 1) are not known in advance. Thus, unlike
the covariance calculations in the KF, the MSE calculations in the EKF cannot be
computed offline.

• Much like the KF, the EKF can run into problems with numerical stability and with
initialization. The extended square root information filter (ESRIF) fixes these
problems.

64



8.2.4 ESRIF derivation

Just as the EKF looks a lot like the KF, the ESRIF looks a lot like the SRIF in Chapter
6. It follows the same principles: only admit random variables with zero mean and identity
covariance, and only manipulate matrices by orthonormal transformations.

As with the SRIF, the starting point of the ESRIF are the SRIEs

0 = Rvv(k)v(k) + wv(k)

zx(k) = Rxx(k)x(k) + wx(k)

where Rvv(k)TRvv(k) = Q(k)−1 and Rxx(k)TRxx(k) = P (k)−1.
In the dynamic propagation step, we seek an expression for z̄x(k + 1) in terms of zx(k)

and Rxx(k).
Suppose there exists an inverse dynamics map f−1 such that

f−1(k, f(k,x(k),u(k),v(k)),u(k),v(k)) = x(k)

Then we can eliminate x(k) from the SRIEs:

0 = Rvv(k)v(k) + wv(k)

zx(k) = Rxx(k)f−1(k,x(k + 1),u(k),v(k)) + wx(k)

The linear approximation of f−1(k,x(k + 1),u(k),v(k)), for x(k + 1) near x̄(k + 1) and
for v(k) near 0, is

f−1(k,x(k + 1),u(k),v(k)) ≈ f−1(k, x̄(k + 1),u(k),v(k))

+
∂f−1

∂x(k + 1)

∣∣∣∣
k

[
x(k + 1)− x̄(k + 1)

]
+

∂f−1

∂v(k)

∣∣∣∣
k

v(k)

where f−1(k, x̄(k + 1),u(k),v(k)) = x̂(k), by the definition of f−1 and the fact that in the
EKF, x̄(k + 1) = f(k, x̂(k),u(k),v(k)).

By applying the chain rule, one can show that

∂f−1

∂x(k + 1)
=

(
∂f

∂x(k)

)−1

∂f−1

∂v(k)
= −

(
∂f

∂x(k)

)−1
∂f

∂v(k)

so, using the definitions of F (k) and Γ(k) from the EKF derivation, the linearized inverse
dynamics are

f−1(k,x(k + 1),u(k),v(k)) ≈ x̂(k) + F (k)−1
[
x(k + 1)− x̄(k + 1)

]
− F (k)−1Γ(k)v(k)

65



The linearized SRIEs are therefore

0 = Rvv(k)v(k) + wv(k)

zx(k) = Rxx(k)
{

x̂(k) + F (k)−1
[
x(k + 1)− x̄(k + 1)

]
− F (k)−1Γ(k)v(k)

}
+ wx(k)

Noting that Rxx(k)x̂(k) = zx(k + 1), the linearized SRIEs in matrix form are[
0

Rxx(k)F (k)−1f(k,Rxx(k)−1zx(k),u(k),0)

]
=

[
Rvv(k) 0

−Rxx(k)F (k)−1Γ(k) Rxx(k)F (k)−1

]
∗
[

v(k)
x(k + 1)

]
+

[
wv(k)
wx(k)

]
To avoid inverting the coefficient matrix, we QR-factorize it, i.e. we find an orthonor-

mal matrix Ta(k)T ∈ R(nx+nv)×(nx+nv) and upper triangular matrices R̄vv(k) ∈ Rnv×nv and
R̄xx(k + 1) ∈ Rnx×nx such that

[
Rvv(k) 0

−Rxx(k)F (k)−1Γ(k) Rxx(k)F (k)−1

]
= Ta(k)T

[
R̄vv(k) R̄vx(k + 1)

0 R̄xx(k + 1)

]
Multiplying both sides of the linearized SRIE system by Ta(k) gives[

z̄v(k)
z̄x(k + 1)

]
=

[
R̄vv(k) R̄vx(k + 1)

0 R̄xx(k + 1)

] [
v(k)

x(k + 1)

]
+

[
w̄v(k)

w̄x(k + 1)

]
where [

z̄v(k)
z̄x(k + 1)

]
= Ta(k)

[
0

Rxx(k)F (k)−1f(k,Rxx(k)−1zx(k),u(k),0)

]
[

w̄v(k)
w̄x(k + 1)

]
= Ta(k)

[
wv(k)
wx(k)

]
This completes the dynamic propagation step: we have the prediction z̄x(k+ 1) in terms

of zx(k) and Rxx(k). We also have z̄v(k) for later use in smoothing.
In the measurement update step, we seek expressions for zx(k + 1) and Rxx(k + 1) in

terms of zx(k) and intermediate matrices from the dynamic propagation step.
We’ll use the Cholesky factorizations of the noise covariance matrices,

Ra(k + 1)TRa(k + 1) = R(k + 1)

where Ra(k + 1) ∈ Rnz×nz is upper triangular and non-singular.
Under the transformations

za(k + 1) = Ra(k + 1)−Tz(k + 1) ∈ Rnz

wa(k + 1) = Ra(k + 1)−Tw(k + 1) ∈ Rnz

ha(k + 1,x(k + 1)) = Ra(k + 1)−Th(k + 1,x(k + 1)) ∈ Rnz×nx

66



the measurement model becomes

za(k + 1) = ha(k + 1,x(k + 1)) + wa(k + 1)

In the neighborhood of x̄(k + 1), the linearized measurement map is

ha(k + 1,x(k + 1)) ≈ ha(k + 1, x̄(k + 1)) +
∂ha

∂x(k + 1)

∣∣∣∣
k+1,x̄(k+1)

[
x(k + 1)− x̄(k + 1)

]
= ha(k + 1, x̄(k + 1)) +Ra(k + 1)−TH(k + 1)

[
x(k + 1)− x̄(k + 1)

]
where we used the EKF definition of H(k + 1).

Combining the state SRIE and the linearized measurement equation gives the system[
z̄x(k + 1)

za(k + 1)− ha(k + 1, x̄(k + 1)) +Ha(k + 1)x̄(k + 1)

]
=

[
R̄xx(k + 1)
Ha(k + 1)

]
x(k+1)+

[
w̄x(k + 1)
wa(k + 1)

]
where we can calculate x̄(k + 1) by propagating the transformed estimate through the dy-
namics map, assuming no noise:

x̄(k + 1) = f(k,Rxx(k + 1)−1zx(k),u(k),0)

To avoid inverting the coefficient matrix, we can QR factorize it by finding an orthonormal
Tb(k + 1) ∈ R(nx+nv)×(nx+nv) and upper triangular, non-singular Rxx(k + 1) ∈ Rnx×nx such
that [

R̄xx(k + 1)
Ha(k + 1)

]
= Tb(k + 1)T

[
Rxx(k + 1)

0

]
The SRIE-measurement system then becomes[

zx(k + 1)
zr(k + 1)

]
=

[
Rxx(k + 1)

0

]
x(k + 1) +

[
wx(k + 1)
wr(k + 1)

]
where [

zx(k + 1)
zr(k + 1)

]
= Tb(k + 1)

[
z̄x(k + 1)

za(k + 1)− ha(k + 1, x̄(k + 1)) +Ha(k + 1)x̄(k + 1)

]
[
wx(k + 1)
wr(k + 1)

]
= Tb(k + 1)

[
w̄x(k + 1)
wa(k + 1)

]
8.2.5 ESRIF algorithm

Given Rxx(0)TRxx(0) = I(0) and zx(0) = Rxx(0)x̂(0), the ESRIF algorithm is:

1. offline calculations

(a) derive expressions for the Jacobians ∂f
∂x(k)

, ∂f
∂v(k)

, and ∂h
∂x(k+1)

67



(b) disturbance Cholesky factorization: for each k, find an upper triangular Rvv(k) ∈
Rnv×nv such that

Rvv(k)TRvv(k) = Q(k)−1

(c) noise Cholesky factorization: for each k, find an upper triangular Ra(k) ∈ Rnz×nz

such that
Ra(k)TRa(k) = R(k)

2. set k = 0

3. dynamic propagation

(a) evaluate the Jacobians

F (k) =
∂f

∂x(k)

∣∣∣∣
k,x̂(k),u(k),v(k)=0)

Γ(k) =
∂f

∂v(k)

∣∣∣∣
k,x̂(k),u(k),v(k)=0)

where x̂(k) = Rxx(k)−1zx(k)

(b) QR factorization: find an orthonormal matrix Ta(k)T ∈ R(nx+nv)×(nx+nv) and
upper triangular matrices R̄vv(k) ∈ Rnv×nv and R̄xx(k + 1) ∈ Rnx×nx such that

[
Rvv(k) 0

−Rxx(k)F (k)−1Γ(k) Rxx(k)F (k)−1

]
= Ta(k)T

[
R̄vv(k) R̄vx(k + 1)

0 R̄xx(k + 1)

]
(c) predict the (transformed) state

[
z̄v(k)

z̄x(k + 1)

]
= Ta(k)

[
0

Rxx(k)F (k)−1f(k, x̂(k),u(k),0)

]
4. measurement update

(a) evaluate the (transformed) Jacobian

Ha(k + 1) = Ra(k + 1)−T
∂h

∂x(k + 1)

∣∣∣∣
k+1,x̄(k+1)

where x̄(k + 1) = f(k,Rxx(k)−1zx(k),u(k),0)

(b) QR factorization: find an orthonormal Tb(k + 1) ∈ R(nx+nv)×(nx+nv) and upper
triangular, non-singular Rxx(k + 1) ∈ Rnx×nx such that[

R̄xx(k + 1)
Ha(k + 1)

]
= Tb(k + 1)T

[
Rxx(k + 1)

0

]

68



(c) compute the (transformed) state estimate[
zx(k + 1)
zr(k + 1)

]
= Tb(k + 1)

[
z̄x(k + 1)

za(k + 1)− ha(k + 1, x̄(k + 1)) +Ha(k + 1)x̄(k + 1)

]
5. inverse transformation

(a) recover the state estimate

x̂(k + 1) = Rxx(k + 1)−1zx(k + 1)

(b) recover the state estimation error covariance

P (k + 1) = Rxx(k + 1)−1Rxx(k + 1)−T

6. increment k and return to step 3

8.2.6 Alternate interpretation of the EKF

In Section 8.2.1, we interpreted the EKF as the LMMSE state estimator using first-order
Taylor approximations of the dynamics and measurement maps. An alternate interpretation
of the EKF is to consider each iteration as a single Gauss-Newton step in the direction of
the MAP state estimate.

Suppose that we can reasonably model the state of system (9) as Gaussian. This is a
big supposition. Even if all random variables injected into the system (x(0), v(0), w(0),
v(1), w(1), . . . ) are Gaussian, the state of the system for k ≥ 1 will almost certainly not
be Gaussian. This is because the nonlinear transformation f does not, in general, preserve
normality.

Still, many non-Gaussian distributions look approximately Gaussian. If the Gaussian
assumption on x(k+1) is reasonable, then the cost Ja in Section 5.6 (the MAP derivation of
the KF) approximates the negative natural logarithm of the posterior pdf of x(k + 1). This
suggests that we can compute a suboptimal a priori estimate of x(k + 1) by minimizing Ja.

In the MAP KF derivation, we eliminated x(k) from Ja by using the inverse dynamics.
Suppose that in the nonlinear system (9), the dynamics map f has an inverse, in the sense
that

x(k) = f−1(k,x(k + 1),u(k),v(k))

⇐⇒ x(k + 1) = f(k, f−1(k,x(k + 1),u(k),v(k)),u(k),v(k))

If such an inverse exists, then we can use it to eliminate x(k) from Ja. This lets us define
the cost

Jb(v(k),x(k + 1), k) = Ja(f
−1(k,x(k + 1),u(k),v(k)),v(k),x(k + 1), k)

69



If we examine the structure of Jb, we see that it’s a weighted least squares cost function of
the nonlinear algebraic equations

f−1(k,x(k + 1),u(k),v(k))− x̂(k) = 0 weighted by P (k)−1

v(k) = 0 weighted by Q(k)−1

z(k + 1)− h(k + 1,x(k + 1)) = 0 weighted by R(k + 1)−1

In section 3.1.2, we developed the Gauss-Newton method for solving such nonlinear least
squares problems. The Gauss-Newton method begins by linearizing the system about an
initial guess, in this case x(k + 1) = x̄(k + 1) and v(k) = 0. The linearized system is

f−1(k, x̄(k + 1),u(k),0) +
∂f−1

∂x(k + 1)

∣∣∣∣
k,x̄(k+1),u(k),v(k)=0

[
x(k + 1)− x̄(k + 1)

]
+
∂f−1

∂v(k)

∣∣∣∣
k,x̄(k+1),u(k),v(k)=0

[
v(k)− 0

]
− x̂(k) = 0

v(k) = 0

z(k + 1)− h(k + 1,x(k + 1))− ∂h

∂x(k + 1)

∣∣∣∣
k+1,x̄(k+1)

[
x(k + 1)− x̄(k + 1)

]
= 0

Noting that
f−1(k, x̄(k + 1),u(k),0) = x̂(k)

and defining

F (k)−1 ≡ ∂f−1

∂x(k + 1)

∣∣∣∣
k,x̄(k+1),u(k),v(k)=0

−F (k)−1Γ(k) ≡ ∂f−1

∂v(k)

∣∣∣∣
k,x̄(k+1),u(k),v(k)=0

H(k + 1) ≡ ∂h

∂x(k + 1)

∣∣∣∣
k+1,x̄(k+1)

z̄(k + 1) ≡ h(k + 1, x̄(k + 1))

the linearized system becomes

F (k)−1
[
x(k + 1)− x̄(k + 1)

]
− F (k)−1Γ(k)v(k) = 0 weighted by P (k)−1

v(k) = 0 weighted by Q(k)−1

z(k + 1)− z̄(k + 1)−H(k + 1)
[
x(k + 1)− x̄(k + 1)

]
= 0 weighted by R(k + 1)−1

With these definitions, the weighted nonlinear least squares cost Jb takes on the exact same
form as in the MAP KF derivation, so minimizing it produces the EKF analogs of the KF
equations.

70



The punchline: if the state of (9) is approximately Gaussian distributed, then an iteration
of the EKF can be interpreted as a single Gauss-Newton step in the direction of the MAP
state estimate, starting from the initial guess[

x(k + 1)
v(k)

]
=

[
x̄(k + 1)

0

]
This motivates our next nonlinear filtering algorithm, the iterated EKF, which takes

multiple Gauss-Newton steps during each measurement update iteration.

8.3 The iterated EKF

The iterated, extended Kalman filter (IEKF) improves upon the accuracy of the EKF
by taking multiple Gauss-Newton steps during each filter iteration. This comes at a com-
putational cost, of course. There are two common versions of the IEKF: the classical IEKF
and the backward smoothing IEKF. The former is only modestly slower than the EKF, but
the latter can be hundreds of times slower.

In the MAP KF derivation, we took the negative logarithm of the a priori pdf, used
the inverse dynamics to eliminate x(k), and then minimized over v(k). The resulting cost
function was

Jc(x(k + 1), k + 1) =
1

2

[
x(k + 1)− x̄(k + 1)

]T
P̄ (k + 1)−1

[
x(k + 1)− x̄(k + 1)

]
+

1

2

[
z(k + 1)− h(k + 1,x(k + 1))

]T
R(k + 1)−1

[
z(k + 1)− h(k + 1,x(k + 1))

]
In both versions of the IEKF, we perform the dynamic propagation step as in the EKF, but
in the measurement update step we take additional Gauss-Newton steps until we converge
to a local minimum of Jc.

8.3.1 The classical IEKF

Let x̂i(k + 1) be the estimate of x(k + 1) during the ith Gauss-Newton iteration in the
measurement update step, initialized by x̂0(k + 1) = x̄(k + 1). Letting

H i(k + 1) =
∂h

∂x(k + 1)

∣∣∣∣
k+1,x̂i(k+1)

the measurement map, linearized about the ith estimate, is

h(k + 1,x(k + 1)) ≈ h(k + 1, x̂i(k + 1)) +H i(k + 1)
[
x(k + 1)− x̂i(k + 1)

]
= 0

Plugging this into Jc gives the linearized cost at the ith Gauss-Newton iteration,

Jc(x̂
i(k + 1), k + 1) =

1

2

[
x̂i(k + 1)− x̄(k + 1)

]T
P̄ (k + 1)−1

[
x̂i(k + 1)− x̄(k + 1)

]
+

1

2

{
z(k + 1)− h(k + 1, x̂i(k + 1))−H i(k + 1)

[
x(k + 1)− x̂i(k + 1)

]}T
∗R(k + 1)−1

{
z(k + 1)− h(k + 1, x̂i(k + 1))−H i(k + 1)

[
x(k + 1)− x̂i(k + 1)

]}

71



Applying the FOC to Jc gives the update equation for the Gauss-Newton guess,

x̂i+1(k + 1) = x̂i(k + 1)

+ αP i(k + 1)H i(k + 1)TR(k + 1)−1
[
z(k + 1)− h(k + 1, x̂i(k + 1))

]
+ αP i(k + 1)P̄ (k + 1)−1

[
x̄(k + 1)− x̂i(k + 1)

]
where

P i(k + 1) =
[
P̄ (k + 1)−1 +H i(k + 1)TR(k + 1)−1H i(k + 1)

]−1

We can iterate these equations until the Gauss-Newton algorithm converges, i.e. until
Jc(x̂

i(k + 1), k + 1) = Jc(x̂
i−1(k + 1), k + 1) to within some tolerance.

Given the mean x̂(0) and covariance P (0) of the initial state, and for Gauss-Newton
parameters αmin and imax, the classical IEKF algorithm is

1. set k = 0

2. dynamic propagation

(a) predict the next state

x̄(k + 1) = f(k, x̂(k),u(k),0)

(b) calculate the MSE of this prediction

P̄ (k + 1) = F (k)P (k)F (k)T + Γ(k)Q(k)Γ(k)T

where

F (k) =
∂f

∂x(k)

∣∣∣∣
k,x̂(k),u(k),v(k)=0

Γ(k) =
∂f

∂v(k)

∣∣∣∣
k,x̂(k),u(k),v(k)=0

3. measurement update

(a) measure z(k + 1)

(b) apply the Gauss-Newton method:

i. set i = 0 and initialize x̂i(k + 1) = x̄(k + 1)

ii. evaluate the Jacobian iterate

H i(k + 1) =
∂h

∂x(k + 1)

∣∣∣∣
k+1,x̂i(k+1)

iii. compute the MSE iterate

P i(k + 1) =
[
P̄ (k + 1)−1 +H i(k + 1)TR(k + 1)−1H i(k + 1)

]−1

72



iv. set α = 1

v. if α ≤ αmin, go to 3c

vi. compute the state estimation iterate

x̂i+1(k + 1) = x̂i(k + 1)

+ αP i(k + 1)H i(k + 1)TR(k + 1)−1
[
z(k + 1)− h(k + 1, x̂i(k + 1))

]
+ αP i(k + 1)P̄ (k + 1)−1

[
x̄(k + 1)− x̂i(k + 1)

]
vii. if Jc(x̂

i+1(k + 1), k + 1) > Jc(x̂
i(k + 1), k + 1), halve α and go to step 3(b)vi

viii. if i = imax, go to 3c; otherwise, increment i and go to step 3(b)ii

(c) update the state estimate

x̂(k + 1) = x̂i(k + 1)

(d) update the state estimation MSE

P (k + 1) = P i(k + 1)

4. increment k and return to step 2

8.3.2 The IESRIF

The IEKF can run into the initialization and numerical problems common to the Kalman
filter. As usual, our solution to these problems is to work with information matrices and to
use square-root methods. The version of the IEKF that this produces is called the iterated,
extended square-root information filter (IESRIF).

The IESRIF uses the same dynamic propagation step as the ESRIF in Section 8.2.4, but
modifies the measurement update to incorporate multiple Gauss-Newton iterations.

With the definitions

R̄xx(k + 1)T R̄xx(k + 1) = P̄ (k + 1)

z̄x(k + 1) = R̄xx(k + 1)x̄(k + 1)

Ra(k + 1)−TRa(k + 1)−1 = R(k + 1)−1

za(k + 1) = Ra(k + 1)−Tz(k + 1)

ha(k + 1,x(k + 1)) = Ra(k + 1)−Th(k + 1,x(k + 1))

the nonlinear least squares cost Jc becomes

Jc(x(k + 1), k + 1) =
1

2

[
R̄xx(k + 1)x(k + 1)− z̄x(k + 1)

]T [R̄xx(k + 1)x(k + 1)− z̄x(k + 1)
]

+
1

2

[
za(k + 1)− ha(k + 1,x(k + 1))

]T [
za(k + 1)− ha(k + 1,x(k + 1))

]
Given Rxx(0)TRxx(0) = I(0), zx(0) = Rxx(0)x̂(0), and the Gauss-Newton parameters

imax and αmin, the IESRIF algorithm is:

73



1. offline calculations

(a) derive expressions for the Jacobians ∂f
∂x(k)

, ∂f
∂v(k)

, and ∂h
∂x(k+1)

(b) disturbance Cholesky factorization: for each k, find an upper triangular Rvv(k) ∈
Rnv×nv such that

Rvv(k)TRvv(k) = Q(k)−1

(c) noise Cholesky factorization: for each k, find an upper triangular Ra(k) ∈ Rnz×nz

such that
Ra(k)TRa(k) = R(k)

2. set k = 0

3. dynamic propagation

(a) evaluate the Jacobians

F (k) =
∂f

∂x(k)

∣∣∣∣
k,x̂(k),u(k),v(k)=0)

Γ(k) =
∂f

∂v(k)

∣∣∣∣
k,x̂(k),u(k),v(k)=0)

where x̂(k) = Rxx(k)−1zx(k)

(b) QR factorization: find an orthonormal matrix Ta(k)T ∈ R(nx+nv)×(nx+nv) and
upper triangular matrices R̄vv(k) ∈ Rnv×nv and R̄xx(k + 1) ∈ Rnx×nx such that

[
Rvv(k) 0

−Rxx(k)F (k)−1Γ(k) Rxx(k)F (k)−1

]
= Ta(k)T

[
R̄vv(k) R̄vx(k + 1)

0 R̄xx(k + 1)

]
(c) predict the (transformed) state

[
z̄v(k)

z̄x(k + 1)

]
= Ta(k)

[
0

Rxx(k)F (k)−1f(k,Rxx(k)−1zx(k),u(k),0)

]
4. measurement update

(a) measure z(k + 1) and compute za(k + 1) = Ra(k + 1)−Tz(k + 1)

(b) apply the Gauss-Newton method:

i. set i = 1 and initialize x̂0(k + 1) = x̄(k + 1) = R̄xx(k + 1)−1z̄x(k + 1)

ii. evaluate the (transformed) Jacobian iterate,

H i
a(k + 1) = Ra(k + 1)−T

∂h

∂x(k + 1)

∣∣∣∣
k+1,x̂i−1(k+1)

74



iii. QR factorization: find an orthonormal T ib (k+1) ∈ R(nx+nv)×(nx+nv) and upper
triangular, non-singular Ri

xx(k + 1) ∈ Rnx×nx such that[
R̄xx(k + 1)
H i
a(k + 1)

]
= T ib (k + 1)T

[
Ri
xx(k + 1)

0

]
iv. compute the (transformed) state estimate[

zix(k + 1)
zir(k + 1)

]
= T ib (k+1)

[
z̄x(k + 1)

za(k + 1)− ha(k + 1, x̂i(k + 1)) +H i
a(k + 1)x̂i(k + 1)

]
v. set α = 1

vi. if α ≤ αmin, go to step 4c

vii. compute the candidate state estimation iterate

x̂i(k + 1) = x̂i−1(k + 1) + α
[
Ri
xx(k + 1)−1zix(k + 1)− x̂i−1(k + 1)

]
viii. if Jc(x̂

i(k + 1), k + 1) > Jc(x̂
i−1(k + 1), k + 1), halve α and go to step 4(b)vii

ix. if i = imax, go to step 4c; otherwise, increment i and go to step 4(b)ii

(c) update the state estimate

x̂(k + 1) = Ri
xx(k + 1)−1zix(k + 1)

(d) update the state estimation MSE

P (k + 1) = Ri
xx(k + 1)−1Ri

xx(k + 1)−T

5. increment k and return to step 3

8.3.3 The backward smoothing IEKF

In the Gauss-Newton iterations of the classical IEKF, we continually re-linearize the mea-
surement map about the current estimate x̂i(k + 1). However, in each iteration we use the
same value for x̄(k + 1). In the backward smoothing IEKF, also known as the mov-
ing horizon estimator, we refine the classical IEKF by computing the smoothed estimate
xi∗(k) of x(k). We do this at every Gauss-Newton iteration, starting the smoothing algo-
rithm from the current state estimate x̂i(k + 1). We then propagate xi∗(k) through the
dynamics map to improve upon the prediction x̄(k + 1).

In the backward smoothing IEKF, it is convenient to find the least-squares solution to
the system

0 = x(k)− x̂(k)

0 = v(k)

0 = z(k + 1)− h(k + 1, f(k,x(k),u(k),v(k)))

75



which, when linearized about the smoothed state xi∗(k) and smoothed disturbance v∗(k)
(starting the smoothing algorithm from x̂i(k + 1)), produces the system

0 = x(k)− x̄(k)

0 = v(k)

0 = z(k + 1)− h(k + 1, x̂i(k + 1))

−H i(k + 1)
{
F i(k)

[
x(k)− xi∗(k)

]
+ Γi(k)

[
v(k)− v∗(k)

]}
where

x̂i(k + 1) = f(k,xi∗(k),u(k),vi∗(k))

H i(k + 1) =
∂h

∂x(k + 1)

∣∣∣∣
k+1,x̂i(k+1)

F i(k) =
∂f

∂x(k)

∣∣∣∣
k,xi∗(k),u(k),vi∗(k)

Γi(k) =
∂f

∂v(k)

∣∣∣∣
k,xi∗(k),u(k),vi∗(k)

The linearized equations can be solved by the Gauss-Newton method, checking that the
cost Ja(x

i(k),v(k), x̂i(k + 1), k) decreases with each iteration.
NB. The backward smoothing IEKF can be extended to smooth the previous m stages.

Smoothing further into the past increases estimation accuracy at the expense of significant
computation time, since the smoothing occurs at each Gauss-Newton iteration of each mea-
surement update step.

8.4 The unscented Kalman filter

The EKF and IEKF have some problems:

1. Neglecting the higher order terms in the Taylor expansions of f and h means that
the filter’s accuracy is suboptimal. While this accuracy hit is usually acceptable, it
occasionally leads to truly awful performance. In fact, there’s no guarantee that the
estimates won’t diverge from the true states.

2. It can be difficult to derive analytical expressions for the Jacobians of f and h. It
can also be costly to compute them online. If we use the second-order EKF to address
issue 1, then this computational issue is compounded by the need to derive and evaluate
Hessians.

The unscented Kalman filter (UKF), also known as the sigma points filter, seeks
to address these two issues. Of course, the UKF has issues of its own:

76



1. While the UKF retains higher-order terms than the EKF, it still doesn’t include all
the nonlinear terms in f and h. In some cases, the UKF can also diverge. (As a rule
of thumb, however, the UKF usually out-performs the EKF.)

2. The UKF is more computationally intensive than the EKF (roughly double). Both
the UKF and EKF are still orders of magnitude faster than the backward smoothing
IEKF, however.

3. There are divergence issues unique to the UKF. These may arise when f or h have
discontinuities or singularities. In these cases, the EKF may out-perform the UKF.

8.4.1 Sigma points estimation

The general sigma points estimation problem is the following. Given z = h(x), where

E[x] = x̄ and E[(x− x̄)(x− x̄)T ] = P , find the mean and covariance of z.
The sigma points filter works by generating a cluster of points in a hypervolume in x-

space, centered at x̄. Each point is then propagated through h, resulting in a spread of
points in z-space. The mean and covariance of z are approximated by taking a weighted
average of the resulting points.

Let ST ∈ Rnx×nx be a Cholesky factor of P , i.e. SST = P , and let sj be the jth column
of S. Generate the 2nx + 1 sigma points xi, where

xi =


x̄, i = 0

x̄ +
√
nx + λ si, i ∈ {1, . . . , nx}

x̄−
√
nx + λ si, i ∈ {nx + 1, . . . , 2nx}

The parameter λ governs the hypervolume spanned by the sigma points; a bigger λ means
the points will span a larger hypervolume. The suggested value of λ is

λ = α2(nx + κ)− nx

where α ∈ [10−4, 1] and κ ∈ {0, 3− nx} are tunable parameters.
Having generated the sigma points, we propagate them through the measurement map

to produce
ζi = h(xi)

for i ∈ {1, . . . , 2nx + 1}. We then approximate the mean and covariance of z by

z̄ ≈
2nx∑
i=0

w
(m)
i ζi

Pzz ≈
2nx∑
i=0

w
(c)
i (ζi − z̄)(ζi − z̄)T

77



where the weights in the mean calculation are

w
(m)
i =

{
λ

nx+λ
i = 0

1
2(nx+λ)

i ∈ {1, . . . , 2nx}

and the weights in the covariance calculation are

w
(c)
i =

{
λ

nx+λ
+ 1− α2 + β i = 0

1
2(nx+λ)

i ∈ {1, . . . , 2nx}

Note that β is another design parameter. In general, the optimal value of β depends on the
distribution of x. If x is Gaussian, then β = 2 is optimal. Otherwise, β can be determined by
analyzing the higher-order terms in the Taylor expansion of h. See pages 221-280 of Kalman
Filtering and Neural Networks by E.A. Wan and R. van der Merwe for more details.

8.4.2 The UKF algorithm

This section shows how to embed the sigma points estimation technique shown above into
an online filtering algorithm (the UKF).

Given x̂(0) and P (0), the UKF algorithm is:

1. parameter definitions: set the tuning parameters α ∈ [10−4, 1], κ ∈ {0, 3−nx−nv}
and β (use β = 2 if the state is modeled as Gaussian) and compute

λ = α2(nx + nv + κ)− (nx + nv)

2. set k = 0

3. compute the matrix square roots Sx(k) ∈ Rnx×nx and Sv(k) ∈ Rnv×nv , such that
Sx(k)Sx(k)T = P (k) and Sv(k)Sv(k)T = Q(k). Define the column vectors six(k) ∈ Rnx

and siv(k) ∈ Rnv such that

Sx(k) =
[
s1
x(k) . . . snx

x (k)
]

Sv(k) =
[
s1
v(k) . . . snv

v (k)
]

4. generate 2(nx + nv) + 1 sigma points in Rnx+nv clustered about (x(k),v(k))T =

78



(x̂(k),0)T ,

[
xik
vik

]
=



[
x̂(k)

0

]
i = 0[

x̂(k) +
√
nx + nv + λ six(k)

0

]
i ∈ {1, . . . , nx}[

x̂(k)−
√
nx + nv + λ si−nx

x (k)

0

]
i ∈ {nx + 1, . . . , 2nx}[

x̂(k)√
nx + nv + λ si−2nx

v

]
i ∈ {2nx + 1, . . . , 2nx + nv}[

x̂(k)

−
√
nx + nv + λ si−2nx−nv

v

]
i ∈ {2nx + nv + 1, . . . , 2(nx + nv)}

5. propagate the sigma points through f and h to produce

x̄ik+1 = f(k,xik,u(k),vik)

z̄ik+1 = h(k + 1, x̄ik+1)

6. predict the state and measurement

x̄(k + 1) =

2(nx+nv)∑
i=0

w
(m)
i x̄ik+1

z̄(k + 1) =

2(nx+nv)∑
i=0

w
(m)
i z̄ik+1

and the associated covariances

P̄ (k + 1) =

2(nx+nv)∑
i=0

w
(c)
i

[
x̄ik+1 − x̄(k + 1)

][
x̄ik+1 − x̄(k + 1)

]T
P̄xz(k + 1) =

2(nx+nv)∑
i=0

w
(c)
i

[
x̄ik+1 − x̄(k + 1)

][
z̄ik+1 − z̄(k + 1)

]T
P̄zz(k + 1) = R(k + 1) +

2(nx+nv)∑
i=0

w
(c)
i

[
z̄ik+1 − z̄(k + 1)

][
z̄ik+1 − z̄(k + 1)

]T
where the weights in the mean calculations are

w
(m)
i =

{
λ

nx+nv+λ
i = 0

1
2(nx+nv+λ)

i ∈ {1, . . . , 2(nx + nv)}

79



and the weights in the covariance calculation are

w
(c)
i =

{
λ

nx+nv+λ
+ 1− α2 + β i = 0

1
2(nx+nv+λ)

i ∈ {1, . . . , 2(nx + nv)}

7. apply the FEoLE to update the estimate and its MSE

x̂(k + 1) = x̄(k + 1) + P̄xz(k + 1)P̄−1
zz (k + 1)

[
z(k + 1)− z̄(k + 1)

]
P (k + 1) = P̄ (k + 1)− P̄xz(k + 1)P̄zz(k + 1)−1P̄xz(k + 1)T

8. increment k and go to 3

8.4.3 Remarks on the UKF

• The UKF is easier to implement than the EKF, because there’s no need to calculate
Jacobians.

• The UKF avoids Jacobians by using what amounts to a finite difference approximation,
where the step size ∆x is chosen to be on the order of the statistical variations in x(k).

• The UKF is parsimonious, in that it uses just enough sigma points to capture the first
few higher-order terms that the EKF neglects. Better performance can be achieved (at
the cost of increased computation time) by using more sigma points. This is the basis
for the particle filter.

8.5 The particle filter

The particle filter extends the ideas of the UKF to incorporate more sigma points, randomly
generated in a cluster about x̂ and E[v] = 0. Under some mild assumptions, this results in
better probabilistic models of x and z, at the cost of increased computation time.

We begin the development of the particle filter with some background on Monte Carlo
simulation.

8.5.1 Monte Carlo simulation

Monte Carlo techniques use random number generators to simulate random processes and
to approximate probability density integrals (means, covariances, and higher moments).

Suppose you have a messy pdf p(x), and you want to calculate

E[f(x)] =

∫
Rnx

f(x)p(x)dx

This integral may be difficult or impossible to compute analytically, and even numerical
integration may be costly. Another approach is to use a random number generate to produce

80



the Ns independent samples x1,x2, . . . ,xNs from p(x). For large Ns, the expectation is well-
approximated by

E[f(x)] ≈ 1

Ns

Ns∑
i=1

f(xi)

and as Ns →∞, this approximation becomes exact.
The above relies on the ability to sample p(x) directly and independently, but for non-

standard distributions this is rarely possible. A technique called importance sampling
allows one to use any related distribution q(x) to compute E[f(x)] by Monte Carlo methods.
One can write the expectation as

E[f(x)] =

∫
Rnx

f(x)

(
p(x)

q(x)

)
q(x)dx

=

∫
Rnx f(x)

(p(x)
q(x)

)
q(x)dx∫

Rnx

(p(x)
q(x)

)
q(x)dx

where we include the denominator to handle the possibility that p(x) may not be normalized.
We can approximate the expectation by generating theNs independent samples x1,x2, . . . ,xNs

from q(x), then computing

E[f(x)] ≈
Ns∑
i=1

wif(xi)

where the weights are given by

w̄i =
p(xi)

q(xi)

wi =
w̄i∑Ns

j=1 w̄
i

Since
∑Ns

i=1w
i = 1 and wi ≥ 0 for all i, this amounts to approximating the original pdf p(x)

by

p(x) ≈
Ns∑
i=1

wiδ(x− xi)

Note that importance sampling tends to work better – meaning fewer samples are needed
for a given approximation accuracy – the more closely q(x) resembles the original pdf p(x).

8.5.2 A simple particle filtering algorithm

In this section, we outline a simple algorithm for nonlinear state estimation using Monte
Carlo methods. In subsequent sections we’ll improve upon this algorithm.

This algorithm assumes x(0) ∼ N (x̂(0), P (0)), v(k) ∼ N (0, Q(k)) and w(k) ∼ N (0, R(k)),
where x̂(0) and P (0) are known. For a given number of Monte Carlo samples Ns, the particle
filtering algorithm is the following.

81



1. set k = 0

2. for each i ∈ S = {1, . . . , Ns}, generate the candidate state history xi(0), . . . ,xi(k) as
follows:

(a) sample xi(0) from N (x̂(0), P (0))

(b) set j = 0

(c) sample vi(j) from N (0, Q(j))

(d) compute xi(j + 1) = f(j,xi(j),u(j),vi(j))

(e) if j = k − 1, stop; otherwise, increment j and go to step (c)

3. for each i ∈ S, compute the unnormalized sample weight

w̄ik = exp
{
− 1

2

k∑
j=1

[
z(j)− h(j,xi(j))

]T
R(j)−1

[
z(j)− h(j,xi(j))

]}
then normalize them:

wik =
w̄ik∑Ns

j=1 w̄
j
k

4. compute the estimate

x̂(k) =
Ns∑
i=1

wikx
i(k)

and its covariance

P (k) =
Ns∑
i=1

wik
[
xi(k)− x̂(k)

][
xi(k)− x̂(k)

]T
5. increment k and go to step 2

8.5.3 First improvement: recursive weight calculation

The algorithm in section 8.5.2 is costly to run, because at every stage k it requires computing
Ns truth model simulations of x(0), . . . ,x(k). We can address this issue by developing a
recursive algorithm for wik in terms of wi−1

k .
Recall that the general form for the weights is

wik = Ck
p(xi(0), . . . ,xi(k) | zk)
q(xi(0), . . . ,xi(k) | zk)

for some normalizing constant Ck.

82



Using Bayes’ rule, it can be shown that

q(xi(0), . . . ,xi(k) | zk) = q(xi(k) | xi(0), . . . ,xi(k − 1), zk)q(xi(0), . . . ,xi(k − 1) | zk−1)

and

p(xi(0), . . . ,xi(k) | zk) =
p(z(k) | xi(k))p(xi(k) | xi(k − 1))p(xi(0), . . . ,xi(k − 1) | zk−1)

p(z(k) | zk−1)

so, letting

w̄ik =
wik
Ck

=
p(xi(0), . . . ,xi(k) | zk)
q(xi(0), . . . ,xi(k) | zk)

we have

w̄ik =
p(z(k) | xi(k))p(xi(k) | xi(k − 1))p(xi(0), . . . ,xi(k − 1) | zk−1)

p(z(k) | zk−1)q(xi(k) | xi(0), . . . ,xi(k − 1), zk)q(xi(0), . . . ,xi(k − 1) | zk−1)

=

[
p(z(k) | xi(k))p(xi(k) | xi(k − 1))

p(z(k) | zk−1)q(xi(k) | xi(0), . . . ,xi(k − 1), zk)

][
p(xi(0), . . . ,xi(k − 1) | zk−1)

q(xi(0), . . . ,xi(k − 1) | zk−1)

]
=

[
p(z(k) | xi(k))p(xi(k) | xi(k − 1))

p(z(k) | zk−1)q(xi(k) | xi(0), . . . ,xi(k − 1), zk)

]
wik−1

Ck−1

Recall that any pdf q from which we can generate independent samples is a valid distri-
bution to use in importance sampling. If we choose q such that

q(xi(k) | xi(0), . . . ,xi(k − 1), zk) =
p(xi(k) | xi(k − 1))

Ck−1p(z(k) | zk−1)

then we have the recursive formula for the weights:

w̄ik = p(z(k) | xi(k))wik−1

With this recursion, given x̂(0), P (0), Ns and Gaussian assumptions on v(k) and w(k),
the particle filtering algorithm in section 8.5.2 becomes

1. set k = 0. For each i ∈ S, sample xi(0) from N (x̂(0), P (0)) and set wi0 = 1
Ns

.

2. for each i ∈ S, generate the candidate state xi(k + 1) and its weight wik+1 as follows:

(a) sample vi(k) from N (0, Q(k))

(b) compute xi(k + 1) = f(j,xi(k),u(k),vi(k))

(c) compute the unnormalized sample weight

w̄ik+1 = p(z(k + 1) | xi(k + 1))wik

= exp
{
− 1

2

[
z(k + 1)− h(k + 1,xi(k + 1))

]T
R(k + 1)−1

∗
[
z(k + 1)− h(k + 1,xi(k + 1))

]}
wik

83



Then compute the normalized weight

wik+1 =
w̄ik+1∑Ns

j=1 w̄
j
k+1

3. compute the estimate

x̂(k + 1) =
Ns∑
i=1

wik+1x
i(k + 1)

and its covariance

P (k + 1) =
Ns∑
i=1

wik+1

[
xi(k + 1)− x̂(k + 1)

][
xi(k + 1)− x̂(k + 1)

]T
4. increment k and go to step 2

8.5.4 Second improvement: resampling

The algorithm in section 8.5.3 is more efficient than the one in section 8.5.2, but the re-
cursive formula for the weights creates a problem of its own. If one candidate state history
xi(0), . . . ,xi(k) fits the data well for several consecutive stages, then the weight wik will get
large. In the extreme case, we may find that wik ≈ 1, while wjk ≈ 0 for all j 6= i.

This is a Bad Thing, because while the ith history may have accurately reflected the true
state in the past, there’s no guarantee that it will continue to do so. Indeed, the sample
vi(k+1) may be very different from the true disturbance v(k+1). This will cause a decrease
in wik+1 relative to wik, but wik+1 may still dominate all the other wjk+1 for j 6= i. This will
cause the filter to disproportionately weight the ith history in calculating x̂(k+ 1), resulting
in a loss of accuracy. This problem is known as collapse of particle diversity.

To prevent the collapse of particle diversity, or at least mitigate it, we can modify the
algorithm in section 8.5.3 to shuffle the candidate states at each stage and reset their weights.
This process is called resampling.

A common scheme for resampling is the following. For each i ∈ S, randomly replace
xi(k), the kth state in the ith Monte Carlo history, with the kth state from some other
history. The replacement selection is done such that histories with higher weights are chosen
preferentially: xj(k) is chosen as a replacement state with probability wjk. Once the states
have been shuffled, all weights are reset to 1/Ns.

On average, the net effect of this algorithm is to clone the high-weight states and kill off
the low-weight states. This will typically produce a cluster of high-weight states at stage k.
When this cluster is propagated through the dynamics, the disturbance and nonlinearities in
f will tend to disperse the cluster. This dispersal, in conjunction with resetting the weights,
promotes diversity.

With this resampling scheme, given x̂(0), P (0), Ns and Gaussian assumptions on v(k)
and w(k), the particle filtering algorithm in section 8.5.3 becomes

84



1. set k = 0. For each i ∈ S, sample xi(0) from N (x̂(0), P (0)) and set wi0 = 1
Ns

2. for each i ∈ S, generate the candidate state xi(k + 1) and its weight wik+1 as follows:

(a) sample vi(k) from N (0, Q(k))

(b) compute xi(k + 1) = f(k,xi(k),u(k),vi(k))

(c) compute the natural logarithm of the unnormalized sample weight

ln w̄ik+1 = lnwik + ln p(z(k + 1) | xi(k + 1))

= lnwik −
1

2

[
z(k + 1)− h(k + 1,xi(k + 1))

]T
R(k + 1)−1

∗
[
z(k + 1)− h(k + 1,xi(k + 1))

]
Then find the unique i∗ ∈ S such that ln w̄ik+1 ≤ lnwi

∗

k+1 for all i ∈ S.

For each i ∈ S, define the alternative, unnormalized weight

w̃ik+1 = exp
{

ln w̄ik+1 − ln w̄i
∗

k+1

}
and compute the normalized weight

wik+1 =
w̃ik+1∑Ns

j=1 w̃
j
k+1

3. compute the estimate

x̂(k + 1) =
Ns∑
i=1

wik+1x
i(k + 1)

and its covariance

P (k + 1) =
Ns∑
i=1

wik+1

[
xi(k + 1)− x̂(k + 1)

][
xi(k + 1)− x̂(k + 1)

]T
4. resample the states according to their weights:

(a) sample η from the uniform distribution, U(0, 1
Ns

)

(b) calculate the Ns + 1 cdf constants

ci =


0 i = 1∑i−1

l=1 w
l
k i ∈ {2, . . . , Ns}

1 + ε i = Ns + 1

where ε is a very small number, perhaps 10−8

85



(c) set i = 1 and j = 1

(d) set ηi = η + (i− 1) 1
Ns

(e) if ηi ≤ cj+1, go to step 5f; otherwise, increment j and return to step 5e

(f) let xinew(k) = xj(k)

(g) if i = Ns, stop; otherwise, increment i and go to step 5d

5. set wik+1 = 1
Ns

for all i ∈ S

6. increment k and go to step 2

NB. Along with adding resampling, the above algorithm also works with natural loga-
rithms in step 2c. This is a minor tweak for numerical robustness.

8.5.5 The regularized particle filter

The particle filter in section 8.5.4 is fairly efficient. It’s still orders of magnitude slower than
the EKF or UKF, but much faster than the particle filter in section 8.5.2. It could be more
efficient, though: it resamples at every time k, even if the weights wik are roughly equal. A
better algorithm would only resample when necessary.

To address this problem, we define the effective number of particles,

Neff =
1∑Ns

i=1(wik)
2
∈ [1, Ns]

and only resample when Neff dips below a threshold NT . Here NT ∈ S is a design parameter:
a larger NT means more frequent resampling, more diversity, and more computation time.

The filter in 8.5.4 also decreases the risk of losing particle diversity. It could be better
at promoting diversity, though: it only selects replacement particles from the set of existing
particles, and high-weight particles can be cloned multiple times. A better algorithm would
allow selection of replacement particles in the neighborhood of high-weight particles. This
process of “smearing” particles is known as dithering.

Recall that in information sampling, we approximate the true pdf p(x) by a weighted
sum of Dirac delta functions. In the case of particle filtering, this means we make the
approximation

p(x(k) | zk) ≈
Ns∑
i=1

wikδ(x(k)− xi(k)) (10)

The Dirac deltas are difficult to work with, so we would like to replace them with some other
set of functions with approximately the same properties.

Recall that the Dirac delta function is an infinitely narrow, infinitely tall spike that
integrates to 1. Loosely, then, the Dirac delta function can be viewed as the limiting case of
a Gaussian pdf :

δ(y − y0) = lim
σ→0

1

σ
√

2π
exp

{
− (y − y0)2

2σ2

}
= lim

σ→0
N (y; y0, σ

2)

86



so to “spread out” the scalar Dirac delta function, we could use a scalar Gaussian pdf with
a small but finite variance.

It turns out that in addition to the Gaussian pdf, a whole family of functions, called
kernel densities, can be viewed in a similar light. Let K : Rnx → R be a kernel density.
Then K satisfies the following properties:

1. normalization: ∫
Rnx

K(β)dβ = 1

2. symmetry:
K(−β) = K(β)

3. zero mean: ∫
Rnx

βK(β)dβ = 0

4. bounded covariance: ∫
Rnx

ββTK(β)dβ ≺ ∞

Kernel densities are not unique. In a general filtering problem, the selection of the kernel
density requires minimizing the mean integrated square error between the true p(x(k) | zk)
and the kernel approximation in (10). In the special case wherein all the particle weights
are equal, the optimal kernel density is the Epanechnikov kernel,

Kopt(β) =

{
nx+2
2c(nx)

(1− βTβ)
√
βTβ < 1

0
√
βTβ ≥ 1

where c(nx) is the hypervolume of the unit hypersphere in Rnx : c(1) = 2, c(2) = π, c(3) =
4π/3, and so on. If the weights are not all equal, the Epanechnikov kernel is often used
anyway as a suboptimal but good kernel density.

Using this kernel function to “fatten” the Dirac delta functions, our Monte Carlo approx-
imation of p(x(k) | zk) is

p(x(k) | zk) ≈
Ns∑
i=1

wikKh

(
S−1
k [x(k)− xi(k)]

)
where Sk is a matrix square root of P (k), so SkS

T
k = P (k), and Kh : Rnx → R is a rescaling

of our kernel function, parameterized by h:

Kh(α) =
1

hnx
K
(1

h
α
)

87



The rescaling parameter h depends on the distribution p(x(k) |zk). Assuming a Gaussian
distribution, the optimal value of h is

hopt =
a

N
1/(nx+4)
s

where

a =

[
8

c(nx)
(nx + 4)(2

√
π)nx

]1/(nx+4)

The regularized particle filter combines need-based resampling and dithering with
the algorithm in section 8.5.4. Given x̂(0), P (0), Ns and Gaussian assumptions on v(k) and
w(k), the regularized particle filtering algorithm is

1. set k = 0. For each i ∈ S, sample xi(0) from N (x̂(0), P (0)) and set wi0 = 1
Ns

2. for each i ∈ S, generate the candidate state xi(k + 1) and its weight wik+1 as follows:

(a) sample vi(k) from N (0, Q(k))

(b) compute xi(k + 1) = f(j,xi(k),u(k),vi(k))

(c) compute the natural logarithm of the unnormalized sample weight

ln w̄ik+1 = lnwik + ln p(z(k + 1) | xi(k + 1))

= lnwik −
1

2

[
z(k + 1)− h(k + 1,xi(k + 1))

]T
R(k + 1)−1

∗
[
z(k + 1)− h(k + 1,xi(k + 1))

]
Then find the unique i∗ ∈ S such that ln w̄ik+1 ≤ lnwi

∗

k+1 for all i ∈ S.

For each i ∈ S, define the alternative, unnormalized weight

w̃ik+1 = exp
{

ln w̄ik+1 − ln w̄i
∗

k+1

}
and compute the normalized weight

wik+1 =
w̃ik+1∑Ns

j=1 w̃
j
k+1

3. compute the estimate

x̂(k + 1) =
Ns∑
i=1

wik+1x
i(k + 1)

and its covariance

P (k + 1) =
Ns∑
i=1

wik+1

[
xi(k + 1)− x̂(k + 1)

][
xi(k + 1)− x̂(k + 1)

]T

88



4. compute the effective number of particles

Neff =
1∑Ns

i=1(wik)
2

If Neff ≥ NT , increment k and go to step 9; otherwise, go to step 5

5. resample the states according to their weights:

(a) calculate the Ns cdf constants

ci =

{∑i−1
l=1 w

l
k i ∈ {2, . . . , Ns}

1 + ε i = Ns + 1

where ε is a very small number, perhaps 10−8

(b) set i = 1 and j = 1

(c) sample η from the uniform distribution, U(0, 1
Ns

)

(d) set ηi = η + (i− 1) 1
Ns

(e) if ηi ≤ cj+1, go to step 5f; otherwise, increment j and return to step 5e

(f) let xinew(k) = xj(k)

(g) if i = Ns, stop; otherwise, increment i and go to step 5d

6. generate the Ns independent samples β1, . . . ,βNs from Kopt(β)

7. compute the matrix square root Sk+1 such that Sk+1S
T
k+1 = P (k + 1) and set

xi(k + 1) = xinew(k + 1) + hoptSk+1β
i

where

hopt =
a

N
1/(nx+4)
s

, a =

[
8

c(nx)
(nx + 4)(2

√
π)nx

]1/(nx+4)

8. set wik+1 = 1
Ns

for all i ∈ S

9. increment k and go to step 2

89


	Parameter estimation basics
	Fisher estimation
	Bayesian estimation
	Estimator precision

	Linear least squares parameter estimation
	Single observation, Gaussian prior
	Multiple observations, no prior

	Nonlinear least squares parameter estimation
	Numerical solution
	Solution uniqueness and observability
	Covariance matrix

	Stochastic linear dynamical systems
	Continuous-time
	Discrete-time
	Pre-whitening colored noise

	State estimation in linear Gaussian dynamical systems
	The LG system
	Definitions and notation
	The KF algorithm
	Some KF properties
	KF derivation 1: MMSE
	KF derivation 2: MAP
	Tests of KF correctness
	KF initialization
	Model mismatch

	The square-root information filter
	The IF algorithm
	SRIF background
	The SRIF algorithm

	Smoothing
	Notation
	Covariance-based fixed interval smoothing
	Information-based fixed interval smoothing

	State estimation in stochastic nonlinear dynamical systems
	Discretization of nonlinear differential equations
	The extended Kalman filter
	The iterated EKF
	The unscented Kalman filter
	The particle filter


