
Probability and Statistics Basics

Kevin Kircher — Cornell MAE — Spring ’14

These notes summarize some basic probability and statistics material. The primary
sources are A Modern Introduction to Probability and Statistics by Dekking, Kraaikamp,
Lopuhaä and Meester, Introduction to Probability by Dimitri Bertsekas, and the lectures of
Profs. Gennady Samorodnitsky and Mark Psiaki.
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Part I

Probability

1 Outcomes, Events and Probability

Definitions

• A sample space Ω is a set of the outcomes of an experiment.

• An event is a subset of the sample space.

• Two events A and B are disjoint if they have no elements (outcomes) in common.

Axioms

• Nonnegativity: P(A) ≥ 0 for all events A

• Normalization: P(Ω) = 1

• Disjoint Unions: for all disjoint events Ai, P(A1 ∪A2 ∪ . . . ) = P(A1) + P(A2) + . . .

Results

• DeMorgan’s Laws. For any two events A and B,

(A ∪B)c = Ac ∩Bc

(A ∩B)c = Ac ∪Bc

Mnemonic: distribute the c and flip the set operator.

• For unions of intersections and intersections of unions,

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

• The probability of a union of (non-disjoint) events is

P(A ∪B) = P(A) + P(B)−P(A ∩B)

Intuition: subtract the intersection of A and B to avoid double counting. For three
events,

P(A∪B∪C) = P(A)+P(B)+P(C)−P(A∩B)−P(A∩C)−P(B∩C)+P(A∩B∩C)
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• The Complement Rule:
P(Ac) = 1−P(A)

• A permutation Pn,k is an ordering of k objects out of a pool of n. Such a permutation
can be done in

Pn,k =
n!

(n− k)!

ways.

• A combination
(
n
k

)
(pronounced “n choose k”) is a choice of k objects from a pool of

n, where order doesn’t matter. (
n

k

)
=

n!

k!(n− k)!

Example: choosing 3 medalists out of a heat of 8 runners is a combination because
order doesn’t matter. On the other hand, choosing the gold, silver and bronze medalists
is a permutation because order matters.
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2 Conditional Probability and Independence

Definitions

• The conditional probability of A given C (C is called the conditioning event), provided
P(C) > 0, is

P(A | C) =
P(A ∩ C)

P(C)

Note that the Complement Rule works for conditional probabilities. For all events A,

P(A | C) + P(Ac | C) = 1

For three events A, B and C,

P(A | B ∩ C) =
P(A ∩B | C)

P(B | C)

• Events A and B are independent if any of the following are true:

P(A | B) = P(A)

P(B | A) = P(B)

P(A ∩B) = P(A) P(B)

where A can be replaced with Ac or B with Bc. All twelve of these statements are
equivalent.

• Two or more events A1, A2, . . . , Am are independent if

P(A1 ∩ A2 ∩ · · · ∩ Am) = P(A1) P(A2) . . .P(Am)

and if the above equation also holds when any number of events are replaced by their
complements., e.g.

P(A1 ∩ Ac2 ∩ A3 ∩ · · · ∩ Am) = P(A1) P(Ac2) P(A3) . . .P(Am)

In general, establishing the independence of m events requires checking 2m equations.

A useful rule: if events A1, . . . , An are independent, then so are any derived events
constructed from disjoint groupings of the Ai.

Results

• The Multiplication Rule. For events A and C,

P(A ∩ C) = P(A | C) ·P(C)
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Note that this works even if P(C) = 0. This allows us to break the probability of a com-
plicated intersection up into a sequence of less complicated conditional probabilities.
Handy for iterative calculations.

The general form of the Multiplication Rule, for events A1, . . . , An with positive prob-
ability, is

P(∩ni=1Ai) = P(A1) P(A2 | A1) P(A3 | A1 ∩ A2) . . .P(An | ∩n−1
i=1 Ai)

• The Law of Total Probability. For disjoint events C1, C2, . . . , Cm that partition Ω,

P(A) = P(A | C1) P(C1) + P(A | C2) P(C2) + · · ·+ P(A | Cm) P(Cm)

This allows us to write a probability P(A) as a weighted sum of conditional probabil-
ities. Useful when the conditional probabilities are known or easy. A special case:

P(B) = P(B | A) P(A) + P(B | Ac) P(Ac)

• Bayes’ Rule. For disjoint events C1, C2, . . . , Cm that partition Ω,

P(Ci | A) =
P(A | Ci) ·P(Ci)

P(A | C1) P(C1) + P(A | C2) P(C2) + · · ·+ P(A | Cm) P(Cm)

Note that we can also write Bayes’ Rule in a simpler form, and use the Law of Total
Probability to expand the denominator. This simpler form is

P(Ci | A) =
P(A | Ci) ·P(Ci)

P(A)
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3 Discrete Random Variables

Definitions

• A discrete random variable is a function X : Ω→ R that takes on a countable (possibly
infinite, if n→∞) number of discrete values x1, x2, . . . , xn.

• The probability mass function pX of a discrete random variable X is the function
pX : R→ [0, 1], defined by

pX(xi) = P(X = xi).

Equivalently, for any set B,

P(X ∈ B) =
∑
xi∈B

pX(xi).

The pmf is non-zero only at the discrete values x1, x2, . . .

More precisely, the pmf obeys

pX(xi) > 0∑
i

pX(xi) = 1

pX(x) = 0 for all x 6= xi

• The cumulative distribution function FX of a discrete random variable X is the function
FX : R→ [0, 1], defined by

FX(x) = P(X ≤ x) for x ∈ R

The cdf of a discrete RV is piecewise continuous from the right. For a pmf defined as
above, FX obeys

FX(x) =
∑
xi≤x

pX(xi)

x1 ≤ x2 ⇒ FX(x2) ≤ F (x2)

lim
x→+∞

FX(x) = 1

lim
x→−∞

FX(x) = 0

Common Discrete Distributions

• X has the Bernoulli distribution Ber(p) with parameter 0 ≤ p ≤ 1 if its pmf is given
by

pX(xi) =


p, if xi = 1,

1− p, if xi = 0,

0, otherwise
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Expectation: EX = p. Variance: Var(X) = p(1− p).
Bernoulli trials form the basis of all the most important discrete RVs. The Bernoulli
distribution models a sequence of independent binary trials (coin flips), with probability
p of success in each trial.

• X has the binomial distribution Bin(n, p) with parameters n = 1, 2, . . . and 0 ≤ p ≤ 1
if its pmf is given by

pX(k) =

(
n

k

)
pk(1− p)n−k for k = 0, 1, . . . , n.

Expectation: EX = np. Variance: Var(X) = np(1− p).
The binomial RV counts the number of successes in n Bernoulli trials, with probability
p of success in each trial.

NB. The Bernoulli RV is a special case of the binomial RV: Bin(1,p) is Ber(p).

• The multinomial distribution Mult(n, p1, . . . , pk) counts the number of times, out of n
independent trials with k types of outcome in every trial, that an outcome of type i is
observed, for i ∈ {1, . . . , k}. The ith type of outcome has probability pi of success.

Let mi be the number of times an outcome of type i is observed, so that
∑

imi = n.
Then the multinomial distribution is

pM(m) = P(M1 = m1, . . . ,Mk = mk) =
n!

m1! . . .mk!
pm1

1 . . . pmkk .

Note that this gives the distribution of the multiplicities of outcomes of type 1 through
k. In Matlab, the RHS is easily computed with mnpdf(m, p).

For i ∈ {1, . . . , k},

– Expectation: EMi = npi

– Variance: Var(Mi) = npi(1− pi)
– Covariance: for i 6= j, Cov(Mi,Mj) = −npipj

NB. Bin(n, p) is Mult(n, p, 1− p).

• X has a negative binomial distribution NB(n, p) with parameters n = 1, 2, . . . and
0 ≤ p ≤ 1 if its pmf is given by

pX(k) =

(
k − 1

n− 1

)
pn(1− p)k−n for k = n, n+ 1, . . .

Expectation: EX = n/p. Variance: Var(X) = n(1− p)/p2.

The negative binomial RV counts the number of trials until the nth success, with
probability p of success in each trial.
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• X has the geometric distribution Geo(p) with parameter 0 < p ≤ 1 if its pmf is given
by

pX(k) = p(1− p)k−1 for k = 0, 1, . . . , n.

Expectation: EX = 1/p. Variance: Var(X) = (1− p)/p2.

NB. The geometric RV is a special case of the negative binomial: NB(1,p) = Geo(p).
The geometric RV counts the number of trials until the first success.

The geometric RV has the memoryless property.

• X has the hypergeometric distribution Hyp(n,N,M) with parameters n = 1, 2, . . . ,
N > 0, and M > 0 if its pmf is given by

pX(k) =

(
N
k

)(
M
n−k

)(
N+M
n

) , max (n−M, 0) ≤ k ≤ min (n,N)

Expectation: EX = nN/(N +M).

Variance: Var(X) = nNM
(N+M)2

(
1− n−1

N+M+1

)
.

The hypergeometric RV counts the number of successes – defined by choosing a white
ball – in n trials of choosing a ball without replacement from an initial population of
N white balls and M black balls.

• X has the Poisson distribution Poiss(λ) with parameter λ if its pmf is given by

pX(k) =
λk

k!
e−λ, for k = 0, 1, 2, . . .

EX = Var(X) = λ.

The Poisson RV is the limiting case of the binomial RV as n → ∞ and p → 0, while
the product np → λ > 0 (infinite trials, infinitesimal probability of success per trial,
but a finite product of the two).

An example: in a huge volume of dough (n → ∞), the probability of scooping out
any particular raisin is vanishingly small (p→ 0), but there’s a constant raisin density
(np→ λ).

Reproducing property: if X1, . . . , Xn are Poisson RVs with parameters λ1, . . . , λn,
then the sum Y = X1 + · · ·+Xn is a Poisson RV with parameter λ1 + · · ·+ λn.
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4 Continuous Random Variables

Definitions

• A random variable X is continuous if for some function fX : R → R with fX(x) ≥ 0
for all x and

∫∞
−∞ fX(x)dx = 1, and for real numbers a and b with a ≤ b,

P(a ≤ X ≤ b) =

∫ b

a

fX(x)dx.

In particular,

FX(a) =

∫ a

−∞
fX(x)dx.

The function fX is called the probability density function (pdf) of X. As in the discrete
case, FX is called the cdf of X.

• For continuous RV X and for 0 ≤ p ≤ 1, the pth quantile or 100pth percentile of the
distribution of X is the smallest number qp such that

FX(qp) = p

The median of a distribution is its 50th percentile.

• The pdf fX and cdf FX of a continuous random variable X are related by

FX(b) =

∫ b

−∞
fX(x)dx

and

fX(x) =
d

dx
FX(x)

• Specifying the distribution of a RV X means identifying the characteristic that uniquely
determines the probabilities associated with X. This can be done by specifying any one
of the following:

1. The cdf of X (works for RVs that are discrete, continuous or neither)

2. The pmf (discrete) or pdf (continuous) of X

3. The name of a standard RV

4. The moment generating function, φX(t)

5. The Laplace transform, LXt
6. The characteristic function, ψX(t)
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Common Continuous Distributions

• The uniform distribution on [a, b], Uni(a, b), is given by the pdf fX(x) = 0 if x /∈ [a, b],
and

fX(x) =
1

b− a
for a ≤ x ≤ b

FX(x) =
x− a
b− a

Expectation: EX = (a+ b)/2. Variance: Var(X) = (b− a)2/12.

Note that the uniform RV is a special case of the beta RV: Beta(1,1) = Uni(0,1).

• The beta distribution on [0,1], Beta(α, β) with parameters α > 0, β > 0, is given by
fX(x) = 0 if x < 0 or x > 1, and

fX(x) =
1

B(α, β)
xα−1(1− x)β−1 for 0 < x < 1

where B(α, β) is the Beta function:

B(α, β) =

∫ 1

0

xα−1(1− x)β−1dx =
Γ(α)Γ(β)

Γ(α + β)

for α > 0, β > 0

and Γ(α) is the Gamma function, a generalized factorial:

Γ(α) =

∫ ∞
0

xα−1e−xdx for α > 0

⇒ Γ
(1

2

)
=
√
π, Γ(m+ 1) = mΓ(m)

and m ∈ Z ⇒ Γ(m+ 1) = m!

The beta RV on [0,1] with parameters α and β has mean and variance given by

EX =
α

α + β
and Var(X) =

αβ

(α + β)2(α + β + 1)
.

The beta RV offers flexible shapes of a density on a bounded interval. The standard
beta RV is defined on [0,1], but it can be shifted and scaled to other intervals.

On an interval [a, b], the beta distribution with parameters α > 0, β > 0, is given by
fX(x) = 0 if x < a or x > b, and

fX(x) =
1

b− a
1

B(α, β)

(x− a
b− a

)α−1(b− x
b− a

)β−1

for a < x < b.
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• The Gamma distribution with shape parameter α > 0 and scale parameter λ > 0 has
the density

fX(x) =

{
λ(λx)α−1

Γ(α)
e−λx, x ≥ 0

0, x < 0.

If X ∼ Gamma(α, λ), then EX = α/λ, Var(X) = α/λ2, and

φX(t) =
( λ

λ− t
)α
.

If the shape parameter α > 0 is an integer, then the Gamma distribution is also called
the Erlang distribution with α degrees of freedom and scale λ.

Like the Poisson RV, the Gamma RV is reproducing: if X1, . . . , Xn are indepen-
dent Gamma RVs with the same scale parameter λ, and different shape parameters
α1, . . . , αn, then the sum Y = X1 + · · · + Xn is also Gamma distributed with scale λ
and shape α1 + · · ·+ αn.

• The exponential distribution with parameter λ, Exp(λ), is given by fX(x) = 0 if x < 0,
and

fX(x) = λe−λx for x ≥ 0

FX(a) = 1− e−λa for a ≥ 0

Like the geometric distribution, the exponential distribution is memoryless. If X ∼
Exp(λ), then for any x, y > 0,

P(X > x+ y
∣∣ X > x) = P(X > y) = e−λy.

If X ∼ Exp(λ), then EX = 1/λ and Var(X) = 1/λ2.

NB. Exp(λ) is the Gamma(1, λ) distribution.

Competition between exponential RVs.

Let Xi ∼ Exp(λi), i = 1, . . . , n. Then Y = min {Xi} has cdf

FY (y) = 1− e−(λ1+···+λn)y,

and the probability that the winner is Xj is

P(Y = xj) =
λj

λ1 + · · ·+ λn
.

• The Pareto distribution with parameter α > 0, Par(α), is given by fX(x) = 0 if x < 1,
and

fX(x) =
α

xα+1
for x ≥ 1

FX(x) = 1− 1

xα
for x ≥ 1
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5 The Normal Distribution

This is the most important continuous distribution, by far. The normal distribution is also
called Gaussian.

Definitions

• The normal distribution with parameters µ (expectation) and σ2 > 0 (variance),
N (µ, σ2) is given by

fX(x) =
1

σ
√

2π
e−

1
2

(x−µ
σ

)2 for −∞ < x <∞

and

FX(a) =

∫ a

−∞

1

σ
√

2π
e−

1
2

(x−µ
σ

)2dx for −∞ < x <∞

and

φX(t) = eµt+σ
2t2/2, for −∞ < t <∞.

• The standard normal distribution N (0, 1) is the normal distribution with zero mean
and variance σ2 = 1. If X ∼ N (0, 1), then

fX(x) = φ(x) =
1√
2π
e−

1
2
x2 for −∞ < x <∞

and

FX(x) = Φ(x) =

∫ x

−∞

1√
2π
e−

1
2
x2dx for −∞ < x <∞

Note the symmetry of φ(x) about x = 0.

Table B.1 has right-tail probabilities, a vs. 1− Φ(a), for N (0, 1).

• Normal approximation to the binomial distribution. Let X ∼ Bin(n, p), with n large
and p not too close either to 0 or 1, and let

Y =
X − np√
np(1− p)

.

Then Y has, approximately, the standard normal distribution N (0, 1).

When is this approximation valid? Rule of thumb: np > 5 and n(1− p) > 5.

• Normal approximation to the Poisson distribution. Let X ∼ Poiss(λ), with λ large.
Let

Y =
X − λ√

λ
.
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Then Y has, approximately, the standard normal distribution N (0, 1).

When is this approximation valid? Rule of thumb: λ > 5.

• Hierarchy of approximations. Often we have a model with behavior that’s well-described
by the hypergeometric distribution (drawing balls without replacement). That’s hard
to work with, so we approximate it with the binomial distribution. In the limit that
n→∞, p→ 0, np→ λ > 0, the binomial distribution simplifies to the Poisson distri-
bution with parameter λ. Finally, we can approximate the Poisson distribution with
the Normal distribution, because it’s super easy to work with.

hypergeometric ⇒ binomial ⇒ Poisson ⇒ normal

• Chi-square distribution with n degrees of freedom. This RV is closely related to the
normal RV. If X ∼ χ2

n, then

fX(x) =

 x
n
2 −1

2
n
2 Γ(n

2
)
e−

x
2 , x > 0

0, x ≤ 0.

Expectation: EX = n. Variance: Var(X) = 2n.

If X1, . . . , Xn are standard normal RVs, and Y = X2
1 + · · ·+X2

n then Y ∼ χ2
n.

NB. The χ2
n distribution is Gamma(n/2, 1/2), so it has the reproducing property: if

X1, . . . , Xn are independent χ2
ki

RVs, and Y = X1 + · · · + Xn, then Y ∼ χ2
k, where

k = k1 + · · ·+ kn.

• Student t distribution with n degrees of freedom. This RV is also closely related to the
normal RV. If X is a Student t RV with n degrees of freedom, then

fX(x) =
Γ(n+1

2
)

√
nπ Γ(n

2
)

(
1 +

x2

n

)−(n+1)/2

, −∞ < x <∞.

Expectation: EX = 0. Variance: Var(X) = n/(n− 2).

How does the Student t RV arise?

If X ∼ N (0, 1), Y ∼ χ2
n, and X and Y are independent, then T = X/

√
Y/n is a

Student t RV with n DOF.

• F distribution with n1 and n2 degrees of freedom. This RV is again closely related to
the normal RV. It has a complicated density, defined on (0,∞).

How does the F RV arise?

If X1 ∼ χ2
n1

, X2 ∼ χ2
n2

, and X1 and X2 are independent, then Z = X1/n1

X2/n2
is an F RV

with n1 and n2 DOF.

14



• The bivariate normal distribution. This is the most important multivariable distribu-
tion. The bivariate normal distribution of a random vector (X, Y ) is fully determined
by:

1. the mean µX and variance σ2
X of X;

2. the mean µY and variance σ2
Y of Y ; and

3. the correlation coefficient ρX,Y of X and Y .

If (X, Y ) is jointly normal, then

fX,Y (x, y) =
1

2πσXσY
√

1− ρ2
X,Y

exp

{
−

(x−µx)2

σ2
X
− 2ρX,Y

(x−µX)(y−µY )
σXσY

+ (y−µY )2

σ2
Y

2(1− ρ2
X,Y )

}
,

defined for all (x, y) ∈ R2.

The mean vector and covariance matrix of (X, Y ) are

µ =

(
µX
µY

)
and

Σ =

(
Var(X) Cov(X, Y )

Cov(X, Y ) Var(X)

)
=

(
σ2
X ρX,Y σXσY

ρX,Y σXσY σ2
Y

)
.

Since Var(X) = Cov(X,X) and Cov(X, Y ) = Cov(Y,X), we can write the entries of
the covariance more simply as

[
Σ
]
ij

= Cov(Xi, Yj). The covariance matrix is positive

semidefinite symmetric.

• More generally, the multivariate normal distribution of a random vector X = (X1, . . . , Xn)T

is defined by a vector of expectations µ = (µ1, . . . , µn)T and the covariance matrix Σ.
If X ∼ N (µ,Σ), then

fX(x) =
1√

(2π)n det Σ
exp

{
− 1

2
(x− µ)TΣ−1(x− µ)

}
, x ∈ Rn

Properties

• If X has an N (µX , σ
2
X) distribution, then for any r 6= 0 and any s, Y = rX + s has an

N (rµ+ s, r2σ2) distribution.

A handy application of this result: to find the probability FX(a) of a RV X with a
N (µX , σ

2
X) distribution,

1. transform X to Z = X−µX
σX

, which has a N (0, 1) distribution

2. note that FX(a) = FZ(a−µX
σX

) = Φ(a−µX
σX

)
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3. use Table B.1 to look up the right-tail probability 1− Φ(a−µX
σX

).

• The mean and median of the normal distribution coincide.

• Normal RVs stay normal under linear transformation: if X ∼ N (µ, σ2) and Y = aX+b
for some scalars a, b, then Y ∼ N (aµ+ b, a2σ2).

• A linear combination of independent normal RVs is again normal: if ai are scalars and
Xi ∼ N (µi, σ

2
i ), i = 1, . . . , n, and if Y =

∑n
i=1Xi, then Y ∼ N (

∑n
i=1 aiµi,

∑n
i=1 a

2
iσ

2
i ).

• Like Poisson and Gamma RVs, normal RVs are reproducing : if X1, . . . , Xn are in-
dependent normal RVs, with Xi ∼ N (µi, σ

2
i ), and Y = X1 + · · · + Xn, then Y ∼

N (µ1 + · · ·+ µn, σ
2
1 + · · ·+ σ2

n).

• If (X, Y ) is jointly normal with means µX and µY , variances σ2
X , σ2

Y , and correlation
ρX,Y , then

– marginal pdfs are normal

∗ X ∼ N (µX , σ
2
X)

∗ Y ∼ N (µY , σ
2
Y )

– conditioning preserves normality

∗ (X|Y = y) ∼ N (σX
σY

(y − µY )ρX,Y + µX , (1− ρ2
X,Y )σ2

X)

∗ (Y |X = x) ∼ N ( σY
σX

(x− µX)ρX,Y + µY , (1− ρ2
X,Y )σ2

Y )

– linear combinations preserve normality

∗ Z = aX + bY ⇒ Z ∼ N (aµX + bµY , a
2σ2

X + b2σ2
Y + 2abρX,Y σXσY )

– for jointly normal RVs, uncorrelation implies independence (this is NOT true for
general RVs)

∗ ρX,Y = 0⇒ fX,Y (x, y) = fX(x)fY (y)⇒ X and Y are independent

– all level sets of fX,Y (x, y) are ellipses (they’re circles if σX = σY and ρX,Y = 0).

• If X ∼ N (µx, Pxx), Z ∼ N (µz, Pzz), cov(X,Z) = Pxz, then

– marginal normality ⇐⇒ joint normality

Y =

[
X
Z

]
⇒ E Y = µy =

[
µx

µz

]
and cov(Y) = Pyy =

[
Pxx Pxz
P T
xz Pzz

]
– linear combination preserves normality

Y = AX ⇒ Y ∼ N (Aµx, APxxA
T )

(this is actually true for any random vectors, not necessarily Gaussian)

– conditioning preserves normality

(X|Z = z) ∼ N (µx + PxzP
−1
zz (z− µz), Pxx − PxzP−1

zz P
T
xz)
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6 Expectation and Variance

Definitions

• The expectation of a discrete random variable X taking values a1, a2, . . . and with pmf
pX is the weighted average

EX =
∑
i

ai P(X = ai) =
∑
i

aipX(ai)

For a continuous random variable X with pdf fX , the expectation is

EX =

∫ ∞
−∞

xfX(x)dx

If the integral diverges, e.g. for the Cauchy distribution, then we say the expectation
DNE.

• The variance of X is the scalar

Var(X) = E (X − EX)2.

An equivalent formula that’s easier to compute:

Var(X) = EX2 − (EX)2.

The number EX2 is called the second moment of X, so the variance is the second
moment minus the square of the first moment.

Why do we care about variance? Because it’s a measure of the dispersion of a RV.
There are other measures of dispersion, such as Maximum Average Dispersion (MAD),
but variance is the simplest and most commonly used.

• The standard deviation of a RV X is σ =
√

Var[X].

Results

• Expectation of a non-negative RV. If P(X < 0) = 0, then

EX =

∫ ∞
0

(1− FX(x))dx.

This formula is valid for any type of nonnegative RV – discrete, continuous or neither.
This is useful when the cdf is known but the pdf or pmf is unknown.

In the special case of a discrete RV taking values 0, 1, 2, . . . , this reduces to

EX =
∞∑
n=0

(1− FX(n)).
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• Expectation of g(X). Let X be a random variable and let g : R → R. If X is
discrete, with values a1, a2, . . . , then

E g(X) =
∑
i

g(ai) pX(ai)

If X is continuous, with pdf fX , then

E g(X) =

∫ ∞
−∞

g(x) fX(x)dx

• Expectation of a product of independent RVs. If RVs X and Y are independent,
then

E [XY ] = (EX)(EY ).

• Expectation and variance under linear transformation. For any RV X and
scalars r and s,

E [rX + s] = rE [X] + s

and

Var(rX + s) = r2Var(X) ⇒ σrX+s = |r|σX .

• Expectation and variance of a linear combination of RVs. If X1, . . . , Xn are
RVs and a1, . . . , an are scalars, then

E
n∑
i=1

aiXi =
n∑
i=1

ai EXi

and

Var(
n∑
i=1

aiXi) =
n∑
i=1

a2
iVar(Xi) + 2

n∑
i=1

n∑
j=i+1

aiajCov(Xi, Xj).

In the special case of two RVs X and Y , and for scalars r, s, and t, we have

E [rX + sY + t] = rE [X] + sE [Y ] + t.

and
Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X, Y ).
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7 Joint Distributions and Independence

Definitions

• The joint probability mass function pX,Y of two discrete RVs X and Y is the function
pX,Y : R2 → [0, 1], defined by

pX,Y (a, b) = P(X = a, Y = b) for −∞ < a, b <∞

Equivalently, for any set B,

P((X, Y ) ∈ B) =
∑

(ai,bj)∈B

pX,Y (ai, bj).

The joint pmf pX,Y satisfies

– Non-negativity: pai,bj ≥ 0 for all ai and bj

– Normalization:
∑

ai,bj
pX,Y (ai, bj) = 1

Note: the joint pmf contains more information than can be obtained from the marginal
pmfspX and pY . In fact, sometimes the joint pmf can’t be be retrieved from the
marginal pmf s.

• The joint probability density function fX,Y of two continuous RVs X and Y is the
function fX,Y : R2 → R, defined for all numbers a1, a2, b1, b2 with a1 ≤ b1 and a2 ≤ b2

by

P(a1 ≤ X ≤ b1, a2 ≤ Y ≤ b2) =

∫ b1

a1

∫ b2

a2

fX,Y (x, y)dxdy

The joint pdf fX,Y satisfies

– Non-negativity: fX,Y ≥ 0 for all x and y

– Normalization:
∫∞
−∞

∫∞
−∞ fX,Y (x, y)dxdy = 1

The joint pdf of two RVs is also called the bivariate probability density.

• The joint cumulative distribution function FX,Y of two RVs X and Y is the function
F : R2 → [0, 1] defined by

FX,Y (a, b) = P(X ≤ a, Y ≤ b) for −∞ < a, b <∞

In practice, the joint cdf is rarely known. Most practical work is done with the joint
pmf or pdf.
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• Two RVs X and Y with joint cdf FX,Y are independent if

FX,Y (a, b) = FX(a)FY (b) for all a, b

or, equivalently,
P(X ≤ a, Y ≤ b) = P(X ≤ a) P(Y ≤ b).

For continuous RVs X and Y with joint pdf fX,Y , the definition of independence implies
that

fX,Y (x, y) = fX(x)fY (y).

For discrete RVs X and Y , the definition of independence implies that

P(X = a, Y = b) = P(X = a) P(Y = b)

⇐⇒ pX,Y (a, b) = pX(a)pY (b)

• Necessary and sufficient conditions for independence. RVs X and Y are inde-
pendent if and only if they satisfy both of the following conditions.

– Separable joint pdf : fX,Y (x, y) = g(x)h(y) for some functions g and h : R →
R, and

– Rectangular feasible region: The bounds on x and y over which fX,Y (x, y) is
defined form a rectangle, i.e. a ≤ x ≤ b and c ≤ y ≤ d for some scalars a, b, c, d.

So if the bounds on x depend on y or vice versa, then X and Y are dependent.

Results

• Marginal cdfs from joint cdf. The marginal cdfs FX and FY are obtained from
the joint cdf FX,Y , for each a and b, by

FX(a) = P(X ≤ a) = F (a,∞) = lim
b→∞

FX,Y (a, b)

and

FY (b) = P(Y ≤ b) = F (∞, b) = lim
a→∞

FX,Y (a, b)

• Marginal pdfsfrom joint pdf. The marginal pdfsfX and fY are obtained from the
joint pdf fX,Y by integrating out the other variable, i.e.

fX(x) =

∫ ∞
−∞

fX,Y (x, y)dy

and

fY (y) =

∫ ∞
−∞

fX,Y (x, y)dx
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• Marginal pmfsfrom joint pmf. The marginal pmfspX and pY are obtained from
the joint pmf pX,Y by summing out the other variable, i.e.

pX(ai) =
∑
j

pX,Y (ai, bj)

and

pY (bj) =
∑
i

pX,Y (ai, bj)

• Relating joint pdf and joint cdf. The joint pdf fX,Y and the joint cdf FX,Y are
related by

FX,Y (a, b) =

∫ a

−∞

∫ b

−∞
fX,Y (a, b)dxdy

and

fX,Y =
∂2

∂x∂y
FX,Y (x, y).

• Propagation of independence. Let RVs X1, X2, . . . , XN be independent. For each i,
let hi : R→ R be a function, and let Yi = hi(Xi). Then Y1, Y2, . . . , YN are independent.
(Note that the functions hi do not have to be the same.)

• Expectation of g(X,Y). If (X,Y) is a discrete random vector with pmf pX,Y , then
for any function g : R2 → R,

E g(X, Y ) =
∑
xi

∑
yj

g(xi, yj)pX,Y (xi, yj)

If (X,Y) is a continuous random vector with pdf fX,Y , then for any function g : R2 → R,

E g(X, Y ) =

∫ ∞
−∞

∫ ∞
−∞

g(x, y)fX,Y (x, y)dxdy

This generalizes in the natural way to n RVs.
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8 Covariance and Correlation

Definitions

• The covariance between RVs X and Y is defined by

Cov(X, Y ) = E [(X − EX)(Y − EY )].

Or, equivalently,
Cov(X, Y ) = E [XY ]− E [X] E [Y ].

If X and Y are positively correlated, then Cov(X, Y ) > 0, and when X > EX, it tends
to be true that Y > EY as well. If, on the other hand, when X > EX we tend to
observe that Y < EY , then X and Y are negatively correlated and Cov(X, Y ) < 0. If
Cov(X, Y ) = 0, then X and Y are uncorrelated.

If X and Y are independent, then X and Y are uncorrelated. However, dependent
RVs X and Y can also be uncorrelated. Independence implies uncorrelation, but
uncorrelation does not imply independence.

• The correlation coefficient ρ(X, Y ), for RVs X and Y , is defined to be 0 if Var(X) = 0
or Var(Y ) = 0, and otherwise

ρ(X, Y ) =
Cov(X, Y )√

Var(X)Var(Y )
.

The correlation coefficient is dimensionless, and is invariant (except for a possible
sign change) under linear transformation of X and Y . Because of this, it’s used as a
standardized version of covariance.

The correlation coefficient has the following properties.

– Linearity. For RVs X and Y , and for constants r, s, t and u with r, t 6= 0,

ρ(rX + s, tY + u) =

{
−ρ(X, Y ) if rt < 0,

ρ(X, Y ) if rt > 0.

– Bounds. For nonconstant RVs X and Y ,

−1 ≤ ρ(X, Y ) ≤ 1.

– NB. Correlation measures the directional dependence between X and Y. X and
Y are “most correlated” if X = Y , in which case ρ(X, Y ) = 1, or if X = −Y , in
which case ρ(X, Y ) = −1.
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Results

• Covariance from joint pdf or pmf. If (X, Y ) is discrete with possible values (xi, yj)
and joint pmf pX,Y , then

Cov(X, Y ) =
∑
xi

∑
yj

(xi − µX)(yj − µY )pX,Y (xi, yj)

or, equivalently,

Cov(X, Y ) =
∑
xi

∑
yj

xiyjpX,Y (xi, yj)− µXµY .

If (X, Y ) is continuous with joint pdf fX,Y , then

Cov(X, Y ) =

∫ ∞
−∞

∫ ∞
−∞

(x− µX)(y − µY )fX,Y (x, y)dxdy

or, equivalently,

Cov(X, Y ) =

∫ ∞
−∞

∫ ∞
−∞

xyfX,Y (x, y)dxdy − µXµY .

• Covariance under linear transformation. For RVs X and Y ,

Cov(rX + s, tY + u) = rtCov(X, Y ).

• Symmetry of covariance. For RVs X and Y ,

Cov(X, Y ) = Cov(Y,X).

• General additivity of covariance. For RVs X1, . . . , Xn and Y1, . . . , Yk,

Cov(
n∑
i=1

Xi,

k∑
j=1

Yj) =
n∑
i=1

k∑
j=1

Cov(Xi, Yj).

Special case:
Cov(X1 +X2, Y ) = Cov(X1, Y ) + Cov(X2, Y ).
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9 Random Vectors

The theory for two RVs extends naturally to n RVs. This section lays out some notation
and linear algebraic conveniences.

Definitions

• Let X1, . . . , Xn RVs. Then X = (X1, . . . , Xn)T is a random vector with realization
x = (x1, . . . , xn)T ∈ Rn.

• pmf. Let X be a vector of discrete RVs X1, . . . , Xn. Then the pmf of X is the joint
pmf of X1, . . . , Xn:

pX(x) = pX1,...,Xn(x1, . . . , xn)

• pdf. Let X be a vector of continuous RVs X1, . . . , Xn. Then the pdf of X is the joint
pdf of X1, . . . , Xn:

fX(x) = fX1,...,Xn(x1, . . . , xn)

• Expectation. The expectation of X, E X ∈ Rn, is just a list of the expectations of
X1, . . . , Xn:

E X =

EX1
...

EXn

 =


∫∞
−∞ · · ·

∫∞
−∞ x1fX(x)dx1 · · · dxn

...∫∞
−∞ · · ·

∫∞
−∞ xnfX(x)dx1 · · · dxn


=


∫∞
−∞ x1fX(x)dx

...∫∞
−∞ xnfX(x)dx

 =

∫
Rn

xfX(x)dx

where dx = dx1 · · · dxn ∈ R. Expectation is defined similarly for discrete random
vectors. In the above notation, we use the fact that the integral of a vector v is a
vector of (scalar) integrals of the components of v.

• Covariance matrix. The covariance matrix of a random vector X, denoted cov(X) ∈
Rn×n, is

cov(X) = E
[
(X− E X)(X− E X)T

]
=


Var(X1) Cov(X1, X2) . . . Cov(X1, Xn)

Cov(X2, X1) Var(X2, )
...

...
. . .

Cov(Xn, X1) . . . Var(Xn)


Since Cov(Xi, Xj) = Cov(Xj, Xi), cov(X) is symmetric. If X1, . . . , Xn are linearly
independent, then cov(X) � 0.
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Results

• Expectation of a quadratic form. If A = AT ∈ Rn and X is a random n-vector
with expectation µx, then

E [XTAX] = tr[A(µxµ
T
x + Pxx)]
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10 Transformations of Random Variables

The problem we consider in this chapter: given a RV X with a known distribution (pdf, pmf,
or cdf ), and a transformation T : R→ R, find the distribution of Y = T (X). In the scalar
case, we consider both monotonic and non-monotonic transformations.

In the context of random vectors, the question is slightly different: given a random vector
X = (X1, . . . , Xn) with a known joint distribution (joint pdf, joint pmf, or joint cdf ), and
a transformation Y = T (X) = (Y1, . . . , Yn), find the joint distribution of Y. In the vector
case, we consider only one-to-one transformations between spaces of the same dimension, i.e.
transformations T such that T : Rn → Rn where T−1 is well-defined.

We also discuss a few standard transformations T : R2 → R (sum, difference, product,
quotient) for independent RVs.

Definitions

• Jacobian. Let X and Y be n-dimensional RVs, with Y = T (X), where T is one-
to-one, and hence T−1 is well-defined. Then x = T−1(y) ⇐⇒ x = h(y) for some
function h(y) = T−1(y) = (h1(y), . . . , hn(y))T . The Jacobian of T−1 is the n by n
determinant

JT−1(y) =

∣∣∣∣∣∣∣
∂h1
∂y1

. . . ∂h1
∂yn

...
. . .

...
∂hn
∂y1

. . . ∂hn
∂yn

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
← ∇h1(y) →

...
← ∇hn(y) →

∣∣∣∣∣∣∣ ,
where ∇h1(y) is the gradient of h1 with respect to y, viewed as a row vector.

• A twice differentiable function g : R → R is convex on an interval I if g′′(x) ≥ 0 for
all x ∈ I, and strictly convex if g′′(x) > 0 for all x ∈ I. Graphical interpretation: a
line drawn between any two points on the graph of a convex function will always lie
above the graph.

Results

• cdf under scalar transformation. Let Y = T (X), where X has pmf pX(x) or
pdf fX(x). Then the cdf of Y is, in the discrete case,

FY (y) =
∑

{xi|T (xi)≤y}

pX(xi), −∞ < y <∞

or, in the continuous case,

FY (y) =

∫
{x|T (x)≤y}

fX(x)dx, −∞ < y <∞

NB. These computations are often hard or impossible to do directly!
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• pmf under scalar transformation. Let X have pmf pX(x), and let Y = T (X).
Then the pmf of Y is

pY (yj) =
∑

{xi|T (xi)=yj}

pX(xi).

In the special case where T is one-to-one,

pY (yj) = pX(T−1(yj)).

• pdf under scalar transformation. Let X have pdf fX(x), and let Y = T (X). If
T is a general transformation, not necessarily monotonic, and if T (x) = y has roots
T−1

1 (y), T−1
2 (y), . . . , then Y has pdf

fY (y) =
∑
i

fX(T−1
i (y))| d

dy
T−1
i (y)|.

In the special case that T is one-to-one (and hence T−1 is well-defined), Y = T (X) has
pdf

fY (y) = fX(T−1(y))| d

dy
T−1(y)|.

• pmf under vector transformation. Let X have joint pmf pX1,...,Xn(x1, . . . , xn) =
pX(x), and let Y = T (X) with T one-to-one. Then Y is also discrete, with pmf

pY1,...,Yn(y1, . . . , yn) = pY(y) =
∑

{x|T (x)=y}

pX(x).

• pdf under vector transformation. Let X have joint pdf fX1,...,Xn(x1, . . . , xn) =
fX(x), and let Y = T (X) with T one-to-one. Then Y may also be continuous (no
guarantees). If so, its pdf is

fY(y) = fX(T−1(y))|JT−1(y)|.

• Standard transformation: sum. Let X1 and X2 be continuous, independent RVs
with pdfsfX1(x1) and fX2(x2), and let Z = X1 + X2. Then fZ(z) is given by the
convolution of X1 and X2:

fZ(z) =

∫ ∞
−∞

fX1(z − v)fX2(v)dv.

• Standard transformation: difference. Let X1 and X2 be continuous, independent
RVs with pdfsfX1(x1) and fX2(x2), and let Z = X1 −X2. Then fZ(z) is given by:

fZ(z) =

∫ ∞
−∞

fX1(z + v)fX2(v)dv.
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• Standard transformation: product. Let X1 and X2 be continuous, independent
RVs with pdfsfX1(x1) and fX2(x2), and let Z = X1X2. Then fZ(z) is given by

fZ(z) =

∫ ∞
−∞

1

|v|
fX1(z/v) fX2(v)dv.

• Standard transformation: quotient. Let X1 and X2 be continuous, independent
RVs with pdfsfX1(x1) and fX2(x2), and let Z = X1/X2. Then fZ(z) is given by

fZ(z) =

∫ ∞
−∞
|v| fX1(zv) fX2(v)dv.

• cdf and pdf under linear transformation. Let X be a continuous RV with cdf FX
and pdf fX . If we change units to Y = rX + s for real numbers r and s, then

FY (y) = FX(
y − s
r

) and fY (y) =
1

r
fX(

y − s
r

)

• Y = 1/X transformation. If RV X has pdf fX and Y = 1/X, then the pdf of Y is

fY (y) =
1

y2
fX

(1

y

)
for y < 0 and y > 0. Any value for fY (0) is fine.

• Jensen’s inequality. Let g be a convex function, and let X be a RV. Then

g(EX) ≤ E g(X)

If g is strictly convex, then Jensen’s inequality is strict.

The exception to Jensen’s inequality is when Var(X) = 0, i.e. X is not random at all.
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11 The Law of Large Numbers

Definitions

• A sequence of RVs X1, X2, X3, . . . is independent and identically distributed (iid) if the
RVs in the sequence are independent and all have the same distribution.

• The sample mean X̄n of n iid RVs is defined by

X̄n =
X1 + · · ·+Xn

n
.

If the expectation and variance of the Xi are µ and σ2, then the expectation and
variance of the sample mean are

E X̄n = µ

and

Var(X̄n) =
σ2

n
.

Remark: as n increases, the sample mean becomes more and more concentrated around
the true mean µ of the Xi. Loosely speaking, this is the Law of Large Numbers:

X̄n → µ as n→∞.

Results

• Markov’s Inequality. For any nonnegative RV X and any positive scalar a,

P(X > a) ≤ EX

a
.

• Chebyshev’s Inequality. For a RV Y and any a > 0,

P(|Y − EY | ≥ a) ≤ 1

a2
Var(Y ).

Qualitatively, this says that for any distribution, most of the probability mass is within
a few standard deviations of the expectation. This is the so-called “µ± a few rule.”

• The Weak Law of Large Numbers. If X̄n is the sample mean of n iid RVs with
expectation µ and variance σ2, then for any ε > 0,

lim
n→∞

P(
∣∣X̄n − µ

∣∣ > ε) = 0.

The law of large numbers, in combination with simulation and histograms, allows us
to recover the probability of any particular event, and therefore the entire pdf.
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NB. The law of large numbers is valid for distributions with finite expectation. Not
all distributions have finite expectation, however. For example, the expectation of the
Cauchy distribution DNE, and the expectation of the Pareto distribution for α < 1
is infinite. Par(α < 1) is called a heavy-tailed distribution, because X̄n grows without
bound as n increases. This is due to the occasional VERY LARGE realization of Xi.

• The Strong Law of Large Numbers. If X̄n is the sample mean of n iid RVs with
expectation µ, then

P
(

lim
n→∞

X̄n = µ
)

= 1.
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12 Moment Generating Function, Laplace Transform,

and Characteristic Function

• The moment generating function φX of a RV X is defined by

φX(t) = E etX , −∞ < t <∞

The reason for the name: for every n = 1, 2, . . . ,

dn

dtn
φX(t)

∣∣∣
t=0

= E [Xn],

the nth moment of X.

• The Laplace transform L [X] of a RV X is defined by

L [X] (t) = E e−tX = φX(−t), t > 0.

The Laplace transform (when it is defined) is always finite.

The Laplace transform can be used to generate moments of X:

dn

dtn
L [X] (t)

∣∣∣
t=0

= (−1)n E [Xn],

• The characteristic function ψX of a RV X is defined by

ψX(t) = E eitX = φX(−t),−∞ < t <∞

The characteristic function is used when the moment generating function and Laplace
transform are undefined. The characteristic function is always defined.

The characteristic function can be used to generate moments of X:

dn

dtn
ψX(t)

∣∣∣
t=0

= in E [Xn],

• If RVs X and Y are independent, then

φX+Y (t) = φX(t)φY (t)

and

LX+Y (t) = LX(t)LY (t)

and

ψX+Y (t) = ψX(t)ψY (t).
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13 Conditional Distributions

Definitions

• Conditional pmf and pdf. Let (X, Y) be a discrete random vector. Then the
conditional distribution of X given Y = yj is

pX|Y (xi|yj) =
pX,Y (xi, yj)

pY (yj)
.

If X and Y are independent, then pX|Y (xi, yj) = pX(xi) for all xi.

If (X,Y) is a continuous random vector, then the conditional pdf of X given Y = y is

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
.

If X and Y are independent, then fX|Y (x, y) = fX(x) for all x.

• Conditional expectation. Let (X, Y) be a discrete random vector. Then the condi-
tional expectation of X given Y = yj is

E [X|Y = yj] =
∑
xi

xipX|Y (xi|yj).

If (X,Y) is a continuous random vector, then the conditional expectation of X given
Y = y is

E [X|Y = y] =

∫ ∞
−∞

xfX|Y (x|y)dx.

NB. The conditional expectation of X given Y is itself a random vector (or a random
variable, for a particular realization of Y = y).

• Conditional variance. Let (X, Y) be a discrete random vector. Then the conditional
variance of X given Y = yj is

Var(X|Y = yj) = E [X2|Y = yj]− E [X|Y = yj]
2

where
E [X2|Y = yj] =

∑
xi

x2
i pX|Y (xi|yj).

If (X,Y) is a continuous random vector, then the conditional expectation of X given
Y = y is

Var(X|Y = y) = E [X2|Y = y]− E [X|Y = y]2

where

E [X2|Y = y] =

∫ ∞
−∞

x2fX|Y (x|y)dx.

NB. The conditional variance of X given Y is itself a random vector.
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Results

• Iterated expectation. For any random variables X and Y (discrete, continuous or
mixed),

EY = E [E [Y |X]].

This is a useful tool for calculating the expectation of a RV Y that may be difficult or
impossible to calculate directly.

Unpacking this formula for the case of a discrete conditioning RV:

EY =
∑
xi

E [Y |X = xi]pX(xi).

Unpacking this formula for the case of a continuous conditioning RV:

EY =

∫ ∞
−∞

E [Y |X = x]fX(x)dx.

• Iterated variance. For any random variables X and Y (discrete, continuous or
mixed),

Var(Y ) = E [Var(Y |X)] + Var(E[Y |X]).

This is a useful tool for calculating the variance of a RV Y that may be difficult or
impossible to calculate directly.

Unpacking this formula for the case of a discrete conditioning RV:

E Var(Y |X) =
∑
xi

Var(Y |X = xi)pX(xi), and

Var(E [Y |X]) =
∑
xi

E [Y |X = xi]
2pX(xi)−

(∑
xi

E [Y |X = xi]pX(xi)
)2

.

Unpacking this formula for the case of a continuous conditioning RV:

E Var(Y |X) =

∫ ∞
−∞

Var(Y |X = x)fX(x)dx, and

Var(E [Y |X]) =

∫ ∞
−∞

xE [Y |X = x]2fX(x)dx−
(∫ ∞
−∞

E [Y |X = x]fX(x)dx
)2

.

• Law of Total Probability for random variables. Let X1, . . . , Xn be random
variables. Some may be discrete, some continuous. Let A be an event expressed in
terms of X1, . . . , Xn.

33



If the conditioning event Xi is discrete, then the LTP is

P(A) =
∑
xi

pXi(xi) P(A|X = xi) (one conditioning event), and

P(A) =
∑
xi

∑
xj

pXi,Xj(xi, xj) P(A|Xi = xi, Xj = xj) (two conditioning events).

If the conditioning event Xi is continuous, then the LTP is

P(A) =

∫ ∞
−∞

fX(x) P(A|X = x)dx (one conditioning event), and

P(A) =

∫ ∞
−∞

∫ ∞
−∞

fXi,Xj(xi, xj) P(A|Xi = xi, Xj = xj)dxidxj (two conditioning events).
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14 Order Statistics

Order statistics are functions of a set of n iid RVs, X1, . . . , Xn. They’re used to investigate
the relative values – the biggest, the smallest, the middle, etc. Let fX and FX be the pdf and
cdf of every Xi, for i ∈ [1, n].

Definitions

• Let the RVs X(1), . . . , X(n), be the order statistics of the iid sample X1, . . . , Xn.
Then

X(1) ≤ X(2) ≤ · · · ≤ X(n−1) ≤ X(n).

The inequalities are strict in the continuous case, since the probability of two continuous
RVs being equal is zero.

• The first ordered statistic, X(1), is the minimum.

• The last order statistic, X(n), is the maximum.

Results

• cdf and pdf of the minimum. The distribution of the first order statistic is

FX(1)
(x) = 1− (1− FX(x))n

and

fX(1)
(x) = n(1− FX(x))n−1fX(x).

• cdf and pdf of the maximum. The distribution of the last order statistic is

FX(n)
(x) = FX(x)n

and

fX(n)
(x) = nFX(x)n−1fX(x).

• cdf and pdf of a general order statistic. The distribution of the kth order statistic
is

FX(k)
(x) =

n∑
i=k

(
n

i

)
FX(x)i(1− FX(x))n−i,

and

fX(k)
(x) = nfX(x)

(
n− 1

k − 1

)
FX(x)k−1(1− FX(x))n−k.
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• Joint density of two order statistics. Let 1 ≤ j ≤ k ≤ n. Then the joint density
of X(j) and X(k) is

fX(j),X(k)
(x, y) = fX(x)fX(y)

n!

(j − 1)!(k − j − 1)!(n− k)!

∗ FX(x)j−1(FX(y)− FX(x))k−j−1(1− FX(y))n−k, for x < y.

• Joint density of all order statistics. Let 1 ≤ j ≤ k ≤ n. Then the joint density of
X(j) and X(k) is

fX(1),...,X(n)
(x1, . . . , xn) =

{
n!fX(x1) . . . fX(xn), if x1 ≤ · · · ≤ xn.

0, otherwise.

NB. This looks just like the unordered joint pdf fX1,...,Xn(x1, . . . , xn) = fX(x1) . . . fX(xn),
except for two differences. First, we have a factor of n! in the ordered version. Second,
the ordered version has a greatly restricted feasible region (x1 ≤ · · · ≤ xn).
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15 The Central Limit Theorem

Let X1, . . . , Xn be iid RVs with common mean EXi = µ and common variance Var(Xi) = σ2,
for all i ∈ [1, n].

Definitions

• Sample mean. Define the sample mean by

X̄n =
X1 + · · ·+Xn

n
.

Recall that the Law of Large Numbers says that

X̄n → µ as n→∞.

Results

• Central Limit Theorem. Let σ2 = Var(Xi) be finite. Then as n → ∞, the distri-
bution of

√
n(X̄n − µ) converges to the N (0, σ2) distribution.

• Corollary 1. ∣∣X̄n − µ
∣∣ ≈ 1/

√
n.

This gives an order of magnitude estimate of the error between the sample mean and
the true mean. A consequence of this corollary: if you want your sample mean to
approximate the true mean µ to within one part in 10p (relative error), then you need
n ≈ 102p/µ2 samples.

• Corollary 2.

For large n,

X1 + · · ·+Xn − nµ
σ
√
n

∼ N (0, 1), (approximately)

⇒ P
(X1 + · · ·+Xn − nµ

σ
√
n

≤ x
)
≈ Φ(x).

How large should n be to use this result? Rule of thumb: n > n∗, where n∗ ≈ 30.

NB. Really, the value of n∗ depends on the distribution. For distributions that “look
like” the standard normal distribution, n∗ ≈ 5 may suffice.

• Corollary 3.

For large n, (
X1 + · · ·+Xn

)
∼ N (nµ, nσ2).

This is a useful but very loosely formulated result.
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• Infinite variance case. If Var(X)→∞, then the CLT may still hold, but∣∣X̄n − µ
∣∣ ≈ 1

n1−1/α
for some 1 < α < 2.

The closer α gets to 1, the heavier the tails of the distribution, and the less benefit
you get from averaging. How to pick out heavy tails on a graph? Look at the ratio
between the extremes and the main body of the data.

For large n, X1 + · · ·+Xn has approximately the α-stable Stable distribution.
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16 Stochastic Processes

Definitions

• Consider the sequence of random n-vectors

. . . ,X(−1),X(0),X(1), . . . (1)

where the argument denotes (discrete) time. We call such a sequence a stochastic
process. In general, each X(k) has a different density fX(k)(x(k)).

• Let
Xj = {. . . ,X(−1),X(0),X(1), . . . ,X(j)}

be the set of random vectors up to and including time j.

A stochastic process is Markovian if

fX(k)|Xj(x(k)|Xj) = fX(k)|X(j)(x(k)|x(j)) for all j < k

i.e. the current state contains all useful information for the purposes of predicting the
future.

• The autocorrelation of the stochastic process (1) is

R(k, j) = E [X(k)X(j)T ] ∈ Rn×n

NB. R(k, j) = R(j, k)T in general.

• Let E X(k) = µx(k) for all k. Then the autocovariance of the stochastic process (1)
is

V (k, j) = E [(X(k)− µx(k))(X(j)− µx(j))
T ]

= R(k, j)− µx(k)µx(j)
T

If µx(k) = 0 for all k, then the autocovariance and autocorrelation of (1) are the same.

• The stochastic process (1) is (wide-sense) stationary if its first two moments don’t
change over time. More precisely, a stationary process satisfies

1. µx(k) = µx for all k

2. R(k, j) = R̃(l) for all k, j, where l = k − j, for some function R̃ : R→ Rn×n

Interpretation of 2: the autocorrelation of a stationary stochastic process may depend
on the time lag between two samples, but not on the particular time index of either of
them.

For a stationary stochastic process, R̃(l) = R̃(−l)T .

NB. There’s a stricter version of stationarity that’s not typically achievable in practice.
It requires time invariance of the pdf, rather than just the first two moments.
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• The power spectral density of a stationary stochastic process is the Fourier trans-
form of its autocorrelation,

S(ω) = F
[
R̃(τ)

]
=

∫ ∞
−∞

eiωτ R̃(τ)dτ

where R̃(τ) is the autocorrelation between samples separated by time τ .

• The stochastic process (1) is called white noise if its autocovariance is zero for any
two different sample times:

V (k, j) = E [(X(k)− µx(k))(X(j)− µx(j))
T ] = Q(k)δjk for all j, k

where Q(k) is the covariance matrix of X(k) and δkj is the Kronecker delta. If the
white noise is zero mean, then the whiteness condition simplifies to

V (k, j) = R̃(k − j) = E [X(k)X(j)T ] = Q(k)δjk for all j, k

NB. White noise is stationary iff E X(j) = E X(k) for all j, k and Q(k) = Q for all
k. The power spectral density of white noise is constant across all frequencies. The
Matlab commands xcorr.m and fft.m are useful for analyzing the cross-correlation and
spectrum of a random sequence. xcorr.m can compute the autocorrelation of a se-
quence, and fft.m can compute the Fourier transform of the autocorrelation, a.k.a. the
power spectral density. If the transform is flat over all frequencies, then the sequence
is probably white noise.

• A stationary stochastic process with mean E X(k) = µx for all k is ergodic if expec-
tations agree with simple time averages of the realizations:

lim
N→∞

1

2N

N∑
k=−N

x(k) = µx

• Suppose the stochastic process . . . ,V(−1),V(0),V(1), . . . is stationary white noise,
i.e.

1. E V(k) = 0 for all k

2. E [V(k)V(j)] = Qδjk for all j, k

Define the random vectors X(k) as follows:

1. X(0) = 0 with probability 1

2. X(k + 1) = X(k) + V(k) for k ∈ {0, 1, 2, . . . }
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Then the stochastic process X(0),X(1), . . . is called a random walk. One interpreta-
tion: a drunk man wandering around. At each time step he picks a random direction
and wanders in that direction until the next step.

Some properties of random walks:

– each X(k) can be written as a sum of the past white noise:

X(k) =
k−1∑
j=0

V(j) for all k ≥ 1

– every X(k) is zero mean

E X(k) = 0 for all k ≥ 0

– the covariance matrix of X(k) is

E [X(k)X(k)T ] = kQ

so a random walk is non-stationary. In fact, the uncertainty in X(k) grows with
time – “walk long enough and you could end up anywhere.”

• Let . . . ,V(−1),V(0),V(1), . . . be Gaussian white noise, and let X(0) also be Gaussian.
Then the stochastic process given by linear system

X(k + 1) = F (k)X(k) + V(k)

is called a Gauss-Markov process. Here F (0), F (1), . . . are known, non-random
n× n matrices.

Some properties:

– every X(k) is Gaussian, since linear transformations preserve normality

– the process is Markovian: for all k ≥ j, X(k) depends only on X(j) and V(j),V(j+
1), . . . ,V(k − 1)

NB. If X(0) = 0 with probability 1, and if F (k) = In for all k, then the Gauss-Markov
process reduces to a random walk.
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Part II

Statistics

17 Numerical Data Summaries

Definitions

• Given an iid sample X1, . . . , Xn, the median of absolute deviations (MAD) of
the sample is

MAD(X1, . . . , Xn) = Med(|X1 −Med(X1, . . . , Xn)| , . . . , |Xn −Med(X1, . . . , Xn)|)

where the median Med(X1, . . . , Xn) is the middle order statistic of the arguments.

• The sample variance of the sample X1, . . . , Xn is

S2
n =

1

n− 1

n∑
i=1

(Xi − X̄n)2.

Why divide by n − 1 instead of n? Because the factor n − 1 leads to an unbiased
estimator, whereas n does not. See Chapter 19 for more details.

• The sample standard deviation of the sample X1, . . . , Xn is

Sn =

√√√√ 1

n− 1

n∑
i=1

(Xi − X̄n)2.

NB. The sample standard deviation is a biased estimator of the true standard deviation
σ.
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18 Basic Statistical Models

Definitions

• A sample or random sample is a collection of iid RVs X1, . . . , Xn. In most of
statistics, we view our data, x1, . . . , xn as realizations of a random sample.

• A statistic (or sample statistic) is any function of the sample X1, . . . , Xn.

Examples: sample mean X̄n, sample maximumMn = max {X1, . . . , Xn}, Med(X1, . . . , Xn),
MAD(X1, . . . , Xn), etc.

• The empirical distribution function Fn(a) of the sample X1, . . . , Xn is

Fn(a) =
number of Xi in (−∞, a]

n
.

The LLN tells us that for every ε > 0,

lim
n→∞

P(|Fn(a)− F (a)| > ε) = 0,

i.e. for large n the empirical distribution function approaches the true cdf.

Results

• Let (x − h, x + h] be a bin of width 2h in the histogram of the sample X1, . . . , Xn.
Then

number of Xi in (x− h, x+ h]

2hn
≈ fX(x),

i.e. the height of the histogram approximates the value of the pdf at the midpoint of the
bin, and the approximation gets better as n increases and as the bin width decreases.

We have a similar result for the kernel density estimate. For large n, it approaches
the true pdf.

• The relative frequency of realizations from a discrete, iid sample X1, . . . , Xn ap-
proximates the pmf :

relative frequency =
number of Xi equal to a

n
≈ pX(a).

• Some common estimators of true features of the distribution:

EXi ≈ X̄n

Var(Xi) ≈ S2
n

σXi ≈ Sn

F−1
X (0.5) ≈ Med(X1, . . . , Xn)

F−1
X (q) ≈ qth empirical quantile

F−1
X (0.75)− F−1

X (0.5) ≈ MAD(X1, . . . , Xn) (for symmetric FX(xi)).
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19 Unbiased Estimators

In this chapter, we discuss how to use sample statistics to recover information about the
true distribution (model parameters, cdf, pdf, pmf, etc).

Definitions

• A point estimator Θ̂ = Θ̂(X1, . . . , Xn) is a statistic, suitably designed to estimate
population parameter θ. A point estimate θ̂ = θ̂(x1, . . . , xn) is a realization of a
point estimator.

• The bias of an estimator is defined by

Bias(θ̂) = E [θ̂]− θ.
If Bias(θ̂) = 0, then we call θ̂ unbiased. A biased estimator has a systematic tendency
to overestimate or underestimate the true parameter θ.

Note that the naively normalized estimator of the variance,

S̃2
n =

1

n

n∑
i=1

(Xi − X̄n)2,

is biased. This is why we used the unbiased estimator S2
n, normalized by 1

n−1
.

• For a vector-valued estimator θ̂ of parameter vector θ, with estimation error θ̃ = θ̂−θ,
the bias is

Bias(θ̂) = E θ̃

(Note that the expectation may be taken over different distributions, in the Bayesian
and non-Bayesian approaches.)

• An estimator θ̂ is consistent if, for large n, θ̂ ≈ θ. More precisely, θ̂ is consistent if,
for every ε > 0,

lim
n→∞

P(
∣∣∣θ̂ − θ∣∣∣ > ε) = 0,

i.e. θ̂ → θ in probability.

Note: if θ̂ is consistent, then as n→∞, Bias(θ̂)→ 0.

Results

• Even if Bias(θ̂) = 0, the transformed estimator g(θ̂) may be a biased estimator of the
transformed parameter g(θ). Example: even though S2

n is an unbiased estimator of
σ2, Sn =

√
S2
n is a biased estimator of σ. Thus, transformation does not in general

preserve unbiasedness. A special case where unbiasedness is preserved is under linear
transformation:

Bias(θ̂) = 0⇒ Bias(aθ̂ + b) = 0.
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20 Precision of an Estimator

This chapter investigates how, given a portfolio of estimators for an unknown parameter θ,
we can choose the “best” one (by some agreed-upon metric). One such metric is the bias.
Others are efficiency, variance, MSE, mean absolute deviation, etc. Various norms can be
used to evaluate the precision of an estimator.

Definitions

• Let θ̂1(X1, . . . , Xn) and θ̂2(X1, . . . , Xn) be unbiased estimators of θ. Then θ̂1(X1, . . . , Xn)
is more efficient than θ̂2(X1, . . . , Xn) if, for all θ,

Var(θ̂1(X1, . . . , Xn)) < Var(θ̂2(X1, . . . , Xn)).

“An estimator with smaller variance is more efficient.”

• The mean squared error of an estimator θ̂ of a parameter θ is

MSE(θ̂) = E [(θ̂ − θ)2]

= Var(θ̂) + Bias(θ̂)2.

Let θ̂ ∈ Rn be an estimator of the parameter vector θ ∈ Rn. Let θ̃ = θ̂ − θ be the
estimation error. Then

Var(θ̂) = E [(θ̃ − E θ̃)(θ̃ − E θ̃)T ] ∈ Rn×n

and
MSE(θ̂) = E

[
θ̃θ̃

T
]

The MSE of an estimator measures its spread around the true parameter value. We
say that θ̂1(X1, . . . , Xn) is better than θ̂2(X1, . . . , Xn) in the MSE sense if

MSE(θ̂1(X1, . . . , Xn)) < MSE(θ̂2(X1, . . . , Xn)).

Note that in some cases, a biased estimator with a small MSE is preferable to an
unbiased estimator with a larger MSE.

It is almost never possible to find the estimator that’s optimal in the MSE sense, i.e.
the one with the smallest possible MSE. We can, however, sometimes find the estimator
with the smallest variance.

• The mean absolute deviation of an estimator θ̂ of a parameter θ is

MAD(θ̂) = E
∣∣∣θ̂ − θ∣∣∣

Why use MAD over MSE? If you have noisy observations or modeling errors, then
MAD may be preferable. However, about 95% of the time, MSE is the metric for
measuring the precision of an estimator.
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• The minimum variance unbiased estimator (MVUE) of a parameter θ is the
unbiased estimator with the smallest possible variance.

Example: the sample mean is the MVUE of the true mean, when the sample distribu-
tion is normal.

Results

• The Cramér-Rao bound. Let sample X1, . . . , Xn have pdf fX|Θ(xi|θ) (assumed to be

smooth), for some parameter θ. Then the variance of any estimator θ̂ of θ is bounded
below, for all θ, by

Var(θ̂) ≥ 1

nE [( ∂
∂θ

lnfX|Θ(Xi|θ))2]
.
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21 Maximum Likelihood Estimation

This section presents one method for producing “good” estimators: maximum likelihood
estimation. There are other methods, such as Bayesian estimation and estimation by the
Method of Moments. ML estimators are typically very good, but can be hard to construct
because they require optimization.

Definitions

• The likelihood function of a dataset x = (x1, . . . , xn) sampled from pX|Θ(x|θ) or
fX|Θ(x|θ) with unknown parameters θ = (θ1, . . . , θn) is

L(x|θ) =
n∏
i=1

pX(xi|θ) (discrete case)

L(x|θ) =
n∏
i=1

fX(xi|θ) (continuous case)

• The loglikelihood function of a dataset x = (x1, . . . , xn) sampled from pmf pX|Θ(x|θ)
or pdf fX|Θ(x|θ) with unknown parameters θ = (θ1, . . . , θn) is

l(x|θ) = ln(L(x|θ)).

A value θ∗ maximizes l(x|θ) if and only if it maximizes L(x|θ).

When finding the MLE of θ involves differentiation, the loglikelihood function is often
easier to work with than the likelihood function, because the log of the product is the
sum of the logs.

• The maximum likelihood estimator of a parameter vector θ̂ is

θ̂ML = arg max
θ

L(x|θ)

= arg max
θ

l(x|θ).

In general, θ̂ML may be biased or unbiased. θ̂ML is always consistent (and therefore
asymptotically unbiased, as n → ∞). As n → ∞, θ̂ML has the lowest possible MSE
among unbiased estimators (i.e. θ̂ML attains the Cramér-Rao bound).

Results

• If h(·) is a one-to-one function, and if θ̂ML is the MLE of θ̂, then h(θ̂ML) is the MLE
of h(θ̂).
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22 Method of Moments Estimation

Definitions

• The kth sample moment of a sample x1, . . . , xn is

m̂k =
1

n

n∑
i=1

xki , for k = 1, 2, . . .

• The kth population moment of a population X1, . . . , Xn is

µk(θ) = E [Xk
1 ], for k = 1, 2, . . .

so µ1 = EX1 is the mean. In estimation problems, the population moments depend
on the unknown parameters θ.

Results

• Recipe for Method of Moments estimation. If k parameters need to be estimated,

1. For each i ∈ {1, . . . , k}, write m̂i = µi(θ)

2. Solve the resulting system for θ1, . . . , θk.

• MoM estimation is easier to perform than ML estimation, because solving an algebraic
system is usually easier than solving an optimization problem.

• Tradeoff: MoM estimators, unlike ML estimators, don’t always give sensical results.
The most common use of MoM estimators is as the initial guess for numerical ML
estimation.
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23 Bayesian Estimation

Bayesian estimation is another approach to the problem of using data to estimate an un-
known parameter from the sample distribution. While MLEs are consistent and asymptoti-
cally unbiased but hard to compute, and MoM estimators are easy to compute but sometimes
nonsensical, Bayesian estimators have the advantage of allowing us to incorporate our prior
beliefs into the process of estimation. Bayesian estimation is somewhat different, on a philo-
sophical level, from ML and MoM estimation. Why? Because in ML and MoM estimation,
we view θ as some unknown constant, but in Bayesian estimation we view θ as a RV with
its own probability distribution. This worldview is not universally accepted in the statistics
community.

As in the previous chapters, our task is to use the realizations x = (x1, . . . , xn) of the
sample X = (X1, . . . , Xn) to compute an estimator Θ̂ (or a particular estimate θ̂) of the
parameter θ.

Bayesian estimation works with either discrete or continuous distributions on both the
parameter and the sample. Bayesian estimation preserves the nature of the parameter: if
the prior distribution on θ is continuous (or discrete), then the posterior distribution on θ is
also continuous (or discrete).

Definitions

• The prior distribution p(θ) encodes our a priori beliefs about θ. The prior distribu-
tion is an assumption; Bayesian estimation is generally quite sensitive to this a priori
assumption. p(θ) may be discrete or continuous.

• The uniform distribution is called the non-informative prior. It’s used when we
have no prior beliefs about θ.

• The prior distribution p(θ) = 1 is called the improper prior. Although it’s not a
legitimate density, it’s sometimes used because it’s easy and it works.

• The posterior distribution fΘ|X(θ|x) (or pΘ|X(θ|x), if p(θ) is a pmf ) uses Bayes’
Rule to update the distribution on θ based on the data x.

Results

• Recipe for Bayesian estimation.

1. Postulate prior distribution p(θ)

2. Use Bayes’ Rule and the observations x to compute the posterior distribution on
θ:

fΘ|X(θ|x) =
p(θ)

∏n
i=1 fX|Θ(xi|θ)
fX(x)
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where the denominator can be (but doesn’t always need to be) computed with
the LTP for RVs:

fX(x) =

∫ ∞
−∞

p(θ)
n∏
i=1

fX|Θ(xi|θ)dθ

3. Construct either the mean Bayesian estimator,

Θ̂mean = E [Θ|X] =

∫ ∞
−∞

θfΘ|X(θ|x)dθ

or the mode Bayesian estimator,

Θ̂mode = arg max
θ
fΘ|X(θ|x)

Note that if the mode estimator is used, the denominator fX(x) never needs to
be computed, because it’s constant with respect to θ and therefore doesn’t affect
the maximization.

• Normal sample and prior. Let the sample distribution be N (θ, σ2
0), where θ is the

parameter to be estimated and σ2
0 is known. Let the prior distribution be N (µ, σ2

0),
where µ and σ2 are both known. Then both the mean and mode Bayesian estimators
of θ are

θ̂mode = θ̂mean =
1

1 + nσ
2

σ2
0

µ+
nσ

2

σ2
0

1 + nσ
2

σ2
0

X̄n,

i.e. the estimator is a weighted sum of our prior beliefs (µ) and the data (X̄n), where
the weight on µ reflects how confident we are in our prior beliefs, and the weight on
X̄n reflects how much we trust the data.
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24 Least Squares Estimation

Sometimes we have a bunch of data x = (x1, . . . , xn), but we don’t know what distribution
it’s sampled from. We only know (or assume) that the data are linear functions of θ:

xj = γjθ + wj, j ∈ {1, . . . , n}

for some scalars γ1, . . . , γn and some sequence of independent noises W1, . . . ,Wn with un-
known distributions but known variances Var(Wk) = σ2 for all k. (This is the linear least
squares problem; there’s a nonlinear version too.) Define the cost

CLS(θ|x) =
1

2σ2

k∑
j=1

w2
j =

1

2σ2

k∑
j=1

(xj − γjθ)2

Then the (linear) least squares estimator (LSE) of θ is

θ̂LS(x) = arg min
θ
CLS(θ|x) =

∑n
j=1 γjxj∑k
j=1 γ

2
j

Linear least squares estimation finds the θ that minimizes the square of the distance between
each measurement xj and a line through the data.

Under the assumptions that the noises wj are iid Gaussian RVs, the LSE and MLE are
equivalent.
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25 Minimum Mean Squared Error Estimation

This is another estimator that follows the Bayesian worldview of considering the parameter
θ as random with a prior density p(θ). Let x = (x1, . . . , xn) be the data. Define the cost

CMSE(θ̂|x) = E [(Θ̂−Θ)2|x] =

∫ ∞
−∞

(θ̂ − θ)2fΘ|X(θ|x)dx

Note that the posterior density fΘ|X(θ|x) is calculated by the same process as in Bayesian
estimation.

The minimum mean squared error estimator (MMSEE) of θ is

θ̂MMSE = arg min
θ̂
C(θ̂|x) = E [Θ|x]
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26 Hypothesis Testing

Hypothesis testing, like estimation, deals with using data to figure stuff out about an un-
known parameter θ of the sample distribution. In estimation, we try to come up with a
“good” value of θ (through ML, MoM, or Bayesian estimation). In hypothesis testing, we
want to choose between two different statements about θ. For instance, θ = 5 vs. θ = 10, or
0 ≤ θ ≤ 7 vs. θ > 10. This chapter discusses how to construct good hypothesis tests, and
how to compare the “quality” (mostly size and power) of two tests.

As in the previous sections, X = (X1, . . . , Xn) is a sample (and therefore iid) whose
distribution depends on the parameter θ.

Definitions

• The null hypothesis, H0 : θ ∈ Ω0, models our current beliefs about θ.

• The alternative hypothesis, H1 : θ ∈ Ω1, models some different beliefs about θ.
Generally, hypothesis testing is conservative, in that we require very strong evidence
to reject H0 in favor of H1. Our inclination is to stick with the status quo.

• A hypothesis with Ωi = {θi}, where θi ∈ R, is called simple. A composite hypothesis
is one that’s not simple (i.e. Ωi contains more than one element).

• We call the set of all possible parameter values Ω. Ω0 and Ω1 are disjoint subsets of Ω.

• A test statistic T (X) is some function of the sample that we use to check whether or
not we reject H0.

• The critical region C is the set of all values that cause us to reject H0. Given a test
statistic,

C = {x | if X = x, we reject H0}
= {x | T (x) ∈ R}

where the set R, and therefore the critical region C, is constructed “somehow” by the
tester. The quality of a test depends on the choice of C.

We call the rule “reject H0 if x ∈ C ′′ ⇐⇒ “reject H0 if T (x) ∈ R” the decision rule.

• A Type 1 error is a false rejection of H0. Formally, the probability of Type 1 error is

α = P(reject H0 | H0 is true)

If the null hypothesis is simple, then α is a constant. If the null hypothesis is composite,
then α = α(θ).
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• A Type 2 error is a false acceptance of H0. Formally, the probability of Type 2 error
is

β = P(accept H0 | H1 is true)

If the alternative hypothesis is simple, then β is a constant. If the alternative hypothesis
is composite, then β = β(θ).

• Since we’re conservative, controlling Type 1 error (i.e. making α small) is most impor-
tant.

• The significance level or size of a test, denoted ᾱ, is an upper bound on α. The
significance level is a specification set by the tester: “This test must have a significance
level no higher than ᾱ.” Typical values of ᾱ are 0.05, 0.01, or 0.005.

For a simple null hypothesis, we choose C such that α = ᾱ.

For a composite null hypothesis, we choose C such that α(θ) ≤ ᾱ for all θ ∈ Ω0.

• A test with a significance level ᾱ is called a size ᾱ test.

• The power function of a test is the probability of rejecting the null hypothesis, given
that the alternative hypothesis is true. Formally,

η(θ) = P(reject H0 | H1 is true)

= 1− β(θ)

When considering two tests of size ᾱ, the test with the higher power is better. If the
power of a size ᾱ test is at least as high as the power of any other size ᾱ test, then it’s
called a best test of size ᾱ.

• Consider the test of size ᾱ, H0 : θ = θ0 vs. H1 : θ = θ1 (i.e. simple hypotheses), with
critical region C = {x | T (x) ≥ γᾱ} such that P(T (x) ≥ γᾱ | H0 is true) = ᾱ. Then
the p-value of this test is

p-value = P(T (X) ≥ T (x) | H0 is true)

Why do we care about the p-value? Well, we can use it to make our decision: we reject
the null hypothesis if the p-value is smaller than ᾱ, and we accept the null hypothesis
if the p-value exceeds ᾱ.

Results

• Recipe for likelihood ratio testing with simple hypotheses and continuous
likelihood ratios.

1. Compute the likelihood under H0:

L0(x) =
n∏
i=1

fX|Θ0(xi|θ0)
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2. Compute the likelihood under H1:

L1(x) =
n∏
i=1

fX|Θ1(xi|θ1)

3. Compute the likelihood ratio L0(x)/L1(x).

4. Apply the Neyman-Pearson Lemma: the best test of size ᾱ has critical region

C = {x | L0(x)

L1(x)
≤ γᾱ}

Thus, we reject the null hypothesis when the likelihood ratio is too small. Often,
we can reformulate the critical region in terms of a test statistic T (x) that’s easier
to work with than L0(x)/L1(x).

• Recipe for likelihood ratio testing with simple hypotheses and discrete like-
lihood ratios. If L0(x)/L1(x) is a discrete RV, then the best test of size ᾱ is ran-
domized.

1. Compute the likelihood under H0:

L0(x) =
n∏
i=1

pX|Θ0(xi|θ0)

2. Compute the likelihood under H1:

L1(x) =
n∏
i=1

pX|Θ1(xi|θ1)

3. Compute the likelihood ratio L0(x)/L1(x).

4. Reject H0 if the LR is too small.

Note that in this case, the LR takes only discrete values, e.g. 1, 2, 3, 4, and 5. The
“LR too small” criterion may tell us to reject H0 if the LR is 1 or 2, to stick with H0

if the LR is 4 or 5, but the case LR = 3 may be “degenerate” in the sense that if we
assign LR = 3 to one hypothesis or the other, we end up with a test of size α 6= ᾱ.
This is no longer the best test of size ᾱ, so we use a randomization.

How does this work? We introduce an intermediate RV X (e.g. a Ber(p) RV), and
split the LR = 3 case into two subcases: LR = 3 and X = 0 vs. LR = 3 and X = 1.
Then we figure out what value of p to use to get α = ᾱ, i.e. to exactly meet the spec.

• Recipe for likelihood ratio testing with composite hypotheses. When testing
H0 : θ ∈ Ω0 vs. H1 : θ ∈ Ω1, best tests are not generally available. However, likelihood
ratio tests are still very powerful.
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1. Compute the maximum likelihood under H0:

L∗0(x) = max
θ∈Ω0

n∏
i=1

fX|Θ0(xi|θ0)

2. Compute the maximum likelihood under H0 or H1:

L∗(x) = max
θ∈Ω0∪Ω1

n∏
i=1

fX|Θ1(xi|θ1)

3. Compute the maximum likelihood ratio L∗0(x)/L∗(x)

4. Reject H0 if L∗0(x)/L∗(x) ≤ γᾱ for an appropriate γᾱ.

In many cases, the threshold γᾱ is difficult or impossible to compute exactly. In these
cases, we can use the following approximation

n� 1 ⇒ −2 ln(
L∗0(x)

L∗(x)
) ∼ χ2

m (approximately), where

m = dim(Ω0 ∪ Ω1)− dim(Ω0)

Our null rejection criterion therefore becomes

reject H0 if − 2 ln(
L∗0(x)

L∗(x)
) > χ2

m(ᾱ)

• Locally most powerful tests. Given the hypothesis test H0 : θ = θ0 vs. H1 : θ > θ0,
the locally most powerful test of size α is

reject H0 if
[ ∂
∂θ

ln fX|Θ(x|θ)
]∣∣∣
θ0
> γα

where the threshold γα satisfies

P
([ ∂
∂θ

ln fX|Θ(x|θ)
]∣∣∣
θ0
> γα

∣∣∣ θ = θ0

)
= α

LMP tests perform very well in the neighborhood of the null hypothesis, i.e. for values
of θ near θ0.
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