Probability and Statistics Basics

Kevin Kircher - Cornell MAE - Spring '14

These notes summarize some basic probability and statistics material. The primary sources are A Modern Introduction to Probability and Statistics by Dekking, Kraaikamp, Lopuhaä and Meester, Introduction to Probability by Dimitri Bertsekas, and the lectures of Profs. Gennady Samorodnitsky and Mark Psiaki.

Contents

I Probability 3
1 Outcomes, Events and Probability 3
2 Conditional Probability and Independence 5
3 Discrete Random Variables 7
4 Continuous Random Variables 10
5 The Normal Distribution 13
6 Expectation and Variance 17
7 Joint Distributions and Independence 19
8 Covariance and Correlation 22
9 Random Vectors 24
10 Transformations of Random Variables 26
11 The Law of Large Numbers 29
12 Moment Generating Functions 31
13 Conditional Distributions 32
14 Order Statistics 35
15 The Central Limit Theorem 37
16 Stochastic Processes 39
II Statistics 42
17 Numerical Data Summaries 42
18 Basic Statistical Models 43
19 Unbiased Estimators 44
20 Precision of an Estimator 45
21 Maximum Likelihood Estimation 47
22 Method of Moments Estimation 48
23 Bayesian Estimation 49
24 Least Squares Estimation 51
25 Minimum Mean Squared Error Estimation 52
26 Hypothesis Testing 53

Part I

Probability

1 Outcomes, Events and Probability

Definitions

- A sample space Ω is a set of the outcomes of an experiment.
- An event is a subset of the sample space.
- Two events A and B are disjoint if they have no elements (outcomes) in common.

Axioms

- Nonnegativity: $\mathbf{P}(A) \geq 0$ for all events A
- Normalization: $\mathbf{P}(\Omega)=1$
- Disjoint Unions: for all disjoint events $\mathrm{A}_{i}, \mathbf{P}\left(A_{1} \cup A_{2} \cup \ldots\right)=\mathbf{P}\left(A_{1}\right)+\mathbf{P}\left(A_{2}\right)+\ldots$

Results

- DeMorgan's Laws. For any two events A and B,

$$
\begin{aligned}
& (A \cup B)^{c}=A^{c} \cap B^{c} \\
& (A \cap B)^{c}=A^{c} \cup B^{c}
\end{aligned}
$$

Mnemonic: distribute the c and flip the set operator.

- For unions of intersections and intersections of unions,

$$
\begin{aligned}
& A \cup(B \cap C)=(A \cup B) \cap(A \cup C) \\
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
\end{aligned}
$$

- The probability of a union of (non-disjoint) events is

$$
\mathbf{P}(A \cup B)=\mathbf{P}(A)+\mathbf{P}(B)-\mathbf{P}(A \cap B)
$$

Intuition: subtract the intersection of A and B to avoid double counting. For three events,

$$
\mathbf{P}(A \cup B \cup C)=\mathbf{P}(A)+\mathbf{P}(B)+\mathbf{P}(C)-\mathbf{P}(A \cap B)-\mathbf{P}(A \cap C)-\mathbf{P}(B \cap C)+\mathbf{P}(A \cap B \cap C)
$$

- The Complement Rule:

$$
\mathbf{P}\left(A^{c}\right)=1-\mathbf{P}(A)
$$

- A permutation $P_{n, k}$ is an ordering of k objects out of a pool of n. Such a permutation can be done in

$$
P_{n, k}=\frac{n!}{(n-k)!}
$$

ways.

- A combination $\binom{n}{k}$ (pronounced " n choose k ") is a choice of k objects from a pool of n, where order doesn't matter.

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Example: choosing 3 medalists out of a heat of 8 runners is a combination because order doesn't matter. On the other hand, choosing the gold, silver and bronze medalists is a permutation because order matters.

2 Conditional Probability and Independence

Definitions

- The conditional probability of A given C (C is called the conditioning event), provided $\mathbf{P}(C)>0$, is

$$
\mathbf{P}(A \mid C)=\frac{\mathbf{P}(A \cap C)}{\mathbf{P}(C)}
$$

Note that the Complement Rule works for conditional probabilities. For all events A,

$$
\mathbf{P}(A \mid C)+\mathbf{P}\left(A^{c} \mid C\right)=1
$$

For three events A, B and C,

$$
\mathbf{P}(A \mid B \cap C)=\frac{\mathbf{P}(A \cap B \mid C)}{\mathbf{P}(B \mid C)}
$$

- Events A and B are independent if any of the following are true:

$$
\begin{aligned}
\mathbf{P}(A \mid B) & =\mathbf{P}(A) \\
\mathbf{P}(B \mid A) & =\mathbf{P}(B) \\
\mathbf{P}(A \cap B) & =\mathbf{P}(A) \mathbf{P}(B)
\end{aligned}
$$

where A can be replaced with A^{c} or B with B^{c}. All twelve of these statements are equivalent.

- Two or more events $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{m}$ are independent if

$$
\mathbf{P}\left(A_{1} \cap A_{2} \cap \cdots \cap A_{m}\right)=\mathbf{P}\left(A_{1}\right) \mathbf{P}\left(A_{2}\right) \ldots \mathbf{P}\left(A_{m}\right)
$$

and if the above equation also holds when any number of events are replaced by their complements., e.g.

$$
\mathbf{P}\left(A_{1} \cap A_{2}^{c} \cap A_{3} \cap \cdots \cap A_{m}\right)=\mathbf{P}\left(A_{1}\right) \mathbf{P}\left(A_{2}^{c}\right) \mathbf{P}\left(A_{3}\right) \ldots \mathbf{P}\left(A_{m}\right)
$$

In general, establishing the independence of m events requires checking 2^{m} equations. A useful rule: if events A_{1}, \ldots, A_{n} are independent, then so are any derived events constructed from disjoint groupings of the A_{i}.

Results

- The Multiplication Rule. For events A and C,

$$
\mathbf{P}(A \cap C)=\mathbf{P}(A \mid C) \cdot \mathbf{P}(C)
$$

Note that this works even if $\mathbf{P}(C)=0$. This allows us to break the probability of a complicated intersection up into a sequence of less complicated conditional probabilities. Handy for iterative calculations.
The general form of the Multiplication Rule, for events A_{1}, \ldots, A_{n} with positive probability, is

$$
\mathbf{P}\left(\cap_{i=1}^{n} A_{i}\right)=\mathbf{P}\left(A_{1}\right) \mathbf{P}\left(A_{2} \mid A_{1}\right) \mathbf{P}\left(A_{3} \mid A_{1} \cap A_{2}\right) \ldots \mathbf{P}\left(A_{n} \mid \cap_{i=1}^{n-1} A_{i}\right)
$$

- The Law of Total Probability. For disjoint events $C_{1}, C_{2}, \ldots, C_{m}$ that partition Ω,

$$
\mathbf{P}(A)=\mathbf{P}\left(A \mid C_{1}\right) \mathbf{P}\left(C_{1}\right)+\mathbf{P}\left(A \mid C_{2}\right) \mathbf{P}\left(C_{2}\right)+\cdots+\mathbf{P}\left(A \mid C_{m}\right) \mathbf{P}\left(C_{m}\right)
$$

This allows us to write a probability $\mathbf{P}(A)$ as a weighted sum of conditional probabilities. Useful when the conditional probabilities are known or easy. A special case:

$$
\mathbf{P}(B)=\mathbf{P}(B \mid A) \mathbf{P}(A)+\mathbf{P}\left(B \mid A^{c}\right) \mathbf{P}\left(A^{c}\right)
$$

- Bayes' Rule. For disjoint events $C_{1}, C_{2}, \ldots, C_{m}$ that partition Ω,

$$
\mathbf{P}\left(C_{i} \mid A\right)=\frac{\mathbf{P}\left(A \mid C_{i}\right) \cdot \mathbf{P}\left(C_{i}\right)}{\mathbf{P}\left(A \mid C_{1}\right) \mathbf{P}\left(C_{1}\right)+\mathbf{P}\left(A \mid C_{2}\right) \mathbf{P}\left(C_{2}\right)+\cdots+\mathbf{P}\left(A \mid C_{m}\right) \mathbf{P}\left(C_{m}\right)}
$$

Note that we can also write Bayes' Rule in a simpler form, and use the Law of Total Probability to expand the denominator. This simpler form is

$$
\mathbf{P}\left(C_{i} \mid A\right)=\frac{\mathbf{P}\left(A \mid C_{i}\right) \cdot \mathbf{P}\left(C_{i}\right)}{\mathbf{P}(A)}
$$

3 Discrete Random Variables

Definitions

- A discrete random variable is a function $X: \Omega \rightarrow \mathbb{R}$ that takes on a countable (possibly infinite, if $n \rightarrow \infty$) number of discrete values $x_{1}, x_{2}, \ldots, x_{n}$.
- The probability mass function p_{X} of a discrete random variable X is the function $p_{X}: \mathbb{R} \rightarrow[0,1]$, defined by

$$
p_{X}\left(x_{i}\right)=\mathbf{P}\left(X=x_{i}\right) .
$$

Equivalently, for any set B,

$$
\mathbf{P}(X \in B)=\sum_{x_{i} \in B} p_{X}\left(x_{i}\right)
$$

The $p m f$ is non-zero only at the discrete values x_{1}, x_{2}, \ldots
More precisely, the $p m f$ obeys

$$
\begin{aligned}
p_{X}\left(x_{i}\right) & >0 \\
\sum_{i} p_{X}\left(x_{i}\right) & =1 \\
p_{X}(x)=0 \text { for all } x & \neq x_{i}
\end{aligned}
$$

- The cumulative distribution function F_{X} of a discrete random variable X is the function $F_{X}: \mathbb{R} \rightarrow[0,1]$, defined by

$$
F_{X}(x)=\mathbf{P}(X \leq x) \text { for } x \in \mathbf{R}
$$

The $c d f$ of a discrete RV is piecewise continuous from the right. For a $p m f$ defined as above, F_{X} obeys

$$
\begin{aligned}
& F_{X}(x)=\sum_{x_{i} \leq x} p_{X}\left(x_{i}\right) \\
& x_{1} \leq x_{2} \Rightarrow F_{X}\left(x_{2}\right) \leq F\left(x_{2}\right) \\
& \lim _{x \rightarrow+\infty} F_{X}(x)=1 \\
& \lim _{x \rightarrow-\infty} F_{X}(x)=0
\end{aligned}
$$

Common Discrete Distributions

- X has the Bernoulli distribution $\operatorname{Ber}(p)$ with parameter $0 \leq p \leq 1$ if its $p m f$ is given by

$$
p_{X}\left(x_{i}\right)= \begin{cases}p, & \text { if } x_{i}=1 \\ 1-p, & \text { if } x_{i}=0 \\ 0, & \text { otherwise }\end{cases}
$$

Expectation: $\mathbf{E} X=p$. Variance: $\operatorname{Var}(X)=p(1-p)$.
Bernoulli trials form the basis of all the most important discrete RVs. The Bernoulli distribution models a sequence of independent binary trials (coin flips), with probability p of success in each trial.

- X has the binomial distribution $\operatorname{Bin}(n, p)$ with parameters $n=1,2, \ldots$ and $0 \leq p \leq 1$ if its $p m f$ is given by

$$
p_{X}(k)=\binom{n}{k} p^{k}(1-p)^{n-k} \text { for } k=0,1, \ldots, n
$$

Expectation: $\mathbf{E} X=n p$. Variance: $\operatorname{Var}(X)=n p(1-p)$.
The binomial RV counts the number of successes in n Bernoulli trials, with probability p of success in each trial.
NB. The Bernoulli RV is a special case of the binomial RV: $\operatorname{Bin}(1, p)$ is $\operatorname{Ber}(p)$.

- The multinomial distribution $\operatorname{Mult}\left(n, p_{1}, \ldots, p_{k}\right)$ counts the number of times, out of n independent trials with k types of outcome in every trial, that an outcome of type i is observed, for $i \in\{1, \ldots, k\}$. The $i^{\text {th }}$ type of outcome has probability p_{i} of success.
Let m_{i} be the number of times an outcome of type i is observed, so that $\sum_{i} m_{i}=n$. Then the multinomial distribution is

$$
p_{\mathbf{M}}(\mathbf{m})=\mathbf{P}\left(M_{1}=m_{1}, \ldots, M_{k}=m_{k}\right)=\frac{n!}{m_{1}!\ldots m_{k}!} p_{1}^{m_{1}} \ldots p_{k}^{m_{k}}
$$

Note that this gives the distribution of the multiplicities of outcomes of type 1 through k. In Matlab, the RHS is easily computed with $\operatorname{mnpdf}(\mathbf{m}, \mathbf{p})$.
For $i \in\{1, \ldots, k\}$,

- Expectation: $\mathbf{E} M_{i}=n p_{i}$
- Variance: $\operatorname{Var}\left(M_{i}\right)=n p_{i}\left(1-p_{i}\right)$
- Covariance: for $i \neq j, \operatorname{Cov}\left(M_{i}, M_{j}\right)=-n p_{i} p_{j}$

NB. $\operatorname{Bin}(n, p)$ is $\operatorname{Mult}(n, p, 1-p)$.

- X has a negative binomial distribution $\mathrm{NB}(n, p)$ with parameters $n=1,2, \ldots$ and $0 \leq p \leq 1$ if its $p m f$ is given by

$$
p_{X}(k)=\binom{k-1}{n-1} p^{n}(1-p)^{k-n} \text { for } k=n, n+1, \ldots
$$

Expectation: $\mathbf{E} X=n / p$. Variance: $\operatorname{Var}(X)=n(1-p) / p^{2}$.
The negative binomial RV counts the number of trials until the $n^{\text {th }}$ success, with probability p of success in each trial.

- X has the geometric distribution $\operatorname{Geo}(p)$ with parameter $0<p \leq 1$ if its pmf is given by

$$
p_{X}(k)=p(1-p)^{k-1} \text { for } k=0,1, \ldots, n .
$$

Expectation: $\mathbf{E} X=1 / p$. Variance: $\operatorname{Var}(X)=(1-p) / p^{2}$.
NB. The geometric RV is a special case of the negative binomial: $\mathrm{NB}(1, p)=\mathrm{Geo}(p)$. The geometric RV counts the number of trials until the first success.
The geometric RV has the memoryless property.

- X has the hypergeometric distribution $\operatorname{Hyp}(n, N, M)$ with parameters $n=1,2, \ldots$, $N>0$, and $M>0$ if its pmfis given by

$$
p_{X}(k)=\frac{\binom{N}{k}\binom{M}{n-k}}{\binom{N+M}{n}}, \quad \max (n-M, 0) \leq k \leq \min (n, N)
$$

Expectation: $\mathbf{E} X=n N /(N+M)$.
Variance: $\operatorname{Var}(X)=\frac{n N M}{(N+M)^{2}}\left(1-\frac{n-1}{N+M+1}\right)$.
The hypergeometric RV counts the number of successes - defined by choosing a white ball - in n trials of choosing a ball without replacement from an initial population of N white balls and M black balls.

- X has the Poisson distribution $\operatorname{Poiss}(\lambda)$ with parameter λ if its $p m f$ is given by

$$
p_{X}(k)=\frac{\lambda^{k}}{k!} e^{-\lambda}, \text { for } k=0,1,2, \ldots
$$

$\mathbf{E} X=\operatorname{Var}(X)=\lambda$.
The Poisson RV is the limiting case of the binomial RV as $n \rightarrow \infty$ and $p \rightarrow 0$, while the product $n p \rightarrow \lambda>0$ (infinite trials, infinitesimal probability of success per trial, but a finite product of the two).

An example: in a huge volume of dough $(n \rightarrow \infty)$, the probability of scooping out any particular raisin is vanishingly small $(p \rightarrow 0)$, but there's a constant raisin density $(n p \rightarrow \lambda)$.
Reproducing property: if X_{1}, \ldots, X_{n} are Poisson RVs with parameters $\lambda_{1}, \ldots, \lambda_{n}$, then the sum $Y=X_{1}+\cdots+X_{n}$ is a Poisson RV with parameter $\lambda_{1}+\cdots+\lambda_{n}$.

4 Continuous Random Variables

Definitions

- A random variable X is continuous if for some function $f_{X}: \mathbb{R} \rightarrow \mathbb{R}$ with $f_{X}(x) \geq 0$ for all x and $\int_{-\infty}^{\infty} f_{X}(x) \mathrm{d} x=1$, and for real numbers a and b with $a \leq b$,

$$
\mathbf{P}(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) \mathrm{d} x
$$

In particular,

$$
F_{X}(a)=\int_{-\infty}^{a} f_{X}(x) \mathrm{d} x
$$

The function f_{X} is called the probability density function (pdf) of X. As in the discrete case, F_{X} is called the $c d f$ of X .

- For continuous RV X and for $0 \leq p \leq 1$, the $p^{\text {th }}$ quantile or $100 p^{\text {th }}$ percentile of the distribution of X is the smallest number q_{p} such that

$$
F_{X}\left(q_{p}\right)=p
$$

The median of a distribution is its $50^{\text {th }}$ percentile.

- The $p d f f_{X}$ and $c d f F_{X}$ of a continuous random variable X are related by

$$
\begin{array}{r}
F_{X}(b)=\int_{-\infty}^{b} f_{X}(x) \mathrm{d} x \\
\text { and } \\
f_{X}(x)=\frac{d}{\mathrm{~d} x} F_{X}(x)
\end{array}
$$

- Specifying the distribution of a RV X means identifying the characteristic that uniquely determines the probabilities associated with X . This can be done by specifying any one of the following:

1. The $c d f$ of X (works for RVs that are discrete, continuous or neither)
2. The $p m f$ (discrete) or $p d f$ (continuous) of X
3. The name of a standard RV
4. The moment generating function, $\phi_{X}(t)$
5. The Laplace transform, $\mathcal{L}_{X} t$
6. The characteristic function, $\psi_{X}(t)$

Common Continuous Distributions

- The uniform distribution on $[a, b], \operatorname{Uni}(a, b)$, is given by the $p d f f_{X}(x)=0$ if $x \notin[a, b]$, and

$$
\begin{aligned}
f_{X}(x)=\frac{1}{b-a} \text { for } a & \leq x \leq b \\
F_{X}(x) & =\frac{x-a}{b-a}
\end{aligned}
$$

Expectation: $\mathbf{E} X=(a+b) / 2$. Variance: $\operatorname{Var}(X)=(b-a)^{2} / 12$.
Note that the uniform RV is a special case of the beta RV: $\operatorname{Beta}(1,1)=\operatorname{Uni}(0,1)$.

- The beta distribution on $[0,1], \operatorname{Beta}(\alpha, \beta)$ with parameters $\alpha>0, \beta>0$, is given by $f_{X}(x)=0$ if $x<0$ or $x>1$, and

$$
f_{X}(x)=\frac{1}{B(\alpha, \beta)} x^{\alpha-1}(1-x)^{\beta-1} \text { for } 0<x<1
$$

where $B(\alpha, \beta)$ is the Beta function:

$$
\begin{array}{r}
B(\alpha, \beta)=\int_{0}^{1} x^{\alpha-1}(1-x)^{\beta-1} \mathrm{~d} x=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)} \\
\text { for } \alpha>0, \beta>0
\end{array}
$$

and $\Gamma(\alpha)$ is the Gamma function, a generalized factorial:

$$
\begin{aligned}
& \quad \Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha-1} e^{-x} \mathrm{~d} x \text { for } \alpha>0 \\
& \Rightarrow \quad \Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}, \quad \Gamma(m+1)=m \Gamma(m) \\
& \text { and } m \in \mathbf{Z} \quad \Rightarrow \quad \Gamma(m+1)=m!
\end{aligned}
$$

The beta RV on $[0,1]$ with parameters α and β has mean and variance given by

$$
\mathbf{E} X=\frac{\alpha}{\alpha+\beta} \quad \text { and } \quad \operatorname{Var}(X)=\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}
$$

The beta RV offers flexible shapes of a density on a bounded interval. The standard beta RV is defined on $[0,1]$, but it can be shifted and scaled to other intervals.
On an interval $[a, b]$, the beta distribution with parameters $\alpha>0, \beta>0$, is given by $f_{X}(x)=0$ if $x<a$ or $x>b$, and

$$
f_{X}(x)=\frac{1}{b-a} \frac{1}{B(\alpha, \beta)}\left(\frac{x-a}{b-a}\right)^{\alpha-1}\left(\frac{b-x}{b-a}\right)^{\beta-1} \text { for } a<x<b .
$$

- The Gamma distribution with shape parameter $\alpha>0$ and scale parameter $\lambda>0$ has the density

$$
f_{X}(x)= \begin{cases}\frac{\lambda(\lambda x)^{\alpha-1}}{\Gamma(\alpha)} e^{-\lambda x}, & x \geq 0 \\ 0, & x<0\end{cases}
$$

If $X \sim \operatorname{Gamma}(\alpha, \lambda)$, then $\mathbf{E} X=\alpha / \lambda, \operatorname{Var}(X)=\alpha / \lambda^{2}$, and

$$
\phi_{X}(t)=\left(\frac{\lambda}{\lambda-t}\right)^{\alpha} .
$$

If the shape parameter $\alpha>0$ is an integer, then the Gamma distribution is also called the Erlang distribution with α degrees of freedom and scale λ.
Like the Poisson RV, the Gamma RV is reproducing: if X_{1}, \ldots, X_{n} are independent Gamma RVs with the same scale parameter λ, and different shape parameters $\alpha_{1}, \ldots, \alpha_{n}$, then the sum $Y=X_{1}+\cdots+X_{n}$ is also Gamma distributed with scale λ and shape $\alpha_{1}+\cdots+\alpha_{n}$.

- The exponential distribution with parameter $\lambda, \operatorname{Exp}(\lambda)$, is given by $f_{X}(x)=0$ if $x<0$, and

$$
\begin{array}{r}
f_{X}(x)=\lambda e^{-\lambda x} \text { for } x \geq 0 \\
F_{X}(a)=1-e^{-\lambda a} \text { for } a \geq 0
\end{array}
$$

Like the geometric distribution, the exponential distribution is memoryless. If $X \sim$ $\operatorname{Exp}(\lambda)$, then for any $x, y>0$,

$$
\mathbf{P}(X>x+y \mid X>x)=\mathbf{P}(X>y)=e^{-\lambda y}
$$

If $X \sim \operatorname{Exp}(\lambda)$, then $\mathbf{E} X=1 / \lambda$ and $\operatorname{Var}(X)=1 / \lambda^{2}$.
NB. $\operatorname{Exp}(\lambda)$ is the $\operatorname{Gamma}(1, \lambda)$ distribution.

Competition between exponential RVs.

Let $X_{i} \sim \operatorname{Exp}\left(\lambda_{i}\right), i=1, \ldots, n$. Then $Y=\min \left\{X_{i}\right\}$ has $c d f$

$$
F_{Y}(y)=1-e^{-\left(\lambda_{1}+\cdots+\lambda_{n}\right) y}
$$

and the probability that the winner is X_{j} is

$$
\mathbf{P}\left(Y=x_{j}\right)=\frac{\lambda_{j}}{\lambda_{1}+\cdots+\lambda_{n}} .
$$

- The Pareto distribution with parameter $\alpha>0, \operatorname{Par}(\alpha)$, is given by $f_{X}(x)=0$ if $x<1$, and

$$
\begin{array}{r}
f_{X}(x)=\frac{\alpha}{x^{\alpha+1}} \text { for } x \geq 1 \\
F_{X}(x)=1-\frac{1}{x^{\alpha}} \text { for } x \geq 1
\end{array}
$$

5 The Normal Distribution

This is the most important continuous distribution, by far. The normal distribution is also called Gaussian.

Definitions

- The normal distribution with parameters μ (expectation) and $\sigma^{2}>0$ (variance), $\mathcal{N}\left(\mu, \sigma^{2}\right)$ is given by

$$
\begin{array}{r}
f_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} \text { for }-\infty<x<\infty \\
F_{X}(a)=\int_{-\infty}^{a} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} \mathrm{~d} x \text { for }-\infty<x<\infty \\
\phi_{X}(t)=e^{\mu t+\sigma^{2} t^{2} / 2}, \text { for }-\infty<t<\infty .
\end{array}
$$

- The standard normal distribution $\mathcal{N}(0,1)$ is the normal distribution with zero mean and variance $\sigma^{2}=1$. If $X \sim \mathcal{N}(0,1)$, then

$$
\begin{array}{r}
f_{X}(x)=\phi(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}} \text { for }-\infty<x<\infty \\
F_{X}(x)=\Phi(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}} \mathrm{~d} x \text { for }-\infty<x<\infty
\end{array}
$$

Note the symmetry of $\phi(x)$ about $x=0$.
Table B. 1 has right-tail probabilities, a vs. $1-\Phi(a)$, for $\mathcal{N}(0,1)$.

- Normal approximation to the binomial distribution. Let $X \sim \operatorname{Bin}(n, p)$, with n large and p not too close either to 0 or 1 , and let

$$
Y=\frac{X-n p}{\sqrt{n p(1-p)}}
$$

Then Y has, approximately, the standard normal distribution $\mathcal{N}(0,1)$.
When is this approximation valid? Rule of thumb: $n p>5$ and $n(1-p)>5$.

- Normal approximation to the Poisson distribution. Let $X \sim \operatorname{Poiss}(\lambda)$, with λ large. Let

$$
Y=\frac{X-\lambda}{\sqrt{\lambda}}
$$

Then Y has, approximately, the standard normal distribution $\mathcal{N}(0,1)$.
When is this approximation valid? Rule of thumb: $\lambda>5$.

- Hierarchy of approximations. Often we have a model with behavior that's well-described by the hypergeometric distribution (drawing balls without replacement). That's hard to work with, so we approximate it with the binomial distribution. In the limit that $n \rightarrow \infty, p \rightarrow 0, n p \rightarrow \lambda>0$, the binomial distribution simplifies to the Poisson distribution with parameter λ. Finally, we can approximate the Poisson distribution with the Normal distribution, because it's super easy to work with.
hypergeometric \Rightarrow binomial \Rightarrow Poisson \Rightarrow normal
- Chi-square distribution with n degrees of freedom. This RV is closely related to the normal RV. If $X \sim \chi_{n}^{2}$, then

$$
f_{X}(x)= \begin{cases}\frac{x^{\frac{n}{2}-1}}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} e^{-\frac{x}{2}}, & x>0 \\ 0, & x \leq 0\end{cases}
$$

Expectation: $\mathbf{E} X=n$. Variance: $\operatorname{Var}(X)=2 n$.
If X_{1}, \ldots, X_{n} are standard normal RVs, and $Y=X_{1}^{2}+\cdots+X_{n}^{2}$ then $Y \sim \chi_{n}^{2}$.
NB. The χ_{n}^{2} distribution is $\operatorname{Gamma}(n / 2,1 / 2)$, so it has the reproducing property: if X_{1}, \ldots, X_{n} are independent $\chi_{k_{i}}^{2} \mathrm{RVs}$, and $Y=X_{1}+\cdots+X_{n}$, then $Y \sim \chi_{k}^{2}$, where $k=k_{1}+\cdots+k_{n}$.

- Student t distribution with n degrees of freedom. This RV is also closely related to the normal RV. If X is a Student t RV with n degrees of freedom, then

$$
f_{X}(x)=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n \pi} \Gamma\left(\frac{n}{2}\right)}\left(1+\frac{x^{2}}{n}\right)^{-(n+1) / 2}, \quad-\infty<x<\infty .
$$

Expectation: $\mathbf{E} X=0$. Variance: $\operatorname{Var}(X)=n /(n-2)$.
How does the Student t RV arise?
If $X \sim \mathcal{N}(0,1), Y \sim \chi_{n}^{2}$, and X and Y are independent, then $T=X / \sqrt{Y / n}$ is a Student t RV with n DOF.

- F distribution with n_{1} and n_{2} degrees of freedom. This RV is again closely related to the normal RV. It has a complicated density, defined on $(0, \infty)$.
How does the F RV arise?
If $X_{1} \sim \chi_{n_{1}}^{2}, X_{2} \sim \chi_{n_{2}}^{2}$, and X_{1} and X_{2} are independent, then $Z=\frac{X_{1} / n_{1}}{X_{2} / n_{2}}$ is an F RV with n_{1} and n_{2} DOF.
- The bivariate normal distribution. This is the most important multivariable distribution. The bivariate normal distribution of a random vector (X, Y) is fully determined by:

1. the mean μ_{X} and variance σ_{X}^{2} of X;
2. the mean μ_{Y} and variance σ_{Y}^{2} of Y; and
3. the correlation coefficient $\rho_{X, Y}$ of X and Y.

If (X, Y) is jointly normal, then

$$
f_{X, Y}(x, y)=\frac{1}{2 \pi \sigma_{X} \sigma_{Y} \sqrt{1-\rho_{X, Y}^{2}}} \exp \left\{-\frac{\frac{\left(x-\mu_{x}\right)^{2}}{\sigma_{X}^{2}}-2 \rho_{X, Y} \frac{\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right)}{\sigma_{X} \sigma_{Y}}+\frac{\left(y-\mu_{Y}\right)^{2}}{\sigma_{Y}^{2}}}{2\left(1-\rho_{X, Y}^{2}\right)}\right\},
$$

defined for all $(x, y) \in \mathbf{R}^{2}$.
The mean vector and covariance matrix of (X, Y) are

$$
\boldsymbol{\mu}=\binom{\mu_{X}}{\mu_{Y}}
$$

and

$$
\Sigma=\left(\begin{array}{cc}
\operatorname{Var}(X) & \operatorname{Cov}(X, Y) \\
\operatorname{Cov}(X, Y) & \operatorname{Var}(X)
\end{array}\right)=\left(\begin{array}{cc}
\sigma_{X}^{2} & \rho_{X, Y} \sigma_{X} \sigma_{Y} \\
\rho_{X, Y} \sigma_{X} \sigma_{Y} & \sigma_{Y}^{2}
\end{array}\right)
$$

Since $\operatorname{Var}(X)=\operatorname{Cov}(X, X)$ and $\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$, we can write the entries of the covariance more simply as $[\Sigma]_{i j}=\operatorname{Cov}\left(X_{i}, Y_{j}\right)$. The covariance matrix is positive semidefinite symmetric.

- More generally, the multivariate normal distribution of a random vector $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)^{T}$ is defined by a vector of expectations $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{n}\right)^{T}$ and the covariance matrix Σ. If $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$, then

$$
f_{\mathbf{X}}(\mathbf{x})=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det} \Sigma}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}, \quad \mathbf{x} \in \mathbf{R}^{n}
$$

Properties

- If X has an $\mathcal{N}\left(\mu_{X}, \sigma_{X}^{2}\right)$ distribution, then for any $r \neq 0$ and any $s, Y=r X+s$ has an $\mathcal{N}\left(r \mu+s, r^{2} \sigma^{2}\right)$ distribution.
A handy application of this result: to find the probability $F_{X}(a)$ of a RV X with a $\mathcal{N}\left(\mu_{X}, \sigma_{X}^{2}\right)$ distribution,

1. transform X to $Z=\frac{X-\mu_{X}}{\sigma_{X}}$, which has a $\mathcal{N}(0,1)$ distribution
2. note that $F_{X}(a)=F_{Z}\left(\frac{a-\mu_{X}}{\sigma_{X}}\right)=\Phi\left(\frac{a-\mu_{X}}{\sigma_{X}}\right)$
3. use Table B. 1 to look up the right-tail probability $1-\Phi\left(\frac{a-\mu_{X}}{\sigma_{X}}\right)$.

- The mean and median of the normal distribution coincide.
- Normal RVs stay normal under linear transformation: if $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ and $Y=a X+b$ for some scalars a, b, then $Y \sim \mathcal{N}\left(a \mu+b, a^{2} \sigma^{2}\right)$.
- A linear combination of independent normal RVs is again normal: if a_{i} are scalars and $X_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right), i=1, \ldots, n$, and if $Y=\sum_{i=1}^{n} X_{i}$, then $Y \sim \mathcal{N}\left(\sum_{i=1}^{n} a_{i} \mu_{i}, \sum_{i=1}^{n} a_{i}^{2} \sigma_{i}^{2}\right)$.
- Like Poisson and Gamma RVs, normal RVs are reproducing: if X_{1}, \ldots, X_{n} are independent normal RVs, with $X_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right)$, and $Y=X_{1}+\cdots+X_{n}$, then $Y \sim$ $\mathcal{N}\left(\mu_{1}+\cdots+\mu_{n}, \sigma_{1}^{2}+\cdots+\sigma_{n}^{2}\right)$.
- If (X, Y) is jointly normal with means μ_{X} and μ_{Y}, variances $\sigma_{X}^{2}, \sigma_{Y}^{2}$, and correlation $\rho_{X, Y}$, then
- marginal pdfs are normal
* $X \sim \mathcal{N}\left(\mu_{X}, \sigma_{X}^{2}\right)$
* $Y \sim \mathcal{N}\left(\mu_{Y}, \sigma_{Y}^{2}\right)$
- conditioning preserves normality
$*(X \mid Y=y) \sim \mathcal{N}\left(\frac{\sigma_{X}}{\sigma_{Y}}\left(y-\mu_{Y}\right) \rho_{X, Y}+\mu_{X},\left(1-\rho_{X, Y}^{2}\right) \sigma_{X}^{2}\right)$
$*(Y \mid X=x) \sim \mathcal{N}\left(\frac{\sigma_{Y}}{\sigma_{X}}\left(x-\mu_{X}\right) \rho_{X, Y}+\mu_{Y},\left(1-\rho_{X, Y}^{2}\right) \sigma_{Y}^{2}\right)$
- linear combinations preserve normality

$$
* Z=a X+b Y \Rightarrow Z \sim \mathcal{N}\left(a \mu_{X}+b \mu_{Y}, a^{2} \sigma_{X}^{2}+b^{2} \sigma_{Y}^{2}+2 a b \rho_{X, Y} \sigma_{X} \sigma_{Y}\right)
$$

- for jointly normal RVs, uncorrelation implies independence (this is NOT true for general RVs)
* $\rho_{X, Y}=0 \Rightarrow f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y) \Rightarrow X$ and Y are independent
- all level sets of $f_{X, Y}(x, y)$ are ellipses (they're circles if $\sigma_{X}=\sigma_{Y}$ and $\rho_{X, Y}=0$).
- If $\mathbf{X} \sim \mathcal{N}\left(\boldsymbol{\mu}_{x}, P_{x x}\right), \mathbf{Z} \sim \mathcal{N}\left(\boldsymbol{\mu}_{z}, P_{z z}\right), \operatorname{cov}(\mathbf{X}, \mathbf{Z})=P_{x z}$, then
- marginal normality \Longleftrightarrow joint normality

$$
\mathbf{Y}=\left[\begin{array}{l}
\mathbf{X} \\
\mathbf{Z}
\end{array}\right] \quad \Rightarrow \quad \mathbf{E} \mathbf{Y}=\boldsymbol{\mu}_{y}=\left[\begin{array}{l}
\boldsymbol{\mu}_{x} \\
\boldsymbol{\mu}_{z}
\end{array}\right] \quad \text { and } \quad \operatorname{cov}(\mathbf{Y})=P_{y y}=\left[\begin{array}{ll}
P_{x x} & P_{x z} \\
P_{x z}^{T} & P_{z z}
\end{array}\right]
$$

- linear combination preserves normality

$$
\mathbf{Y}=A \mathbf{X} \quad \Rightarrow \quad \mathbf{Y} \sim \mathcal{N}\left(A \mu_{x}, A P_{x x} A^{T}\right)
$$

(this is actually true for any random vectors, not necessarily Gaussian)

- conditioning preserves normality

$$
(\mathbf{X} \mid \mathbf{Z}=\mathbf{z}) \sim \mathcal{N}\left(\boldsymbol{\mu}_{x}+P_{x z} P_{z z}^{-1}\left(\mathbf{z}-\boldsymbol{\mu}_{z}\right), P_{x x}-P_{x z} P_{z z}^{-1} P_{x z}^{T}\right)
$$

6 Expectation and Variance

Definitions

- The expectation of a discrete random variable X taking values a_{1}, a_{2}, \ldots and with $p m f$ p_{X} is the weighted average

$$
\mathbf{E} X=\sum_{i} a_{i} \mathbf{P}\left(X=a_{i}\right)=\sum_{i} a_{i} p_{X}\left(a_{i}\right)
$$

For a continuous random variable X with $p d f f_{X}$, the expectation is

$$
\mathbf{E} X=\int_{-\infty}^{\infty} x f_{X}(x) \mathrm{d} x
$$

If the integral diverges, e.g. for the Cauchy distribution, then we say the expectation DNE.

- The variance of X is the scalar

$$
\operatorname{Var}(X)=\mathbf{E}(X-\mathbf{E} X)^{2} .
$$

An equivalent formula that's easier to compute:

$$
\operatorname{Var}(X)=\mathbf{E} X^{2}-(\mathbf{E} X)^{2}
$$

The number $\mathbf{E} X^{2}$ is called the second moment of X , so the variance is the second moment minus the square of the first moment.
Why do we care about variance? Because it's a measure of the dispersion of a RV. There are other measures of dispersion, such as Maximum Average Dispersion (MAD), but variance is the simplest and most commonly used.

- The standard deviation of a RV X is $\sigma=\sqrt{\operatorname{Var}[X]}$.

Results

- Expectation of a non-negative RV. If $\mathbf{P}(X<0)=0$, then

$$
\mathbf{E} X=\int_{0}^{\infty}\left(1-F_{X}(x)\right) \mathrm{d} x
$$

This formula is valid for any type of nonnegative RV - discrete, continuous or neither. This is useful when the $c d f$ is known but the $p d f$ or $p m f$ is unknown.
In the special case of a discrete RV taking values $0,1,2, \ldots$, this reduces to

$$
\mathbf{E} X=\sum_{n=0}^{\infty}\left(1-F_{X}(n)\right)
$$

- Expectation of $\mathbf{g}(\mathbf{X})$. Let X be a random variable and let $g: \mathbf{R} \rightarrow \mathbf{R}$. If X is discrete, with values a_{1}, a_{2}, \ldots, then

$$
\mathbf{E} g(X)=\sum_{i} g\left(a_{i}\right) p_{X}\left(a_{i}\right)
$$

If X is continuous, with $p d f f_{X}$, then

$$
\mathbf{E} g(X)=\int_{-\infty}^{\infty} g(x) f_{X}(x) \mathrm{d} x
$$

- Expectation of a product of independent RVs. If RVs X and Y are independent, then

$$
\mathbf{E}[X Y]=(\mathbf{E} X)(\mathbf{E} Y)
$$

- Expectation and variance under linear transformation. For any RV X and scalars r and s,

$$
\begin{array}{r}
\mathbf{E}[r X+s]=r \mathbf{E}[X]+s \\
\text { and } \\
\operatorname{Var}(r X+s)=r^{2} \operatorname{Var}(X) \Rightarrow \quad \sigma_{r X+s}=|r| \sigma_{X}
\end{array}
$$

- Expectation and variance of a linear combination of RVs. If X_{1}, \ldots, X_{n} are RVs and a_{1}, \ldots, a_{n} are scalars, then

$$
\mathbf{E} \sum_{i=1}^{n} a_{i} X_{i}=\sum_{i=1}^{n} a_{i} \mathbf{E} X_{i}
$$

and

$$
\operatorname{Var}\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left(X_{i}\right)+2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} a_{i} a_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right)
$$

In the special case of two RVs X and Y, and for scalars r, s, and t, we have

$$
\mathbf{E}[r X+s Y+t]=r \mathbf{E}[X]+s \mathbf{E}[Y]+t
$$

and

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)
$$

7 Joint Distributions and Independence

Definitions

- The joint probability mass function $p_{X, Y}$ of two discrete $\mathrm{RVs} X$ and Y is the function $p_{X, Y}: \mathbf{R}^{2} \rightarrow[0,1]$, defined by

$$
p_{X, Y}(a, b)=\mathbf{P}(X=a, Y=b) \text { for }-\infty<a, b<\infty
$$

Equivalently, for any set B,

$$
\mathbf{P}((X, Y) \in B)=\sum_{\left(a_{i}, b_{j}\right) \in B} p_{X, Y}\left(a_{i}, b_{j}\right) .
$$

The joint $p m f p_{X, Y}$ satisfies

- Non-negativity: $p_{a_{i}, b_{j}} \geq 0$ for all a_{i} and b_{j}
- Normalization: $\sum_{a_{i}, b_{j}} p_{X, Y}\left(a_{i}, b_{j}\right)=1$

Note: the joint $p m f$ contains more information than can be obtained from the marginal $p m f s p_{X}$ and p_{Y}. In fact, sometimes the joint $p m f$ can't be be retrieved from the marginal $p m f$ s.

- The joint probability density function $f_{X, Y}$ of two continuous RVs X and Y is the function $f_{X, Y}: \mathbf{R}^{2} \rightarrow \mathbf{R}$, defined for all numbers $a_{1}, a_{2}, b_{1}, b_{2}$ with $a_{1} \leq b_{1}$ and $a_{2} \leq b_{2}$ by

$$
\mathbf{P}\left(a_{1} \leq X \leq b_{1}, a_{2} \leq Y \leq b_{2}\right)=\int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} f_{X, Y}(x, y) \mathrm{d} x \mathrm{~d} y
$$

The joint $p d f f_{X, Y}$ satisfies

- Non-negativity: $f_{X, Y} \geq 0$ for all x and y
- Normalization: $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} x \mathrm{~d} y=1$

The joint $p d f$ of two RVs is also called the bivariate probability density.

- The joint cumulative distribution function $F_{X, Y}$ of two $\mathrm{RVs} X$ and Y is the function $F: \mathbf{R}^{2} \rightarrow[0,1]$ defined by

$$
F_{X, Y}(a, b)=\mathbf{P}(X \leq a, Y \leq b) \text { for }-\infty<a, b<\infty
$$

In practice, the joint $c d f$ is rarely known. Most practical work is done with the joint $p m f$ or $p d f$.

- Two RVs X and Y with joint $c d f F_{X, Y}$ are independent if

$$
F_{X, Y}(a, b)=F_{X}(a) F_{Y}(b) \text { for all } a, b
$$

or, equivalently,

$$
\mathbf{P}(X \leq a, Y \leq b)=\mathbf{P}(X \leq a) \mathbf{P}(Y \leq b)
$$

For continuous RVs X and Y with joint $p d f f_{X, Y}$, the definition of independence implies that

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)
$$

For discrete RVs X and Y, the definition of independence implies that

$$
\begin{aligned}
\mathbf{P}(X=a, Y=b) & =\mathbf{P}(X=a) \mathbf{P}(Y=b) \\
\Longleftrightarrow p_{X, Y}(a, b) & =p_{X}(a) p_{Y}(b)
\end{aligned}
$$

- Necessary and sufficient conditions for independence. RVs X and Y are independent if and only if they satisfy both of the following conditions.
- Separable joint pdf: $f_{X, Y}(x, y)=g(x) h(y)$ for some functions g and $h: \mathbf{R} \rightarrow$ \mathbf{R}, and
- Rectangular feasible region: The bounds on x and y over which $f_{X, Y}(x, y)$ is defined form a rectangle, i.e. $a \leq x \leq b$ and $c \leq y \leq d$ for some scalars a, b, c, d.

So if the bounds on x depend on y or vice versa, then X and Y are dependent.

Results

- Marginal $\boldsymbol{c} d f s$ from joint $\boldsymbol{c} d \boldsymbol{f}$. The marginal $c d f s F_{X}$ and F_{Y} are obtained from the joint $c d f F_{X, Y}$, for each a and b, by

$$
\begin{array}{r}
F_{X}(a)=\mathbf{P}(X \leq a)=F(a, \infty)=\lim _{b \rightarrow \infty} F_{X, Y}(a, b) \\
\text { and } \\
F_{Y}(b)=\mathbf{P}(Y \leq b)=F(\infty, b)=\lim _{a \rightarrow \infty} F_{X, Y}(a, b)
\end{array}
$$

- Marginal $\boldsymbol{p d f s f r o m}$ joint $\boldsymbol{p d f}$. The marginal $p d f s f_{X}$ and f_{Y} are obtained from the joint $p d f f_{X, Y}$ by integrating out the other variable, i.e.

$$
\begin{array}{r}
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y \\
f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} x
\end{array}
$$

- Marginal pmfsfrom joint pmf. The marginal $p m f s p_{X}$ and p_{Y} are obtained from the joint $p m f p_{X, Y}$ by summing out the other variable, i.e.

$$
\begin{array}{r}
p_{X}\left(a_{i}\right)=\sum_{j} p_{X, Y}\left(a_{i}, b_{j}\right) \\
\text { and } \\
p_{Y}\left(b_{j}\right)=\sum_{i} p_{X, Y}\left(a_{i}, b_{j}\right)
\end{array}
$$

- Relating joint pdfand joint $\boldsymbol{c d f}$. The joint $p d f f_{X, Y}$ and the joint $c d f F_{X, Y}$ are related by

$$
\begin{array}{r}
F_{X, Y}(a, b)=\int_{-\infty}^{a} \int_{-\infty}^{b} f_{X, Y}(a, b) \mathrm{d} x \mathrm{~d} y \\
\text { and } \\
f_{X, Y}=\frac{\partial^{2}}{\partial x \partial y} F_{X, Y}(x, y) .
\end{array}
$$

- Propagation of independence. Let RVs $X_{1}, X_{2}, \ldots, X_{N}$ be independent. For each i, let $h_{i}: \mathbf{R} \rightarrow \mathbf{R}$ be a function, and let $Y_{i}=h_{i}\left(X_{i}\right)$. Then $Y_{1}, Y_{2}, \ldots, Y_{N}$ are independent. (Note that the functions h_{i} do not have to be the same.)
- Expectation of $\mathbf{g}(\mathbf{X}, \mathbf{Y})$. If (X, Y) is a discrete random vector with $p m f p_{X, Y}$, then for any function $g: \mathbf{R}^{2} \rightarrow \mathbf{R}$,

$$
\mathbf{E} g(X, Y)=\sum_{x_{i}} \sum_{y_{j}} g\left(x_{i}, y_{j}\right) p_{X, Y}\left(x_{i}, y_{j}\right)
$$

If (X, Y) is a continuous random vector with $p d f f_{X, Y}$, then for any function $g: \mathbf{R}^{2} \rightarrow \mathbf{R}$,

$$
\mathbf{E} g(X, Y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) \mathrm{d} x \mathrm{~d} y
$$

This generalizes in the natural way to n RVs.

8 Covariance and Correlation

Definitions

- The covariance between $\mathrm{RVs} X$ and Y is defined by

$$
\operatorname{Cov}(X, Y)=\mathbf{E}[(X-\mathbf{E} X)(Y-\mathbf{E} Y)] .
$$

Or, equivalently,

$$
\operatorname{Cov}(X, Y)=\mathbf{E}[X Y]-\mathbf{E}[X] \mathbf{E}[Y] .
$$

If X and Y are positively correlated, then $\operatorname{Cov}(X, Y)>0$, and when $X>\mathbf{E} X$, it tends to be true that $Y>\mathbf{E} Y$ as well. If, on the other hand, when $X>\mathbf{E} X$ we tend to observe that $Y<\mathbf{E} Y$, then X and Y are negatively correlated and $\operatorname{Cov}(X, Y)<0$. If $\operatorname{Cov}(X, Y)=0$, then X and Y are uncorrelated.
If X and Y are independent, then X and Y are uncorrelated. However, dependent RVs X and Y can also be uncorrelated. Independence implies uncorrelation, but uncorrelation does not imply independence.

- The correlation coefficient $\rho(X, Y)$, for RVs X and Y, is defined to be 0 if $\operatorname{Var}(X)=0$ or $\operatorname{Var}(Y)=0$, and otherwise

$$
\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}
$$

The correlation coefficient is dimensionless, and is invariant (except for a possible sign change) under linear transformation of X and Y. Because of this, it's used as a standardized version of covariance.
The correlation coefficient has the following properties.

- Linearity. For RVs X and Y, and for constants r, s, t and u with $r, t \neq 0$,

$$
\rho(r X+s, t Y+u)=\left\{\begin{array}{l}
-\rho(X, Y) \text { if } r t<0 \\
\rho(X, Y) \text { if } r t>0
\end{array}\right.
$$

- Bounds. For nonconstant RVs X and Y,

$$
-1 \leq \rho(X, Y) \leq 1
$$

- NB. Correlation measures the directional dependence between X and Y. X and Y are "most correlated" if $X=Y$, in which case $\rho(X, Y)=1$, or if $X=-Y$, in which case $\rho(X, Y)=-1$.

Results

- Covariance from joint pdfor pmf. If (X, Y) is discrete with possible values $\left(x_{i}, y_{j}\right)$ and joint $p m f p_{X, Y}$, then

$$
\operatorname{Cov}(X, Y)=\sum_{x_{i}} \sum_{y_{j}}\left(x_{i}-\mu_{X}\right)\left(y_{j}-\mu_{Y}\right) p_{X, Y}\left(x_{i}, y_{j}\right)
$$

or, equivalently,

$$
\operatorname{Cov}(X, Y)=\sum_{x_{i}} \sum_{y_{j}} x_{i} y_{j} p_{X, Y}\left(x_{i}, y_{j}\right)-\mu_{X} \mu_{Y}
$$

If (X, Y) is continuous with joint $p d f f_{X, Y}$, then

$$
\operatorname{Cov}(X, Y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right) f_{X, Y}(x, y) \mathrm{d} x \mathrm{~d} y
$$

or, equivalently,

$$
\operatorname{Cov}(X, Y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f_{X, Y}(x, y) \mathrm{d} x \mathrm{~d} y-\mu_{X} \mu_{Y}
$$

- Covariance under linear transformation. For RVs X and Y,

$$
\operatorname{Cov}(r X+s, t Y+u)=r t \operatorname{Cov}(X, Y)
$$

- Symmetry of covariance. For RVs X and Y,

$$
\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)
$$

- General additivity of covariance. For RVs X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{k},

$$
\operatorname{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{j=1}^{k} Y_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{k} \operatorname{Cov}\left(X_{i}, Y_{j}\right) .
$$

Special case:

$$
\operatorname{Cov}\left(X_{1}+X_{2}, Y\right)=\operatorname{Cov}\left(X_{1}, Y\right)+\operatorname{Cov}\left(X_{2}, Y\right)
$$

9 Random Vectors

The theory for two RVs extends naturally to n RVs. This section lays out some notation and linear algebraic conveniences.

Definitions

- Let X_{1}, \ldots, X_{n} RVs. Then $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)^{T}$ is a random vector with realization $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{T} \in \mathbf{R}^{n}$.
- pmf. Let \mathbf{X} be a vector of discrete $\mathrm{RVs} X_{1}, \ldots, X_{n}$. Then the $p m f$ of \mathbf{X} is the joint $p m f$ of X_{1}, \ldots, X_{n} :

$$
p_{\mathbf{X}}(\mathbf{x})=p_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)
$$

- $\boldsymbol{p d f}$. Let \mathbf{X} be a vector of continuous RVs X_{1}, \ldots, X_{n}. Then the $p d f$ of \mathbf{X} is the joint $p d f$ of X_{1}, \ldots, X_{n} :

$$
f_{\mathbf{X}}(\mathbf{x})=f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)
$$

- Expectation. The expectation of $\mathbf{X}, \mathbf{E X} \in \mathbf{R}^{n}$, is just a list of the expectations of X_{1}, \ldots, X_{n} :

$$
\begin{aligned}
\mathbf{E X} & =\left[\begin{array}{c}
\mathbf{E} X_{1} \\
\vdots \\
\mathbf{E} X_{n}
\end{array}\right]=\left[\begin{array}{cc}
\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} x_{1} f_{\mathbf{X}}(\mathbf{x}) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{n} \\
\vdots \\
\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} x_{n} f_{\mathbf{X}}(\mathbf{x}) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{n}
\end{array}\right] \\
& =\left[\begin{array}{c}
\int_{-\infty}^{\infty} x_{1} f_{\mathbf{X}}(\mathbf{x}) \mathrm{d} \mathbf{x} \\
\vdots \\
\int_{-\infty}^{\infty} x_{n} f_{\mathbf{X}}(\mathbf{x}) \mathrm{d} \mathbf{x}
\end{array}\right]=\int_{\mathbf{R}^{n}} \mathbf{x} f_{\mathbf{X}}(\mathbf{x}) \mathrm{d} \mathbf{x}
\end{aligned}
$$

where $\mathrm{d} \mathbf{x}=\mathrm{d} x_{1} \cdots \mathrm{~d} x_{n} \in \mathbf{R}$. Expectation is defined similarly for discrete random vectors. In the above notation, we use the fact that the integral of a vector \mathbf{v} is a vector of (scalar) integrals of the components of \mathbf{v}.

- Covariance matrix. The covariance matrix of a random vector \mathbf{X}, denoted $\boldsymbol{\operatorname { c o v }}(\mathbf{X}) \in$ $\mathbf{R}^{n \times n}$, is

$$
\begin{aligned}
\operatorname{cov}(\mathbf{X}) & =\mathbf{E}\left[(\mathbf{X}-\mathbf{E} \mathbf{X})(\mathbf{X}-\mathbf{E} \mathbf{X})^{T}\right] \\
& =\left[\begin{array}{cccc}
\operatorname{Var}\left(X_{1}\right) & \operatorname{Cov}\left(X_{1}, X_{2}\right) & \ldots & \operatorname{Cov}\left(X_{1}, X_{n}\right) \\
\operatorname{Cov}\left(X_{2}, X_{1}\right) & \operatorname{Var}\left(X_{2},\right) & & \vdots \\
\vdots & & \ddots & \\
\operatorname{Cov}\left(X_{n}, X_{1}\right) & \ldots & & \operatorname{Var}\left(X_{n}\right)
\end{array}\right]
\end{aligned}
$$

Since $\operatorname{Cov}\left(X_{i}, X_{j}\right)=\operatorname{Cov}\left(X_{j}, X_{i}\right), \operatorname{cov}(\mathbf{X})$ is symmetric. If X_{1}, \ldots, X_{n} are linearly independent, then $\boldsymbol{\operatorname { c o v }}(\mathbf{X}) \succ 0$.

Results

- Expectation of a quadratic form. If $A=A^{T} \in \mathbf{R}^{n}$ and \mathbf{X} is a random n-vector with expectation $\boldsymbol{\mu}_{x}$, then

$$
\mathbf{E}\left[\mathbf{X}^{T} A \mathbf{X}\right]=\operatorname{tr}\left[A\left(\boldsymbol{\mu}_{x} \boldsymbol{\mu}_{x}^{T}+P_{x x}\right)\right]
$$

10 Transformations of Random Variables

The problem we consider in this chapter: given a RV X with a known distribution ($p d f, p m f$, or $c d f$), and a transformation $T: \mathbf{R} \rightarrow \mathbf{R}$, find the distribution of $Y=T(X)$. In the scalar case, we consider both monotonic and non-monotonic transformations.

In the context of random vectors, the question is slightly different: given a random vector $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ with a known joint distribution (joint $p d f$, joint $p m f$, or joint $c d f$), and a transformation $\mathbf{Y}=T(\mathbf{X})=\left(Y_{1}, \ldots, Y_{n}\right)$, find the joint distribution of \mathbf{Y}. In the vector case, we consider only one-to-one transformations between spaces of the same dimension, i.e. transformations T such that $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ where T^{-1} is well-defined.

We also discuss a few standard transformations $T: \mathbf{R}^{2} \rightarrow \mathbf{R}$ (sum, difference, product, quotient) for independent RVs.

Definitions

- Jacobian. Let \mathbf{X} and \mathbf{Y} be n-dimensional RVs, with $\mathbf{Y}=T(\mathbf{X})$, where T is one-to-one, and hence T^{-1} is well-defined. Then $\mathbf{x}=T^{-1}(\mathbf{y}) \Longleftrightarrow \mathbf{x}=\mathbf{h}(\mathbf{y})$ for some function $\mathbf{h}(\mathbf{y})=T^{-1}(\mathbf{y})=\left(h_{1}(\mathbf{y}), \ldots, h_{n}(\mathbf{y})\right)^{T}$. The Jacobian of T^{-1} is the n by n determinant

$$
J_{T^{-1}}(\mathbf{y})=\left|\begin{array}{ccc}
\frac{\partial h_{1}}{\partial y_{1}} & \cdots & \frac{\partial h_{1}}{\partial y_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial h_{n}}{\partial y_{1}} & \cdots & \frac{\partial h_{n}}{\partial y_{n}}
\end{array}\right|=\left|\begin{array}{ccc}
\leftarrow & \nabla h_{1}(\mathbf{y}) & \rightarrow \\
\vdots & \\
\leftarrow & \nabla h_{n}(\mathbf{y}) & \rightarrow
\end{array}\right|
$$

where $\boldsymbol{\nabla} h_{1}(\mathbf{y})$ is the gradient of h_{1} with respect to \mathbf{y}, viewed as a row vector.

- A twice differentiable function $g: \mathbf{R} \rightarrow \mathbf{R}$ is convex on an interval I if $g^{\prime \prime}(x) \geq 0$ for all $x \in I$, and strictly convex if $g^{\prime \prime}(x)>0$ for all $x \in I$. Graphical interpretation: a line drawn between any two points on the graph of a convex function will always lie above the graph.

Results

- cdfunder scalar transformation. Let $Y=T(X)$, where X has $p m f p_{X}(x)$ or $p d f f_{X}(x)$. Then the $c d f$ of Y is, in the discrete case,

$$
F_{Y}(y)=\sum_{\left\{x_{i} \mid T\left(x_{i}\right) \leq y\right\}} p_{X}\left(x_{i}\right), \quad-\infty<y<\infty
$$

or, in the continuous case,

$$
F_{Y}(y)=\int_{\{x \mid T(x) \leq y\}} f_{X}(x) \mathrm{d} x, \quad-\infty<y<\infty
$$

NB. These computations are often hard or impossible to do directly!

- pmf under scalar transformation. Let X have $p m f p_{X}(x)$, and let $Y=T(X)$. Then the pmfof Y is

$$
p_{Y}\left(y_{j}\right)=\sum_{\left\{x_{i} \mid T\left(x_{i}\right)=y_{j}\right\}} p_{X}\left(x_{i}\right) .
$$

In the special case where T is one-to-one,

$$
p_{Y}\left(y_{j}\right)=p_{X}\left(T^{-1}\left(y_{j}\right)\right)
$$

- $\boldsymbol{p d f}$ under scalar transformation. Let X have $p d f f_{X}(x)$, and let $Y=T(X)$. If T is a general transformation, not necessarily monotonic, and if $T(x)=y$ has roots $T_{1}^{-1}(y), T_{2}^{-1}(y), \ldots$, then Y has $p d f$

$$
f_{Y}(y)=\sum_{i} f_{X}\left(T_{i}^{-1}(y)\right)\left|\frac{\mathrm{d}}{\mathrm{~d} y} T_{i}^{-1}(y)\right|
$$

In the special case that T is one-to-one (and hence T^{-1} is well-defined), $Y=T(X)$ has $p d f$

$$
f_{Y}(y)=f_{X}\left(T^{-1}(y)\right)\left|\frac{\mathrm{d}}{\mathrm{~d} y} T^{-1}(y)\right| .
$$

- pmfunder vector transformation. Let \mathbf{X} have joint $p m f p_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=$ $p_{\mathbf{X}}(\mathbf{x})$, and let $\mathbf{Y}=T(\mathbf{X})$ with T one-to-one. Then \mathbf{Y} is also discrete, with $p m f$

$$
p_{Y_{1}, \ldots, Y_{n}}\left(y_{1}, \ldots, y_{n}\right)=p_{\mathbf{Y}}(\mathbf{y})=\sum_{\{\mathbf{x} \mid T(\mathbf{x})=\mathbf{y}\}} p_{\mathbf{X}}(\mathbf{x})
$$

- pdfunder vector transformation. Let \mathbf{X} have joint $p d f f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=$ $f_{\mathbf{X}}(\mathbf{x})$, and let $\mathbf{Y}=T(\mathbf{X})$ with T one-to-one. Then \mathbf{Y} may also be continuous (no guarantees). If so, its $p d f$ is

$$
f_{\mathbf{Y}}(\mathbf{y})=f_{\mathbf{X}}\left(T^{-1}(\mathbf{y})\right)\left|J_{T^{-1}}(\mathbf{y})\right| .
$$

- Standard transformation: sum. Let X_{1} and X_{2} be continuous, independent RVs with pdfs $f_{X_{1}}\left(x_{1}\right)$ and $f_{X_{2}}\left(x_{2}\right)$, and let $Z=X_{1}+X_{2}$. Then $f_{Z}(z)$ is given by the convolution of X_{1} and X_{2} :

$$
f_{Z}(z)=\int_{-\infty}^{\infty} f_{X_{1}}(z-v) f_{X_{2}}(v) \mathrm{d} v
$$

- Standard transformation: difference. Let X_{1} and X_{2} be continuous, independent RVs with $p d f s f_{X_{1}}\left(x_{1}\right)$ and $f_{X_{2}}\left(x_{2}\right)$, and let $Z=X_{1}-X_{2}$. Then $f_{Z}(z)$ is given by:

$$
f_{Z}(z)=\int_{-\infty}^{\infty} f_{X_{1}}(z+v) f_{X_{2}}(v) \mathrm{d} v
$$

- Standard transformation: product. Let X_{1} and X_{2} be continuous, independent RVs with $p d f s f_{X_{1}}\left(x_{1}\right)$ and $f_{X_{2}}\left(x_{2}\right)$, and let $Z=X_{1} X_{2}$. Then $f_{Z}(z)$ is given by

$$
f_{Z}(z)=\int_{-\infty}^{\infty} \frac{1}{|v|} f_{X_{1}}(z / v) f_{X_{2}}(v) \mathrm{d} v
$$

- Standard transformation: quotient. Let X_{1} and X_{2} be continuous, independent RVs with pdfs $f_{X_{1}}\left(x_{1}\right)$ and $f_{X_{2}}\left(x_{2}\right)$, and let $Z=X_{1} / X_{2}$. Then $f_{Z}(z)$ is given by

$$
f_{Z}(z)=\int_{-\infty}^{\infty}|v| f_{X_{1}}(z v) f_{X_{2}}(v) \mathrm{d} v
$$

- $\boldsymbol{c d f}$ and $\boldsymbol{p d f}$ under linear transformation. Let X be a continuous RV with $c d f F_{X}$ and $p d f f_{X}$. If we change units to $Y=r X+s$ for real numbers r and s, then

$$
F_{Y}(y)=F_{X}\left(\frac{y-s}{r}\right) \text { and } f_{Y}(y)=\frac{1}{r} f_{X}\left(\frac{y-s}{r}\right)
$$

- $\mathbf{Y}=\mathbf{1} / \mathbf{X}$ transformation. If $\mathrm{RV} X$ has $p d f f_{X}$ and $Y=1 / X$, then the $p d f$ of Y is

$$
f_{Y}(y)=\frac{1}{y^{2}} f_{X}\left(\frac{1}{y}\right)
$$

for $y<0$ and $y>0$. Any value for $f_{Y}(0)$ is fine.

- Jensen's inequality. Let g be a convex function, and let X be a RV. Then

$$
g(\mathbf{E} X) \leq \mathbf{E} g(X)
$$

If g is strictly convex, then Jensen's inequality is strict.
The exception to Jensen's inequality is when $\operatorname{Var}(X)=0$, i.e. X is not random at all.

11 The Law of Large Numbers

Definitions

- A sequence of $\mathrm{RVs} X_{1}, X_{2}, X_{3}, \ldots$ is independent and identically distributed (iid) if the RVs in the sequence are independent and all have the same distribution.
- The sample mean \bar{X}_{n} of n iid RVs is defined by

$$
\bar{X}_{n}=\frac{X_{1}+\cdots+X_{n}}{n} .
$$

If the expectation and variance of the X_{i} are μ and σ^{2}, then the expectation and variance of the sample mean are

$$
\mathbf{E} \bar{X}_{n}=\mu
$$

and

$$
\operatorname{Var}\left(\bar{X}_{n}\right)=\frac{\sigma^{2}}{n}
$$

Remark: as n increases, the sample mean becomes more and more concentrated around the true mean μ of the X_{i}. Loosely speaking, this is the Law of Large Numbers:

$$
\bar{X}_{n} \rightarrow \mu \quad \text { as } \quad n \rightarrow \infty .
$$

Results

- Markov's Inequality. For any nonnegative RV X and any positive scalar a,

$$
\mathbf{P}(X>a) \leq \frac{\mathbf{E} X}{a}
$$

- Chebyshev's Inequality. For a RV Y and any $a>0$,

$$
\mathbf{P}(|Y-\mathbf{E} Y| \geq a) \leq \frac{1}{a^{2}} \operatorname{Var}(Y)
$$

Qualitatively, this says that for any distribution, most of the probability mass is within a few standard deviations of the expectation. This is the so-called " $\mu \pm \mathbf{a}$ few rule."

- The Weak Law of Large Numbers. If \bar{X}_{n} is the sample mean of n iid RVs with expectation μ and variance σ^{2}, then for any $\varepsilon>0$,

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left(\left|\bar{X}_{n}-\mu\right|>\varepsilon\right)=0
$$

The law of large numbers, in combination with simulation and histograms, allows us to recover the probability of any particular event, and therefore the entire $p d f$.

NB. The law of large numbers is valid for distributions with finite expectation. Not all distributions have finite expectation, however. For example, the expectation of the Cauchy distribution DNE, and the expectation of the Pareto distribution for $\alpha<1$ is infinite. $\operatorname{Par}(\alpha<1)$ is called a heavy-tailed distribution, because \bar{X}_{n} grows without bound as n increases. This is due to the occasional VERY LARGE realization of X_{i}.

- The Strong Law of Large Numbers. If \bar{X}_{n} is the sample mean of n iid RVs with expectation μ, then

$$
P\left(\lim _{n \rightarrow \infty} \bar{X}_{n}=\mu\right)=1
$$

12 Moment Generating Function, Laplace Transform, and Characteristic Function

- The moment generating function ϕ_{X} of a RV X is defined by

$$
\phi_{X}(t)=\mathbf{E} e^{t X}, \quad-\infty<t<\infty
$$

The reason for the name: for every $n=1,2, \ldots$,

$$
\left.\frac{\mathrm{d}^{n}}{\mathrm{~d} t^{n}} \phi_{X}(t)\right|_{t=0}=\mathbf{E}\left[X^{n}\right],
$$

the $n^{\text {th }}$ moment of X.

- The Laplace transform $\mathcal{L}[X]$ of a RV X is defined by

$$
\mathcal{L}[X](t)=\mathbf{E} e^{-t X}=\phi_{X}(-t), \quad t>0 .
$$

The Laplace transform (when it is defined) is always finite.
The Laplace transform can be used to generate moments of X :

$$
\left.\frac{\mathrm{d}^{n}}{\mathrm{~d} t^{n}} \mathcal{L}[X](t)\right|_{t=0}=(-1)^{n} \mathbf{E}\left[X^{n}\right]
$$

- The characteristic function ψ_{X} of a RV X is defined by

$$
\psi_{X}(t)=\mathbf{E} e^{i t X}=\phi_{X}(-t),-\infty<t<\infty
$$

The characteristic function is used when the moment generating function and Laplace transform are undefined. The characteristic function is always defined.

The characteristic function can be used to generate moments of X :

$$
\left.\frac{\mathrm{d}^{n}}{\mathrm{~d} t^{n}} \psi_{X}(t)\right|_{t=0}=i^{n} \mathbf{E}\left[X^{n}\right]
$$

- If RVs X and Y are independent, then

$$
\begin{array}{r}
\phi_{X+Y}(t)=\phi_{X}(t) \phi_{Y}(t) \\
\text { and } \\
\mathcal{L}_{X+Y}(t)=\mathcal{L}_{X}(t) \mathcal{L}_{Y}(t) \\
\text { and } \\
\psi_{X+Y}(t)=\psi_{X}(t) \psi_{Y}(t) .
\end{array}
$$

13 Conditional Distributions

Definitions

- Conditional pmfand pdf. Let (X, Y) be a discrete random vector. Then the conditional distribution of X given $Y=y_{j}$ is

$$
p_{X \mid Y}\left(x_{i} \mid y_{j}\right)=\frac{p_{X, Y}\left(x_{i}, y_{j}\right)}{p_{Y}\left(y_{j}\right)}
$$

If X and Y are independent, then $p_{X \mid Y}\left(x_{i}, y_{j}\right)=p_{X}\left(x_{i}\right)$ for all x_{i}.
If (X, Y) is a continuous random vector, then the conditional $p d f$ of X given $Y=y$ is

$$
f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}
$$

If X and Y are independent, then $f_{X \mid Y}(x, y)=f_{X}(x)$ for all x.

- Conditional expectation. Let (X, Y) be a discrete random vector. Then the conditional expectation of X given $Y=y_{j}$ is

$$
\mathbf{E}\left[X \mid Y=y_{j}\right]=\sum_{x_{i}} x_{i} p_{X \mid Y}\left(x_{i} \mid y_{j}\right)
$$

If (X, Y) is a continuous random vector, then the conditional expectation of X given $Y=y$ is

$$
\mathbf{E}[X \mid Y=y]=\int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) \mathrm{d} x
$$

NB. The conditional expectation of X given Y is itself a random vector (or a random variable, for a particular realization of $Y=y$).

- Conditional variance. Let (X, Y) be a discrete random vector. Then the conditional variance of X given $Y=y_{j}$ is

$$
\operatorname{Var}\left(X \mid Y=y_{j}\right)=\mathbf{E}\left[X^{2} \mid Y=y_{j}\right]-\mathbf{E}\left[X \mid Y=y_{j}\right]^{2}
$$

where

$$
\mathbf{E}\left[X^{2} \mid Y=y_{j}\right]=\sum_{x_{i}} x_{i}^{2} p_{X \mid Y}\left(x_{i} \mid y_{j}\right)
$$

If (X, Y) is a continuous random vector, then the conditional expectation of X given $Y=y$ is

$$
\operatorname{Var}(X \mid Y=y)=\mathbf{E}\left[X^{2} \mid Y=y\right]-\mathbf{E}[X \mid Y=y]^{2}
$$

where

$$
\mathbf{E}\left[X^{2} \mid Y=y\right]=\int_{-\infty}^{\infty} x^{2} f_{X \mid Y}(x \mid y) \mathrm{d} x
$$

NB. The conditional variance of X given Y is itself a random vector.

Results

- Iterated expectation. For any random variables X and Y (discrete, continuous or mixed),

$$
\mathbf{E} Y=\mathbf{E}[\mathbf{E}[Y \mid X]] .
$$

This is a useful tool for calculating the expectation of a RV Y that may be difficult or impossible to calculate directly.
Unpacking this formula for the case of a discrete conditioning RV:

$$
\mathbf{E} Y=\sum_{x_{i}} \mathbf{E}\left[Y \mid X=x_{i}\right] p_{X}\left(x_{i}\right) .
$$

Unpacking this formula for the case of a continuous conditioning RV:

$$
\mathbf{E} Y=\int_{-\infty}^{\infty} \mathbf{E}[Y \mid X=x] f_{X}(x) \mathrm{d} x
$$

- Iterated variance. For any random variables X and Y (discrete, continuous or mixed),

$$
\operatorname{Var}(Y)=\mathbf{E}[\operatorname{Var}(Y \mid X)]+\operatorname{Var}(\mathbf{E}[Y \mid X])
$$

This is a useful tool for calculating the variance of a RV Y that may be difficult or impossible to calculate directly.
Unpacking this formula for the case of a discrete conditioning RV:

$$
\begin{aligned}
\mathbf{E} \operatorname{Var}(Y \mid X) & =\sum_{x_{i}} \operatorname{Var}\left(Y \mid X=x_{i}\right) p_{X}\left(x_{i}\right), \text { and } \\
\operatorname{Var}(\mathbf{E}[Y \mid X]) & =\sum_{x_{i}} \mathbf{E}\left[Y \mid X=x_{i}\right]^{2} p_{X}\left(x_{i}\right)-\left(\sum_{x_{i}} \mathbf{E}\left[Y \mid X=x_{i}\right] p_{X}\left(x_{i}\right)\right)^{2}
\end{aligned}
$$

Unpacking this formula for the case of a continuous conditioning RV:

$$
\begin{aligned}
\mathbf{E} \operatorname{Var}(Y \mid X) & =\int_{-\infty}^{\infty} \operatorname{Var}(Y \mid X=x) f_{X}(x) \mathrm{d} x, \text { and } \\
\operatorname{Var}(\mathbf{E}[Y \mid X]) & =\int_{-\infty}^{\infty} x \mathbf{E}[Y \mid X=x]^{2} f_{X}(x) \mathrm{d} x-\left(\int_{-\infty}^{\infty} \mathbf{E}[Y \mid X=x] f_{X}(x) \mathrm{d} x\right)^{2} .
\end{aligned}
$$

- Law of Total Probability for random variables. Let X_{1}, \ldots, X_{n} be random variables. Some may be discrete, some continuous. Let A be an event expressed in terms of X_{1}, \ldots, X_{n}.

If the conditioning event X_{i} is discrete, then the LTP is

$$
\begin{array}{r}
\mathbf{P}(A)=\sum_{x_{i}} p_{X_{i}}\left(x_{i}\right) \mathbf{P}\left(A \mid X=x_{i}\right) \quad \text { (one conditioning event), and } \\
\mathbf{P}(A)=\sum_{x_{i}} \sum_{x_{j}} p_{X_{i}, X_{j}}\left(x_{i}, x_{j}\right) \mathbf{P}\left(A \mid X_{i}=x_{i}, X_{j}=x_{j}\right) \quad \text { (two conditioning events). }
\end{array}
$$

If the conditioning event X_{i} is continuous, then the LTP is

$$
\begin{aligned}
\mathbf{P}(A)=\int_{-\infty}^{\infty} f_{X}(x) \mathbf{P}(A \mid X=x) \mathrm{d} x & \text { (one conditioning event), and } \\
\mathbf{P}(A)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X_{i}, X_{j}}\left(x_{i}, x_{j}\right) \mathbf{P}\left(A \mid X_{i}=x_{i}, X_{j}=x_{j}\right) \mathrm{d} x_{i} \mathrm{~d} x_{j} & \text { (two conditioning events). }
\end{aligned}
$$

14 Order Statistics

Order statistics are functions of a set of n iid $\mathrm{RVs}, X_{1}, \ldots, X_{n}$. They're used to investigate the relative values - the biggest, the smallest, the middle, etc. Let f_{X} and F_{X} be the $p d f$ and $c d f$ of every X_{i}, for $i \in[1, n]$.

Definitions

- Let the RVs $X_{(1)}, \ldots, X_{(n)}$, be the order statistics of the iid sample X_{1}, \ldots, X_{n}. Then

$$
X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n-1)} \leq X_{(n)}
$$

The inequalities are strict in the continuous case, since the probability of two continuous RVs being equal is zero.

- The first ordered statistic, $X_{(1)}$, is the minimum.
- The last order statistic, $X_{(n)}$, is the maximum.

Results

- $c d f$ and $p d f$ of the minimum. The distribution of the first order statistic is

$$
\begin{array}{r}
F_{X_{(1)}}(x)=1-\left(1-F_{X}(x)\right)^{n} \\
\text { and } \\
f_{X_{(1)}}(x)=n\left(1-F_{X}(x)\right)^{n-1} f_{X}(x) .
\end{array}
$$

- $c d f$ and $p d f$ of the maximum. The distribution of the last order statistic is

$$
\begin{array}{r}
F_{X_{(n)}}(x)=F_{X}(x)^{n} \\
\text { and } \\
f_{X_{(n)}}(x)=n F_{X}(x)^{n-1} f_{X}(x) .
\end{array}
$$

- $c d f$ and $p d f$ of a general order statistic. The distribution of the $k^{\text {th }}$ order statistic is

$$
\begin{array}{r}
F_{X_{(k)}}(x)=\sum_{i=k}^{n}\binom{n}{i} F_{X}(x)^{i}\left(1-F_{X}(x)\right)^{n-i}, \\
f_{X_{(k)}}(x)=n f_{X}(x)\binom{n-1}{k-1} F_{X}(x)^{k-1}\left(1-F_{X}(x)\right)^{n-k} .
\end{array}
$$

- Joint density of two order statistics. Let $1 \leq j \leq k \leq n$. Then the joint density of $X_{(j)}$ and $X_{(k)}$ is

$$
\begin{aligned}
f_{X_{(j)}, X_{(k)}}(x, y) & =f_{X}(x) f_{X}(y) \frac{n!}{(j-1)!(k-j-1)!(n-k)!} \\
& * F_{X}(x)^{j-1}\left(F_{X}(y)-F_{X}(x)\right)^{k-j-1}\left(1-F_{X}(y)\right)^{n-k}, \quad \text { for } x<y
\end{aligned}
$$

- Joint density of all order statistics. Let $1 \leq j \leq k \leq n$. Then the joint density of $X_{(j)}$ and $X_{(k)}$ is

$$
f_{X_{(1)}, \ldots, X_{(n)}}\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}n!f_{X}\left(x_{1}\right) \ldots f_{X}\left(x_{n}\right), & \text { if } x_{1} \leq \cdots \leq x_{n} \\ 0, & \text { otherwise }\end{cases}
$$

NB. This looks just like the unordered joint pdf $f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=f_{X}\left(x_{1}\right) \ldots f_{X}\left(x_{n}\right)$, except for two differences. First, we have a factor of n ! in the ordered version. Second, the ordered version has a greatly restricted feasible region $\left(x_{1} \leq \cdots \leq x_{n}\right)$.

15 The Central Limit Theorem

Let X_{1}, \ldots, X_{n} be iid RVs with common mean $\mathbf{E} X_{i}=\mu$ and common variance $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$, for all $i \in[1, n]$.

Definitions

- Sample mean. Define the sample mean by

$$
\bar{X}_{n}=\frac{X_{1}+\cdots+X_{n}}{n} .
$$

Recall that the Law of Large Numbers says that

$$
\bar{X}_{n} \rightarrow \mu \quad \text { as } \quad n \rightarrow \infty
$$

Results

- Central Limit Theorem. Let $\sigma^{2}=\operatorname{Var}\left(X_{i}\right)$ be finite. Then as $n \rightarrow \infty$, the distribution of $\sqrt{n}\left(\bar{X}_{n}-\mu\right)$ converges to the $\mathcal{N}\left(0, \sigma^{2}\right)$ distribution.

- Corollary 1.

$$
\left|\bar{X}_{n}-\mu\right| \approx 1 / \sqrt{n}
$$

This gives an order of magnitude estimate of the error between the sample mean and the true mean. A consequence of this corollary: if you want your sample mean to approximate the true mean μ to within one part in 10^{p} (relative error), then you need $n \approx 10^{2 p} / \mu^{2}$ samples.

- Corollary 2.

For large n,

$$
\begin{aligned}
& \frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}} \sim \mathcal{N}(0,1), \text { (approximately) } \\
\Rightarrow & \mathbf{P}\left(\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}} \leq x\right) \approx \Phi(x) .
\end{aligned}
$$

How large should n be to use this result? Rule of thumb: $n>n^{*}$, where $n^{*} \approx 30$.
NB. Really, the value of n^{*} depends on the distribution. For distributions that "look like" the standard normal distribution, $n^{*} \approx 5$ may suffice.

- Corollary 3.

For large n,

$$
\left(X_{1}+\cdots+X_{n}\right) \sim \mathcal{N}\left(n \mu, n \sigma^{2}\right)
$$

This is a useful but very loosely formulated result.

- Infinite variance case. If $\operatorname{Var}(X) \rightarrow \infty$, then the CLT may still hold, but

$$
\left|\bar{X}_{n}-\mu\right| \approx \frac{1}{n^{1-1 / \alpha}} \text { for some } 1<\alpha<2
$$

The closer α gets to 1 , the heavier the tails of the distribution, and the less benefit you get from averaging. How to pick out heavy tails on a graph? Look at the ratio between the extremes and the main body of the data.
For large $n, X_{1}+\cdots+X_{n}$ has approximately the α-stable Stable distribution.

16 Stochastic Processes

Definitions

- Consider the sequence of random n-vectors

$$
\begin{equation*}
\ldots, \mathbf{X}(-1), \mathbf{X}(0), \mathbf{X}(1), \ldots \tag{1}
\end{equation*}
$$

where the argument denotes (discrete) time. We call such a sequence a stochastic process. In general, each $\mathbf{X}(k)$ has a different density $f_{\mathbf{X}(k)}(\mathbf{x}(k))$.

- Let

$$
X^{j}=\{\ldots, \mathbf{X}(-1), \mathbf{X}(0), \mathbf{X}(1), \ldots, \mathbf{X}(j)\}
$$

be the set of random vectors up to and including time j.
A stochastic process is Markovian if

$$
f_{\mathbf{X}(k) \mid X^{j}}\left(\mathbf{x}(k) \mid X^{j}\right)=f_{\mathbf{X}(k) \mid \mathbf{X}(j)}(\mathbf{x}(k) \mid \mathbf{x}(j)) \text { for all } j<k
$$

i.e. the current state contains all useful information for the purposes of predicting the future.

- The autocorrelation of the stochastic process (1) is

$$
R(k, j)=\mathbf{E}\left[\mathbf{X}(k) \mathbf{X}(j)^{T}\right] \in \mathbf{R}^{n \times n}
$$

NB. $R(k, j)=R(j, k)^{T}$ in general.

- Let $\mathbf{E X}(k)=\boldsymbol{\mu}_{x}(k)$ for all k. Then the autocovariance of the stochastic process (1) is

$$
\begin{aligned}
V(k, j) & =\mathbf{E}\left[\left(\mathbf{X}(k)-\boldsymbol{\mu}_{x}(k)\right)\left(\mathbf{X}(j)-\boldsymbol{\mu}_{x}(j)\right)^{T}\right] \\
& =R(k, j)-\boldsymbol{\mu}_{x}(k) \boldsymbol{\mu}_{x}(j)^{T}
\end{aligned}
$$

If $\boldsymbol{\mu}_{x}(k)=\mathbf{0}$ for all k, then the autocovariance and autocorrelation of (1) are the same.

- The stochastic process (1) is (wide-sense) stationary if its first two moments don't change over time. More precisely, a stationary process satisfies

1. $\boldsymbol{\mu}_{x}(k)=\boldsymbol{\mu}_{x}$ for all k
2. $R(k, j)=\tilde{R}(l)$ for all k, j, where $l=k-j$, for some function $\tilde{R}: \mathbf{R} \rightarrow \mathbf{R}^{n \times n}$

Interpretation of 2: the autocorrelation of a stationary stochastic process may depend on the time lag between two samples, but not on the particular time index of either of them.
For a stationary stochastic process, $\tilde{R}(l)=\tilde{R}(-l)^{T}$.
NB. There's a stricter version of stationarity that's not typically achievable in practice. It requires time invariance of the $p d f$, rather than just the first two moments.

- The power spectral density of a stationary stochastic process is the Fourier transform of its autocorrelation,

$$
S(\omega)=\mathcal{F}[\tilde{R}(\tau)]=\int_{-\infty}^{\infty} e^{i \omega \tau} \tilde{R}(\tau) \mathrm{d} \tau
$$

where $\tilde{R}(\tau)$ is the autocorrelation between samples separated by time τ.

- The stochastic process (1) is called white noise if its autocovariance is zero for any two different sample times:

$$
V(k, j)=\mathbf{E}\left[\left(\mathbf{X}(k)-\boldsymbol{\mu}_{x}(k)\right)\left(\mathbf{X}(j)-\boldsymbol{\mu}_{x}(j)\right)^{T}\right]=Q(k) \delta_{j k} \text { for all } j, k
$$

where $Q(k)$ is the covariance matrix of $\mathbf{X}(k)$ and $\delta_{k j}$ is the Kronecker delta. If the white noise is zero mean, then the whiteness condition simplifies to

$$
V(k, j)=\tilde{R}(k-j)=\mathbf{E}\left[\mathbf{X}(k) \mathbf{X}(j)^{T}\right]=Q(k) \delta_{j k} \text { for all } j, k
$$

NB. White noise is stationary iff $\mathbf{E} \mathbf{X}(j)=\mathbf{E} \mathbf{X}(k)$ for all j, k and $Q(k)=Q$ for all k. The power spectral density of white noise is constant across all frequencies. The Matlab commands xcorr. m and fft.m are useful for analyzing the cross-correlation and spectrum of a random sequence. xcorr.m can compute the autocorrelation of a sequence, and fft.m can compute the Fourier transform of the autocorrelation, a.k.a. the power spectral density. If the transform is flat over all frequencies, then the sequence is probably white noise.

- A stationary stochastic process with mean $\mathbf{E X}(k)=\boldsymbol{\mu}_{x}$ for all k is ergodic if expectations agree with simple time averages of the realizations:

$$
\lim _{N \rightarrow \infty} \frac{1}{2 N} \sum_{k=-N}^{N} \mathbf{x}(k)=\boldsymbol{\mu}_{x}
$$

- Suppose the stochastic process $\ldots, \mathbf{V}(-1), \mathbf{V}(0), \mathbf{V}(1), \ldots$ is stationary white noise, i.e.

1. $\mathbf{E} \mathbf{V}(k)=\mathbf{0}$ for all k
2. $\mathbf{E}[\mathbf{V}(k) \mathbf{V}(j)]=Q \delta_{j k}$ for all j, k

Define the random vectors $\mathbf{X}(k)$ as follows:

1. $\mathbf{X}(0)=\mathbf{0}$ with probability 1
2. $\mathbf{X}(k+1)=\mathbf{X}(k)+\mathbf{V}(k)$ for $k \in\{0,1,2, \ldots\}$

Then the stochastic process $\mathbf{X}(0), \mathbf{X}(1), \ldots$ is called a random walk. One interpretation: a drunk man wandering around. At each time step he picks a random direction and wanders in that direction until the next step.
Some properties of random walks:

- each $\mathbf{X}(k)$ can be written as a sum of the past white noise:

$$
\mathbf{X}(k)=\sum_{j=0}^{k-1} \mathbf{V}(j) \text { for all } k \geq 1
$$

- every $\mathbf{X}(k)$ is zero mean

$$
\mathbf{E} \mathbf{X}(k)=\mathbf{0} \text { for all } k \geq 0
$$

- the covariance matrix of $\mathbf{X}(k)$ is

$$
\mathbf{E}\left[\mathbf{X}(k) \mathbf{X}(k)^{T}\right]=k Q
$$

so a random walk is non-stationary. In fact, the uncertainty in $\mathbf{X}(k)$ grows with time - "walk long enough and you could end up anywhere."

- Let $\ldots, \mathbf{V}(-1), \mathbf{V}(0), \mathbf{V}(1), \ldots$ be Gaussian white noise, and let $\mathbf{X}(0)$ also be Gaussian. Then the stochastic process given by linear system

$$
\mathbf{X}(k+1)=F(k) \mathbf{X}(k)+\mathbf{V}(k)
$$

is called a Gauss-Markov process. Here $F(0), F(1), \ldots$ are known, non-random $n \times n$ matrices.

Some properties:

- every $\mathbf{X}(k)$ is Gaussian, since linear transformations preserve normality
- the process is Markovian: for all $k \geq j, \mathbf{X}(k)$ depends only on $\mathbf{X}(j)$ and $\mathbf{V}(j), \mathbf{V}(j+$ 1), $\ldots, \mathbf{V}(k-1)$

NB. If $\mathbf{X}(0)=\mathbf{0}$ with probability 1 , and if $F(k)=I_{n}$ for all k, then the Gauss-Markov process reduces to a random walk.

Part II

Statistics

17 Numerical Data Summaries

Definitions

- Given an iid sample X_{1}, \ldots, X_{n}, the median of absolute deviations (MAD) of the sample is

$$
\operatorname{MAD}\left(X_{1}, \ldots, X_{n}\right)=\operatorname{Med}\left(\left|X_{1}-\operatorname{Med}\left(X_{1}, \ldots, X_{n}\right)\right|, \ldots,\left|X_{n}-\operatorname{Med}\left(X_{1}, \ldots, X_{n}\right)\right|\right)
$$

where the median $\operatorname{Med}\left(X_{1}, \ldots, X_{n}\right)$ is the middle order statistic of the arguments.

- The sample variance of the sample X_{1}, \ldots, X_{n} is

$$
S_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}
$$

Why divide by $n-1$ instead of n ? Because the factor $n-1$ leads to an unbiased estimator, whereas n does not. See Chapter 19 for more details.

- The sample standard deviation of the sample X_{1}, \ldots, X_{n} is

$$
S_{n}=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}}
$$

NB. The sample standard deviation is a biased estimator of the true standard deviation σ.

18 Basic Statistical Models

Definitions

- A sample or random sample is a collection of iid $\mathrm{RVs} X_{1}, \ldots, X_{n}$. In most of statistics, we view our data, x_{1}, \ldots, x_{n} as realizations of a random sample.
- A statistic (or sample statistic) is any function of the sample X_{1}, \ldots, X_{n}.

Examples: sample mean \bar{X}_{n}, sample maximum $M_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}, \operatorname{Med}\left(X_{1}, \ldots, X_{n}\right)$, $\operatorname{MAD}\left(X_{1}, \ldots, X_{n}\right)$, etc.

- The empirical distribution function $F_{n}(a)$ of the sample X_{1}, \ldots, X_{n} is

$$
F_{n}(a)=\frac{\text { number of } X_{i} \text { in }(-\infty, a]}{n}
$$

The LLN tells us that for every $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left(\left|F_{n}(a)-F(a)\right|>\epsilon\right)=0
$$

i.e. for large n the empirical distribution function approaches the true $c d f$.

Results

- Let $(x-h, x+h]$ be a bin of width $2 h$ in the histogram of the sample X_{1}, \ldots, X_{n}. Then

$$
\frac{\text { number of } X_{i} \text { in }(x-h, x+h]}{2 h n} \approx f_{X}(x),
$$

i.e. the height of the histogram approximates the value of the $p d f$ at the midpoint of the bin, and the approximation gets better as n increases and as the bin width decreases. We have a similar result for the kernel density estimate. For large n, it approaches the true $p d f$.

- The relative frequency of realizations from a discrete, iid sample X_{1}, \ldots, X_{n} approximates the pmf:

$$
\text { relative frequency }=\frac{\text { number of } X_{i} \text { equal to } a}{n} \approx p_{X}(a)
$$

- Some common estimators of true features of the distribution:

$$
\begin{aligned}
\mathbf{E} X_{i} & \approx \bar{X}_{n} \\
\operatorname{Var}\left(X_{i}\right) & \approx S_{n}^{2} \\
\sigma_{X_{i}} & \approx S_{n} \\
F_{X}^{-1}(0.5) & \approx \operatorname{Med}\left(X_{1}, \ldots, X_{n}\right) \\
F_{X}^{-1}(q) & \approx q^{\text {th }} \text { empirical quantile } \\
F_{X}^{-1}(0.75)-F_{X}^{-1}(0.5) & \approx \operatorname{MAD}\left(X_{1}, \ldots, X_{n}\right) \quad\left(\text { for symmetric } F_{X}\left(x_{i}\right)\right) .
\end{aligned}
$$

19 Unbiased Estimators

In this chapter, we discuss how to use sample statistics to recover information about the true distribution (model parameters, $c d f, p d f, p m f$, etc).

Definitions

- A point estimator $\hat{\Theta}=\hat{\Theta}\left(X_{1}, \ldots, X_{n}\right)$ is a statistic, suitably designed to estimate population parameter θ. A point estimate $\hat{\theta}=\hat{\theta}\left(x_{1}, \ldots, x_{n}\right)$ is a realization of a point estimator.
- The bias of an estimator is defined by

$$
\operatorname{Bias}(\hat{\theta})=\mathbf{E}[\hat{\theta}]-\theta
$$

If $\operatorname{Bias}(\hat{\theta})=0$, then we call $\hat{\theta}$ unbiased. A biased estimator has a systematic tendency to overestimate or underestimate the true parameter θ.
Note that the naively normalized estimator of the variance,

$$
\tilde{S}_{n}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2},
$$

is biased. This is why we used the unbiased estimator S_{n}^{2}, normalized by $\frac{1}{n-1}$.

- For a vector-valued estimator $\hat{\boldsymbol{\theta}}$ of parameter vector $\boldsymbol{\theta}$, with estimation error $\tilde{\boldsymbol{\theta}}=\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}$, the bias is

$$
\operatorname{Bias}(\hat{\boldsymbol{\theta}})=\mathbf{E} \tilde{\boldsymbol{\theta}}
$$

(Note that the expectation may be taken over different distributions, in the Bayesian and non-Bayesian approaches.)

- An estimator $\hat{\theta}$ is consistent if, for large $n, \hat{\theta} \approx \theta$. More precisely, $\hat{\theta}$ is consistent if, for every $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} \mathbf{P}(|\hat{\theta}-\theta|>\epsilon)=0
$$

i.e. $\hat{\theta} \rightarrow \theta$ in probability.

Note: if $\hat{\theta}$ is consistent, then as $n \rightarrow \infty, \operatorname{Bias}(\hat{\theta}) \rightarrow 0$.

Results

- Even if $\operatorname{Bias}(\hat{\theta})=0$, the transformed estimator $g(\hat{\theta})$ may be a biased estimator of the transformed parameter $g(\theta)$. Example: even though S_{n}^{2} is an unbiased estimator of $\sigma^{2}, S_{n}=\sqrt{S_{n}^{2}}$ is a biased estimator of σ. Thus, transformation does not in general preserve unbiasedness. A special case where unbiasedness is preserved is under linear transformation:

$$
\operatorname{Bias}(\hat{\theta})=0 \Rightarrow \operatorname{Bias}(a \hat{\theta}+b)=0
$$

20 Precision of an Estimator

This chapter investigates how, given a portfolio of estimators for an unknown parameter θ, we can choose the "best" one (by some agreed-upon metric). One such metric is the bias. Others are efficiency, variance, MSE, mean absolute deviation, etc. Various norms can be used to evaluate the precision of an estimator.

Definitions

- Let $\hat{\theta_{1}}\left(X_{1}, \ldots, X_{n}\right)$ and $\hat{\theta_{2}}\left(X_{1}, \ldots, X_{n}\right)$ be unbiased estimators of θ. Then $\hat{\theta_{1}}\left(X_{1}, \ldots, X_{n}\right)$ is more efficient than $\hat{\theta_{2}}\left(X_{1}, \ldots, X_{n}\right)$ if, for all θ,

$$
\operatorname{Var}\left(\hat{\theta_{1}}\left(X_{1}, \ldots, X_{n}\right)\right)<\operatorname{Var}\left(\hat{\theta_{2}}\left(X_{1}, \ldots, X_{n}\right)\right)
$$

"An estimator with smaller variance is more efficient."

- The mean squared error of an estimator $\hat{\theta}$ of a parameter θ is

$$
\begin{aligned}
\operatorname{MSE}(\hat{\theta}) & =\mathbf{E}\left[(\hat{\theta}-\theta)^{2}\right] \\
& =\operatorname{Var}(\hat{\theta})+\operatorname{Bias}(\hat{\theta})^{2} .
\end{aligned}
$$

Let $\hat{\boldsymbol{\theta}} \in \mathbf{R}^{n}$ be an estimator of the parameter vector $\boldsymbol{\theta} \in \mathbf{R}^{n}$. Let $\tilde{\boldsymbol{\theta}}=\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}$ be the estimation error. Then

$$
\operatorname{Var}(\hat{\boldsymbol{\theta}})=\mathbf{E}\left[(\tilde{\boldsymbol{\theta}}-\mathbf{E} \tilde{\boldsymbol{\theta}})(\tilde{\boldsymbol{\theta}}-\mathbf{E} \tilde{\boldsymbol{\theta}})^{T}\right] \in \mathbf{R}^{n \times n}
$$

and

$$
\operatorname{MSE}(\hat{\boldsymbol{\theta}})=\mathbf{E}\left[\tilde{\boldsymbol{\theta}} \tilde{\boldsymbol{\theta}}^{T}\right]
$$

The MSE of an estimator measures its spread around the true parameter value. We say that $\hat{\theta_{1}}\left(X_{1}, \ldots, X_{n}\right)$ is better than $\hat{\theta_{2}}\left(X_{1}, \ldots, X_{n}\right)$ in the MSE sense if

$$
\operatorname{MSE}\left(\hat{\theta_{1}}\left(X_{1}, \ldots, X_{n}\right)\right)<\operatorname{MSE}\left(\hat{\theta_{2}}\left(X_{1}, \ldots, X_{n}\right)\right)
$$

Note that in some cases, a biased estimator with a small MSE is preferable to an unbiased estimator with a larger MSE.
It is almost never possible to find the estimator that's optimal in the MSE sense, i.e. the one with the smallest possible MSE. We can, however, sometimes find the estimator with the smallest variance.

- The mean absolute deviation of an estimator $\hat{\theta}$ of a parameter θ is

$$
\operatorname{MAD}(\hat{\theta})=\mathbf{E}|\hat{\theta}-\theta|
$$

Why use MAD over MSE? If you have noisy observations or modeling errors, then MAD may be preferable. However, about 95% of the time, MSE is the metric for measuring the precision of an estimator.

- The minimum variance unbiased estimator (MVUE) of a parameter θ is the unbiased estimator with the smallest possible variance.

Example: the sample mean is the MVUE of the true mean, when the sample distribution is normal.

Results

- The Cramér-Rao bound. Let sample X_{1}, \ldots, X_{n} have $p d f f_{X \mid \Theta}\left(x_{i} \mid \theta\right)$ (assumed to be smooth), for some parameter θ. Then the variance of any estimator $\hat{\theta}$ of θ is bounded below, for all θ, by

$$
\operatorname{Var}(\hat{\theta}) \geq \frac{1}{n \mathbf{E}\left[\left(\frac{\partial}{\partial \theta} \ln f_{X \mid \Theta}\left(X_{i} \mid \theta\right)\right)^{2}\right]}
$$

21 Maximum Likelihood Estimation

This section presents one method for producing "good" estimators: maximum likelihood estimation. There are other methods, such as Bayesian estimation and estimation by the Method of Moments. ML estimators are typically very good, but can be hard to construct because they require optimization.

Definitions

- The likelihood function of a dataset $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ sampled from $p_{X \mid \boldsymbol{\Theta}}(x \mid \boldsymbol{\theta})$ or $f_{X \mid \boldsymbol{\Theta}}(x \mid \boldsymbol{\theta})$ with unknown parameters $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{n}\right)$ is

$$
\begin{array}{ll}
L(\mathbf{x} \mid \boldsymbol{\theta})=\prod_{i=1}^{n} p_{X}\left(x_{i} \mid \boldsymbol{\theta}\right) & \text { (discrete case) } \\
L(\mathbf{x} \mid \boldsymbol{\theta})=\prod_{i=1}^{n} f_{X}\left(x_{i} \mid \boldsymbol{\theta}\right) & \text { (continuous case) }
\end{array}
$$

- The loglikelihood function of a dataset $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ sampled from $p m f p_{X \mid \boldsymbol{\Theta}}(x \mid \boldsymbol{\theta})$ or $p d f f_{X \mid \boldsymbol{\Theta}}(x \mid \boldsymbol{\theta})$ with unknown parameters $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{n}\right)$ is

$$
l(\mathbf{x} \mid \boldsymbol{\theta})=\ln (L(\mathbf{x} \mid \boldsymbol{\theta})) .
$$

A value $\boldsymbol{\theta}^{*}$ maximizes $l(\mathbf{x} \mid \boldsymbol{\theta})$ if and only if it maximizes $L(\mathbf{x} \mid \boldsymbol{\theta})$.
When finding the MLE of θ involves differentiation, the loglikelihood function is often easier to work with than the likelihood function, because the log of the product is the sum of the logs.

- The maximum likelihood estimator of a parameter vector $\hat{\boldsymbol{\theta}}$ is

$$
\begin{aligned}
\hat{\boldsymbol{\theta}}_{M L} & =\arg \max _{\boldsymbol{\theta}} L(\mathbf{x} \mid \boldsymbol{\theta}) \\
& =\arg \max _{\boldsymbol{\theta}} l(\mathbf{x} \mid \boldsymbol{\theta}) .
\end{aligned}
$$

In general, $\hat{\boldsymbol{\theta}}_{M L}$ may be biased or unbiased. $\hat{\boldsymbol{\theta}}_{M L}$ is always consistent (and therefore asymptotically unbiased, as $n \rightarrow \infty$). As $n \rightarrow \infty, \hat{\boldsymbol{\theta}}_{M L}$ has the lowest possible MSE among unbiased estimators (i.e. $\hat{\boldsymbol{\theta}}_{M L}$ attains the Cramér-Rao bound).

Results

- If $h(\cdot)$ is a one-to-one function, and if $\hat{\boldsymbol{\theta}}_{M L}$ is the MLE of $\hat{\boldsymbol{\theta}}$, then $h\left(\hat{\boldsymbol{\theta}}_{M L}\right)$ is the MLE of $h(\hat{\boldsymbol{\theta}})$.

22 Method of Moments Estimation

Definitions

- The $\mathbf{k}^{\text {th }}$ sample moment of a sample x_{1}, \ldots, x_{n} is

$$
\hat{m}_{k}=\frac{1}{n} \sum_{i=1}^{n} x_{i}^{k}, \text { for } k=1,2, \ldots
$$

- The $\mathbf{k}^{\text {th }}$ population moment of a population X_{1}, \ldots, X_{n} is

$$
\mu_{k}(\boldsymbol{\theta})=\mathbf{E}\left[X_{1}^{k}\right], \text { for } k=1,2, \ldots
$$

so $\mu_{1}=\mathbf{E} X_{1}$ is the mean. In estimation problems, the population moments depend on the unknown parameters $\boldsymbol{\theta}$.

Results

- Recipe for Method of Moments estimation. If k parameters need to be estimated,

1. For each $i \in\{1, \ldots, k\}$, write $\hat{m}_{i}=\mu_{i}(\boldsymbol{\theta})$
2. Solve the resulting system for $\theta_{1}, \ldots, \theta_{k}$.

- MoM estimation is easier to perform than ML estimation, because solving an algebraic system is usually easier than solving an optimization problem.
- Tradeoff: MoM estimators, unlike ML estimators, don't always give sensical results. The most common use of MoM estimators is as the initial guess for numerical ML estimation.

23 Bayesian Estimation

Bayesian estimation is another approach to the problem of using data to estimate an unknown parameter from the sample distribution. While MLEs are consistent and asymptotically unbiased but hard to compute, and MoM estimators are easy to compute but sometimes nonsensical, Bayesian estimators have the advantage of allowing us to incorporate our prior beliefs into the process of estimation. Bayesian estimation is somewhat different, on a philosophical level, from ML and MoM estimation. Why? Because in ML and MoM estimation, we view θ as some unknown constant, but in Bayesian estimation we view θ as a RV with its own probability distribution. This worldview is not universally accepted in the statistics community.

As in the previous chapters, our task is to use the realizations $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ of the sample $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ to compute an estimator $\hat{\Theta}$ (or a particular estimate $\hat{\theta}$) of the parameter θ.

Bayesian estimation works with either discrete or continuous distributions on both the parameter and the sample. Bayesian estimation preserves the nature of the parameter: if the prior distribution on θ is continuous (or discrete), then the posterior distribution on θ is also continuous (or discrete).

Definitions

- The prior distribution $p(\theta)$ encodes our a priori beliefs about θ. The prior distribution is an assumption; Bayesian estimation is generally quite sensitive to this a priori assumption. $p(\theta)$ may be discrete or continuous.
- The uniform distribution is called the non-informative prior. It's used when we have no prior beliefs about θ.
- The prior distribution $p(\theta)=1$ is called the improper prior. Although it's not a legitimate density, it's sometimes used because it's easy and it works.
- The posterior distribution $f_{\Theta \mid \mathbf{X}}(\theta \mid \mathbf{x})$ (or $p_{\Theta \mid \mathbf{X}}(\theta \mid \mathbf{x})$, if $p(\theta)$ is a $p m f$) uses Bayes' Rule to update the distribution on θ based on the data \mathbf{x}.

Results

- Recipe for Bayesian estimation.

1. Postulate prior distribution $p(\theta)$
2. Use Bayes' Rule and the observations \mathbf{x} to compute the posterior distribution on θ :

$$
f_{\Theta \mid \mathbf{X}}(\theta \mid \mathbf{x})=\frac{p(\theta) \prod_{i=1}^{n} f_{X \mid \Theta}\left(x_{i} \mid \theta\right)}{f_{\mathbf{X}}(\mathbf{x})}
$$

where the denominator can be (but doesn't always need to be) computed with the LTP for RVs:

$$
f_{\mathbf{X}}(\mathbf{x})=\int_{-\infty}^{\infty} p(\theta) \prod_{i=1}^{n} f_{X \mid \Theta}\left(x_{i} \mid \theta\right) \mathrm{d} \theta
$$

3. Construct either the mean Bayesian estimator,

$$
\hat{\Theta}_{\text {mean }}=\mathbf{E}[\Theta \mid \mathbf{X}]=\int_{-\infty}^{\infty} \theta f_{\Theta \mid \mathbf{X}}(\theta \mid \mathbf{x}) \mathrm{d} \theta
$$

or the mode Bayesian estimator,

$$
\hat{\Theta}_{\mathrm{mode}}=\arg \max _{\theta} f_{\Theta \mid \mathbf{X}}(\theta \mid \mathbf{x})
$$

Note that if the mode estimator is used, the denominator $f_{\mathbf{X}}(\mathbf{x})$ never needs to be computed, because it's constant with respect to θ and therefore doesn't affect the maximization.

- Normal sample and prior. Let the sample distribution be $\mathcal{N}\left(\theta, \sigma_{0}^{2}\right)$, where θ is the parameter to be estimated and σ_{0}^{2} is known. Let the prior distribution be $\mathcal{N}\left(\mu, \sigma_{0}^{2}\right)$, where μ and σ^{2} are both known. Then both the mean and mode Bayesian estimators of θ are

$$
\hat{\theta}_{\text {mode }}=\hat{\theta}_{\text {mean }}=\frac{1}{1+n \frac{\sigma^{2}}{\sigma_{0}^{2}}} \mu+\frac{n \frac{\sigma^{2}}{\sigma_{0}^{2}}}{1+n \frac{\sigma^{2}}{\sigma_{0}^{2}}} \bar{X}_{n},
$$

i.e. the estimator is a weighted sum of our prior beliefs (μ) and the data $\left(\bar{X}_{n}\right)$, where the weight on μ reflects how confident we are in our prior beliefs, and the weight on \bar{X}_{n} reflects how much we trust the data.

24 Least Squares Estimation

Sometimes we have a bunch of data $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$, but we don't know what distribution it's sampled from. We only know (or assume) that the data are linear functions of θ :

$$
x_{j}=\gamma_{j} \theta+w_{j}, \quad j \in\{1, \ldots, n\}
$$

for some scalars $\gamma_{1}, \ldots, \gamma_{n}$ and some sequence of independent noises W_{1}, \ldots, W_{n} with unknown distributions but known variances $\operatorname{Var}\left(W_{k}\right)=\sigma^{2}$ for all k. (This is the linear least squares problem; there's a nonlinear version too.) Define the cost

$$
C_{\mathrm{LS}}(\theta \mid \mathbf{x})=\frac{1}{2 \sigma^{2}} \sum_{j=1}^{k} w_{j}^{2}=\frac{1}{2 \sigma^{2}} \sum_{j=1}^{k}\left(x_{j}-\gamma_{j} \theta\right)^{2}
$$

Then the (linear) least squares estimator (LSE) of θ is

$$
\hat{\theta}_{\mathrm{LS}}(\mathbf{x})=\arg \min _{\theta} C_{\mathrm{LS}}(\theta \mid \mathbf{x})=\frac{\sum_{j=1}^{n} \gamma_{j} x_{j}}{\sum_{j=1}^{k} \gamma_{j}^{2}}
$$

Linear least squares estimation finds the θ that minimizes the square of the distance between each measurement x_{j} and a line through the data.

Under the assumptions that the noises w_{j} are iid Gaussian RVs, the LSE and MLE are equivalent.

25 Minimum Mean Squared Error Estimation

This is another estimator that follows the Bayesian worldview of considering the parameter θ as random with a prior density $p(\theta)$. Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ be the data. Define the cost

$$
C_{\mathrm{MSE}}(\hat{\theta} \mid \mathbf{x})=\mathbf{E}\left[(\hat{\Theta}-\Theta)^{2} \mid \mathbf{x}\right]=\int_{-\infty}^{\infty}(\hat{\theta}-\theta)^{2} f_{\Theta \mid \mathbf{X}}(\theta \mid \mathbf{x}) \mathrm{d} x
$$

Note that the posterior density $f_{\Theta \mid \mathbf{X}}(\theta \mid \mathbf{x})$ is calculated by the same process as in Bayesian estimation.

The minimum mean squared error estimator (MMSEE) of θ is

$$
\hat{\theta}_{\mathrm{MMSE}}=\arg \min _{\hat{\theta}} C(\hat{\theta} \mid \mathbf{x})=\mathbf{E}[\Theta \mid \mathbf{x}]
$$

26 Hypothesis Testing

Hypothesis testing, like estimation, deals with using data to figure stuff out about an unknown parameter θ of the sample distribution. In estimation, we try to come up with a "good" value of θ (through ML, MoM, or Bayesian estimation). In hypothesis testing, we want to choose between two different statements about θ. For instance, $\theta=5$ vs. $\theta=10$, or $0 \leq \theta \leq 7$ vs. $\theta>10$. This chapter discusses how to construct good hypothesis tests, and how to compare the "quality" (mostly size and power) of two tests.

As in the previous sections, $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ is a sample (and therefore iid) whose distribution depends on the parameter θ.

Definitions

- The null hypothesis, $H_{0}: \theta \in \Omega_{0}$, models our current beliefs about θ.
- The alternative hypothesis, $H_{1}: \theta \in \Omega_{1}$, models some different beliefs about θ. Generally, hypothesis testing is conservative, in that we require very strong evidence to reject H_{0} in favor of H_{1}. Our inclination is to stick with the status quo.
- A hypothesis with $\Omega_{i}=\left\{\theta_{i}\right\}$, where $\theta_{i} \in \mathbf{R}$, is called simple. A composite hypothesis is one that's not simple (i.e. Ω_{i} contains more than one element).
- We call the set of all possible parameter values $\Omega . \Omega_{0}$ and Ω_{1} are disjoint subsets of Ω.
- A test statistic $T(\mathbf{X})$ is some function of the sample that we use to check whether or not we reject H_{0}.
- The critical region C is the set of all values that cause us to reject H_{0}. Given a test statistic,

$$
\begin{aligned}
C & =\left\{\mathbf{x} \mid \text { if } \mathbf{X}=\mathbf{x}, \text { we reject } H_{0}\right\} \\
& =\{\mathbf{x} \mid T(\mathbf{x}) \in R\}
\end{aligned}
$$

where the set R, and therefore the critical region C, is constructed "somehow" by the tester. The quality of a test depends on the choice of C.
We call the rule "reject H_{0} if $\mathbf{x} \in C^{\prime \prime} \Longleftrightarrow$ "reject H_{0} if $T(\mathbf{x}) \in R$ " the decision rule.

- A Type 1 error is a false rejection of H_{0}. Formally, the probability of Type 1 error is

$$
\alpha=\mathbf{P}\left(\text { reject } H_{0} \mid H_{0} \text { is true }\right)
$$

If the null hypothesis is simple, then α is a constant. If the null hypothesis is composite, then $\alpha=\alpha(\theta)$.

- A Type 2 error is a false acceptance of H_{0}. Formally, the probability of Type 2 error is

$$
\beta=\mathbf{P}\left(\text { accept } H_{0} \mid H_{1} \text { is true }\right)
$$

If the alternative hypothesis is simple, then β is a constant. If the alternative hypothesis is composite, then $\beta=\beta(\theta)$.

- Since we're conservative, controlling Type 1 error (i.e. making α small) is most important.
- The significance level or size of a test, denoted $\bar{\alpha}$, is an upper bound on α. The significance level is a specification set by the tester:"This test must have a significance level no higher than $\bar{\alpha}$." Typical values of $\bar{\alpha}$ are $0.05,0.01$, or 0.005 .
For a simple null hypothesis, we choose C such that $\alpha=\bar{\alpha}$.
For a composite null hypothesis, we choose C such that $\alpha(\theta) \leq \bar{\alpha}$ for all $\theta \in \Omega_{0}$.
- A test with a significance level $\bar{\alpha}$ is called a size $\overline{\boldsymbol{\alpha}}$ test.
- The power function of a test is the probability of rejecting the null hypothesis, given that the alternative hypothesis is true. Formally,

$$
\begin{aligned}
\eta(\theta) & =\mathbf{P}\left(\text { reject } H_{0} \mid H_{1} \text { is true }\right) \\
& =1-\beta(\theta)
\end{aligned}
$$

When considering two tests of size $\bar{\alpha}$, the test with the higher power is better. If the power of a size $\bar{\alpha}$ test is at least as high as the power of any other size $\bar{\alpha}$ test, then it's called a best test of size $\overline{\boldsymbol{\alpha}}$.

- Consider the test of size $\bar{\alpha}, H_{0}: \theta=\theta_{0}$ vs. $H_{1}: \theta=\theta_{1}$ (i.e. simple hypotheses), with critical region $C=\left\{\mathbf{x} \mid T(\mathbf{x}) \geq \gamma_{\bar{\alpha}}\right\}$ such that $\mathbf{P}\left(T(\mathbf{x}) \geq \gamma_{\bar{\alpha}} \mid H_{0}\right.$ is true $)=\bar{\alpha}$. Then the \boldsymbol{p}-value of this test is

$$
p \text {-value }=\mathbf{P}\left(T(\mathbf{X}) \geq T(\mathbf{x}) \mid H_{0} \text { is true }\right)
$$

Why do we care about the p-value? Well, we can use it to make our decision: we reject the null hypothesis if the p-value is smaller than $\bar{\alpha}$, and we accept the null hypothesis if the p-value exceeds $\bar{\alpha}$.

Results

- Recipe for likelihood ratio testing with simple hypotheses and continuous likelihood ratios.

1. Compute the likelihood under H_{0} :

$$
L_{0}(\mathbf{x})=\prod_{i=1}^{n} f_{X \mid \Theta_{0}}\left(x_{i} \mid \theta_{0}\right)
$$

2. Compute the likelihood under H_{1} :

$$
L_{1}(\mathbf{x})=\prod_{i=1}^{n} f_{X \mid \Theta_{1}}\left(x_{i} \mid \theta_{1}\right)
$$

3. Compute the likelihood ratio $L_{0}(\mathbf{x}) / L_{1}(\mathbf{x})$.
4. Apply the Neyman-Pearson Lemma: the best test of size $\bar{\alpha}$ has critical region

$$
C=\left\{\mathbf{x} \left\lvert\, \frac{L_{0}(\mathbf{x})}{L_{1}(\mathbf{x})} \leq \gamma_{\bar{\alpha}}\right.\right\}
$$

Thus, we reject the null hypothesis when the likelihood ratio is too small. Often, we can reformulate the critical region in terms of a test statistic $T(\mathbf{x})$ that's easier to work with than $L_{0}(\mathbf{x}) / L_{1}(\mathbf{x})$.

- Recipe for likelihood ratio testing with simple hypotheses and discrete likelihood ratios. If $L_{0}(\mathbf{x}) / L_{1}(\mathbf{x})$ is a discrete RV, then the best test of size $\bar{\alpha}$ is randomized.

1. Compute the likelihood under H_{0} :

$$
L_{0}(\mathbf{x})=\prod_{i=1}^{n} p_{X \mid \Theta_{0}}\left(x_{i} \mid \theta_{0}\right)
$$

2. Compute the likelihood under H_{1} :

$$
L_{1}(\mathbf{x})=\prod_{i=1}^{n} p_{X \mid \Theta_{1}}\left(x_{i} \mid \theta_{1}\right)
$$

3. Compute the likelihood ratio $L_{0}(\mathbf{x}) / L_{1}(\mathbf{x})$.
4. Reject H_{0} if the LR is too small.

Note that in this case, the LR takes only discrete values, e.g. $1,2,3,4$, and 5 . The "LR too small" criterion may tell us to reject H_{0} if the LR is 1 or 2 , to stick with H_{0} if the LR is 4 or 5 , but the case $L R=3$ may be "degenerate" in the sense that if we assign $L R=3$ to one hypothesis or the other, we end up with a test of size $\alpha \neq \bar{\alpha}$. This is no longer the best test of size $\bar{\alpha}$, so we use a randomization.

How does this work? We introduce an intermediate RV X (e.g. a $\operatorname{Ber}(p) \mathrm{RV}$), and split the $L R=3$ case into two subcases: $L R=3$ and $X=0$ vs. $L R=3$ and $X=1$. Then we figure out what value of p to use to get $\alpha=\bar{\alpha}$, i.e. to exactly meet the spec.

- Recipe for likelihood ratio testing with composite hypotheses. When testing $H_{0}: \theta \in \Omega_{0}$ vs. $H_{1}: \theta \in \Omega_{1}$, best tests are not generally available. However, likelihood ratio tests are still very powerful.

1. Compute the maximum likelihood under H_{0} :

$$
L_{0}^{*}(\mathbf{x})=\max _{\theta \in \Omega_{0}} \prod_{i=1}^{n} f_{X \mid \Theta_{0}}\left(x_{i} \mid \theta_{0}\right)
$$

2. Compute the maximum likelihood under H_{0} or H_{1} :

$$
L^{*}(\mathbf{x})=\max _{\theta \in \Omega_{0} \cup \Omega_{1}} \prod_{i=1}^{n} f_{X \mid \Theta_{1}}\left(x_{i} \mid \theta_{1}\right)
$$

3. Compute the maximum likelihood ratio $L_{0}^{*}(\mathbf{x}) / L^{*}(\mathbf{x})$
4. Reject H_{0} if $L_{0}^{*}(\mathbf{x}) / L^{*}(\mathbf{x}) \leq \gamma_{\bar{\alpha}}$ for an appropriate $\gamma_{\bar{\alpha}}$.

In many cases, the threshold $\gamma_{\bar{\alpha}}$ is difficult or impossible to compute exactly. In these cases, we can use the following approximation

$$
\begin{aligned}
n \gg 1 & \Rightarrow \quad-2 \ln \left(\frac{L_{0}^{*}(\mathbf{x})}{L^{*}(\mathbf{x})}\right) \sim \chi_{m}^{2} \text { (approximately), where } \\
m & =\operatorname{dim}\left(\Omega_{0} \cup \Omega_{1}\right)-\operatorname{dim}\left(\Omega_{0}\right)
\end{aligned}
$$

Our null rejection criterion therefore becomes

$$
\text { reject } H_{0} \text { if }-2 \ln \left(\frac{L_{0}^{*}(\mathbf{x})}{L^{*}(\mathbf{x})}\right)>\chi_{m}^{2}(\bar{\alpha})
$$

- Locally most powerful tests. Given the hypothesis test $H_{0}: \theta=\theta_{0}$ vs. $H_{1}: \theta>\theta_{0}$, the locally most powerful test of size α is

$$
\text { reject } H_{0} \text { if }\left.\left[\frac{\partial}{\partial \theta} \ln f_{\mathbf{X} \mid \Theta}(\mathbf{x} \mid \theta)\right]\right|_{\theta_{0}}>\gamma_{\alpha}
$$

where the threshold γ_{α} satisfies

$$
\mathbf{P}\left(\left.\left.\left[\frac{\partial}{\partial \theta} \ln f_{\mathbf{X} \mid \theta}(\mathbf{x} \mid \theta)\right]\right|_{\theta_{0}}>\gamma_{\alpha} \right\rvert\, \theta=\theta_{0}\right)=\alpha
$$

LMP tests perform very well in the neighborhood of the null hypothesis, i.e. for values of θ near θ_{0}.

