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These are partial notes from ECE 6990, Robust and Stochastic Optimization, as taught
by Prof. Eilyan Bitar at Cornell University in the fall of 2015. They cover three approaches
to convex optimization with uncertain input data:

• robust convex programming, where a solution must be feasible for all possible realiza-
tions of the uncertain parameters,

• chance-constrained programming, where a solution must be feasible with high proba-
bility under the uncertain parameter distribution, and

• sampled convex programming, where a solution must be feasible for a number of inde-
pendent samples of the uncertain parameters.

These notes assume knowledge of convex optimization at the level of Boyd and Vandenberghe
[1], with which we attempt to maintain consistent notation. Some course material, such as
affine policies for multistage stochastic programming, has been omitted. If you find any
errors – which are the fault of the scribe, not the lecturer – feel free to let Kevin know.
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Chapter 1

Three paradigms for optimization
under uncertainty

We consider the uncertain convex program

minimize cTx
subject to f(x, δ) ≤ 0

x ∈ X, δ ∈ ∆,
(UCP)

where x ∈ Rn is the optimization variable, δ ∈ Rd is an uncertain parameter, f : Rn×Rd →
R is convex, X ⊆ Rn is closed and convex, and ∆ ⊆ Rd is the set of all uncertain parameters.

This problem is ill-posed in its current form, since we have no information about δ other
than that it belongs to ∆. We also have not specified for which δ the constraint f(x, δ) ≤ 0
must hold, e.g., for all δ ∈ ∆, for randomly selected δ with some probability, or for particular
realizations of δ. Each of these approaches gives rise to a well-posed problem closely related
to UCP.

Although it may seem restrictive to require a linear objective function and a single in-
equality constraint coupling x and δ, in fact UCP is general. To see this, consider the
problem

minimize f0(y, δ)
subject to fi(y, δ) ≤ 0, i = 1, . . . ,m

y ∈ Y, δ ∈ ∆,
(1.1)

where y ∈ Rn−1, Y is closed and convex, and f0, . . . , fm are convex. The epigraph form of
this problem is

minimize t
subject to f0(y, δ) ≤ t

fi(y, δ) ≤ 0, i = 1, . . . ,m
y ∈ Y, δ ∈ ∆.

This problem fits into the UCP framework with x = (y, t), X = Y × R, and f(x, δ) =
max {f0(y, δ)− t, f1(y, δ), . . . , fm(y, δ)}.
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Example (optimal control). A special case of UCP is the open-loop optimal control problem

minimize f0(z0, . . . , zT , u0, . . . , uT−1, w0, . . . , wT−1)
subject to zt+1 = Atzt +Btut + Ctwt

ut ∈ Ut
zt+1 ∈ Zt+1

(z0, w0, . . . , wT−1) ∈ ∆,

(1.2)

where the constraints hold for t = 0, . . . , T − 1 and T is the time horizon. At each time t, zt ∈ Rnz

is the system state, ut ∈ Rnu is the control action, and wt ∈ Rnw is the disturbance. The initial
state z0 and disturbances w0, . . . , wT−1 are uncertain. The optimization variables are the controls
u0, . . . , uT−1 and states z1, . . . , zT .

To see that problem (1.2) is a special case of UCP, we can write each equality constraint
zt+1 = Atzt + Btut + Ctwt as the two inequality constraints zt+1 − (Atzt + Btut + Gtwt) ≤ 0 and
−zt+1+Atzt+Btut+Gtwt ≤ 0. With this transformation, problem (1.2) is a special case of problem
(1.1) with y = (u0, . . . , uK−1, z1, . . . , zK), Y = U0×· · ·×UT−1×Z1×· · ·×ZT , δ = (z0, w0, . . . , wK−1),
and appropriately defined constraint functions fi, i = 1, . . . ,m. Since problem (1.1) reduces to UCP,
so does the optimal control problem (1.2). The resulting UCP instance has n = T (nu + nz) + 1
optimization variables and d = nz + Tnw uncertain parameters.

1.1 Robust convex programming

A robust convex program requires that the uncertain constraint f(x, δ) ≤ 0 in UCP hold for
all possible δ:

minimize cTx
subject to f(x, δ) ≤ 0 for all δ ∈ ∆

x ∈ X.
(RCP)

When one exists, we denote a solution of RCP by x∗k.
RCP is a semi-infinite problem, since the constraint “for all δ ∈ ∆” is infinite-dimensional,

but x is finite-dimensional. The infinite-dimensional constraint makes RCP intractable in
general. RCP is also conservative, since low-probability realizations of δ may significantly
increase the optimal value. A goal of these notes is to derive convex, finite-dimensional
approximations of RCP.

Example (minimax optimization). The minimax problem

minimize sup {f(x, δ) | δ ∈ ∆}
subject to x ∈ X,

where f is convex and X is closed and convex, can be written as an RCP. To see this, consider the
epigraph form

minimize t
subject to sup {f(x, δ) | δ ∈ ∆} ≤ t

x ∈ X.
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The first constraint is equivalent to f(x, δ) ≤ t for all δ ∈ ∆, so we have an RCP.

Example (semidefinite programming). The standard form of a semidefinite program is

minimize cTx
subject to F (x) = F0 + x1F1 + · · ·+ xnFn � 0

Ax = b,
(SDP)

where x ∈ Rn, F0, . . . , Fn ∈ Sn+, and A ∈ Rm×n. The constraint F (x) � 0 holds if and only if
δTF (x)δ ≤ 0 for all δ with ‖δ‖2 = 1. An equivalent problem, therefore, is the RCP

minimize cTx
subject to δT (F0 + x1F1 + · · ·+ xnFn)δ for all δ ∈ ∆

Ax = b,

where ∆ = {δ | ‖δ‖2 = 1}. We will see that this problem can be solved approximately using linear
programming. This gives a method for handling very large semidefinite programs, for which no
efficient solver currently exists.

1.2 Chance-constrained programming

A chance-constrained program assumes a distribution on δ and bounds the probability of
constraint violation by ε ∈ [0, 1]:

minimize cTx
subject to P {f(x, δ) ≤ 0} ≥ 1− ε

x ∈ X.
(CCPε)

When one exists, we denote a solution of CCPε by x∗ε.
CCPε is equivalent to RCP for ε = 0, but is less conservative than RCP even for small

ε > 0. For general constraint functions f and distributions on δ, CCPε is nonconvex. A goal
of these notes is to derive convex, finite-dimensional inner approximations of CCPε.

Example (affine constraint, Gaussian parameter). In the special case of affine f , Gaussian
δ, and ε ≤ 1/2, CCPε is convex. To see this, let f(x, δ) = δTx + b and δ ∼ N (µ,Σ). Then
δTx+ b ∼ N (µTx+ b, xTΣx), and

P {f(x, δ) ≤ 0} ≥ 1− ε ⇐⇒ 0 ≥ µTx+ b+ Φ−1(1− ε) ‖Cx‖2 ,

where CTC = Σ and Φ is the cumulative distribution function of a standard normal random
variable. The constant Φ−1(1 − ε) is nonnegative for ε ≤ 1/2, so this is a (convex) second-order
cone constraint. This example demonstrates that chance constraints can promote a deterministic
problem to a more general – and likely harder to solve – problem class. For instance, if X is a
polyhedron, then the chance constraint promotes a linear program to a second-order cone program.
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1.3 Sampled convex programming

A sampled (or scenario or random) convex program requires that the constraints be met for
each of the independent, identically distributed samples δ1, . . . , δN from the distribution of
δ:

minimize cTx
subject to f(x, δi) ≤ 0, i = 1, . . . , N

x ∈ X.
(SCPN)

When one exists, we denote a solution of SCPN by x∗N .
SCPN is a convex program of the same problem class as the original version. Unlike CCPε,

SCPN requires no assumptions on the distribution of δ, only the ability to independently
sample from it. SCPN is also less conservative than RCP, and can accommodate unbounded
uncertainty sets. A downside of SCPN is that in general, its solutions are feasible for some
δ ∈ ∆, but not all. Only as N →∞ are the SCPN solutions feasible for RCP.
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Chapter 2

Sample bounds for sampled convex
programming

How many samples must we take to guarantee that the SCPN solutions are feasible for CCPε

with high probability? More precisely, for what value of N can we certify that

P {P {f(x∗N , δ) ≤ 0} ≥ 1− ε} ≥ 1− β

for ε, β ∈ [0, 1]? This chapter provides two lower bounds on the number of samples. The
first bound is general but loose. The second bound is tight but requires some assumptions
on the underlying UCP.

It is worth noting that the results in this chapter only concern feasibility. The optimality
gap between the SCPN and CCPε solutions is an active area of current research.

2.1 A loose, general bound

We begin by defining the violation probability of x ∈ X by

V (x) = P {f(x, δ) > 0} .

A point x is feasible for CCPε if V (x) < ε, so we seek a lower bound on N that guarantees
P {V (x∗N) > ε} < β.

One bound follows immediately from Markov’s inequality,

P {V (x∗N) > ε} ≤ 1

ε
EV (x∗N).

In 2005, Califiori and Campi [2] showed that

EV (x∗N) ≤ n

N + 1
. (2.1)
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Plugging this into the Markov bound gives our main result:

N ≥ n

εβ
− 1 =⇒ P {V (x∗N) > ε} ≤ β. (2.2)

We now show that inequality (2.1) holds. This requires a result from convex analysis
involving the problem

minimize cTx
subject to x ∈ Xi, i = 1, . . . ,m,

(2.3)

where x ∈ Rn and the Xi are closed and convex. Let x∗ denote the solution to problem
(2.3), and x∗k denote the solution to the same problem with the kth constraint deleted. We
call the constraint x ∈ Xk a support constraint if cTx∗k < cTx∗. The result, which we state
without proof, is that problem (2.3) has at most n support constraints.

The expectation in (2.1) is taken over the samples δN = {δ1, . . . , δN}. By definition of
V , we have

E
δN
V (x∗N) = E

δN
P
δ|δN

{
f(x∗N , δ) > 0

∣∣ δN}
= E

δN
E
δ|δN

[
I++(f(x∗N , δ))

∣∣ δN] ,
where I++ is the indicator function of R++,

I++(z) =

{
0 z /∈ R++

1 z ∈ R++.

Letting δ−k = {δ1, . . . , δk−1, δk+1, . . . , δN}, denoting by xkN the solution of the SCPN with
the constraint f(x, δk) ≤ 0 deleted, and applying iterated expectation, we have

E
δN
V (x∗N) = E

δ−k
E

δk|δ−k

[
I++(f(x∗N , δ))

∣∣ δ−k]
= E

δ−k
E

δk|δ−k

[
vk|δ−k

]
= E

δN+1
vk,

where δN+1 = δN ∪ δN+1, and vk = I++(f(x∗N , δ)) indicates whether the kth constraint is a
support constraint.

From our support constraint result,

N+1∑
k=1

vk ≤ n

with probability one. Taking the sample mean of both sides of the equation EδN V (x∗N) =
EδN+1 vk, we have

1

N + 1

N+1∑
k=1

E
δN
V (x∗N) =

1

N + 1

N+1∑
k=1

E
δN+1

vk
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Table 2.1: samples required for 1− ε violation with n = 101, β = 10−4.
ε 0.1 0.05 0.025 0.01 0.005 0.0025 0.001

§2.1 bound 107 2× 107 4× 107 108 2× 108 4× 108 109

§2.2 bound 2204 4408 8817 22042 44084 88168 220421

But EδN V (x∗N) is a constant and expectation is a linear operator, so we have

E
δN
V (x∗N) =

1

N + 1
E

δN+1

N+1∑
k=1

vk

≤ n

N + 1
.

2.2 A tight bound for structured problems

In this section, we present a tight bound on the required number of samples for a special
class of sampled convex programs. This bound is highly desirable, since the required number
of samples n/εβ−1 from §2.1 is huge even for small problems and moderate risk parameters,
as the following example shows.

Example (optimal control). We consider an instance of the optimal control problem (1.2)
with a single-input, single-output system (nu = nz = 1) and time horizon of T = 50 time steps.
As discussed in §1, this problem can be written as an uncertain convex program with n = T (nu +
nz) + 1 = 101 optimization variables. If the corresponding CCPε instance is intractable, we can
generate an approximate solution x∗N by solving the corresponding SCPN instance. If we require
that x∗N be feasible for CCPε with 99.99% probability (β = 10−4), the bound from §2.1 suggests
taking n/ε× 104 − 1 samples. The first row of Table 2.1 shows this number for several values of ε.
The second row shows the number of required samples with the tightened bound developed in this
section.

In 2008, Campi and Garatti [3] showed that if for each N , the SCPN derived from UCP
has

(i) a unique solution, and

(ii) a feasible set with nonempty interior,

then

P {V (x∗N) > ε} ≤
n−1∑
i=1

(
N

i

)
εi(1− ε)N−i. (2.4)

Moreover, if UCP is fully supported – meaning that for all N ≥ n, SCPN has exactly n
support constraints – then the bound holds with equality. A proof of this result can be
found in [3].
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The right-hand side of inequality (2.4) is equal to P {X ≤ n− 1}, where X ∼ Bin(N, ε).
The smallest N for which the right-hand side is no larger than β is upper bounded by

inf
N∈N

{
n−1∑
i=1

(
N

i

)
εi(1− ε)N−i ≤ β

}
≤ 2

ε

(
ln

(
1

β

)
+ n

)
.

This gives our second result: if for all N , the SCPN derived from UCP has a unique solution
and a feasible set with nonempty interior, then

N ≥ 2

ε

(
ln

(
1

β

)
+ n

)
=⇒ P {V (x∗N) > ε} ≤ β. (2.5)

2.3 Comparison

The bounds (2.2) and (2.5) both grow linearly with n and 1/ε, but depend on β as O(1/β)
and O(ln(1/β)), respectively. This difference is substantial: for β = 10−4, for example,
1/β = 104, but ln(1/β) = 9.2. The logarithmic dependence of (2.5) on 1/β means that
under mild assumptions and for reasonably small N , we can guarantee that the SCPN

solution is feasible for CCPε with high probability. By imposing further structure on f and
the distribution of δ, the ε-dependence can also be tightened to O(ln(1/ε)).
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Chapter 3

Convex, conservative approximations
to chance-constrained programs

Recall that the general form of the chance-constrained program is

minimize cTx
subject to P {f(x, δ) ≤ 0} ≥ 1− ε

x ∈ X.
(CCPε)

The chance constraint makes CCPε nonconvex in general. In this chapter, following §2 of
Nemirovski and Shapiro’s 2006 paper [4], we develop methods to construct convex subsets
of the CCPε feasible region that lead to tractable optimization problems. This technique is
conservative: solutions to the approximate problems are feasible but generally suboptimal
for CCPε.

3.1 Generating functions

We begin by considering the set of variables that are feasible for the chance constraint,

Xε = {x | P {f(x, δ) ≤ 0} ≥ 1− ε} .

The set Xε is convex only in special cases, e.g., when f(x, δ) = aTx− δ and the distribution
of δ is logconcave, or when f(x, δ) = δTx− b and δ is normal.

In the general, nonconvex case, we seek a function g : Rn → R such that {x | g(x) ≤ ε}
is a convex subset of Xε. This holds if

1. g is convex, and

2. for all x, P {f(x, δ) ≥ 0} ≤ g(x).

An equivalent expression of condition 2 is

E I+(f(x, δ)) ≤ g(x),
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z

I+(z)

1
α

(z + α)+

1
α2 (z + α)2+eαz

−α

Figure 3.1: the three generating functions eαz, (1/α2)(z + α)2+, and (1/α)(z + α)+ are all
convex, nondecreasing, and upper bound the indicator function I+(z) on R.

where I+ is the indicator function of R+,

I+(z) =

{
0 z /∈ R+

1 z ∈ R+.

We can guarantee that E I+(f(x, δ)) ≤ g(x) by ensuring that for all x and for all δ ∈ ∆,

I+ (f(x, δ)) ≤ g(x). (3.1)

To see this, consider the case where δ is a discrete random variable that takes value δi ∈ Rd

with probability pi for i = 1, . . . , r. In this case, if inequality (3.1) holds, then

E I+(f(x, δ)) =
r∑
i=1

piI+(f(x, δi)) ≤
r∑
i=1

pig(x) = g(x),

since p � 0 and 1Tp = 1. A similar argument can be made when δ is a continuous or mixed
random variable.

To summarize, we seek a convex function g(x) that upper bounds I+(f(x, δ)) for all x
and δ ∈ ∆. This motivates defining a family of generating functions ψ : R→ R, which

(i) are convex, nonnegative, and nondecreasing, and

(ii) satisfy ψ(z) > ψ(0) = 1 for all z > 0.

Because a convex nondecreasing function of a convex function is convex, the function
x 7→ ψ(f(x, δ)) is convex in x for any generating function ψ. Because ψ is nonnegative and
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satisfies condition (ii), we also have ψ(z) ≥ I+(z) for all z ∈ R, with equality at z = 0
(see figure 3.1). For any generating function ψ, therefore, {x | Eψ(f(x, δ)) ≤ ε} is a convex
subset of Xε, and X ∩ {x | Eψ(f(x, δ)) ≤ ε} is a convex subset of the CCPε feasible region.
We can generate an approximate solution to CCPε by solving the problem

minimize cTx
subject to Eψ(f(x, δ)) ≤ ε

x ∈ X.

3.2 Enlarging the inner approximation

In §3.1 we developed a conservative approximation of CCPε. So far, we have said nothing
about how good or bad this approximation may be. In this section, we improve the approx-
imation by (loosely speaking) expanding our convex subset of the CCPε feasible region.

To do this, we introduce a parameter t > 0 and replace f(x, δ) by f(x, δ)/t. The argument
in §3.1 carries through exactly under this replacement because an equivalent description of
the set of variables that are feasible for the chance constraint is

Xε =

{
x

∣∣∣∣ P

{
1

t
f(x, δ) ≤ 0

}
≥ 1− ε

}
.

For any t > 0, therefore, {x | Eψ(f(x, δ)/t) ≤ ε} is a convex subset of Xε.
In the discussion following result (2.4) of [4], Nemirovski and Shapiro strengthen this

statement to {
x

∣∣∣∣ inf
t>0

{
−tε+ tEψ

(
1

t
f(x, δ)

)}
≤ 0

}
⊆ Xε.

Using this fact, a conservative approximation to CCPε is

minimize cTx
subject to inft>0 {−tε+ tEψ (f(x, δ)/t)} ≤ 0

x ∈ X.
(3.2)

For problem (3.2) to be convex, the function

x 7→ inf
t>0

{
−tε+ tEψ

(
1

t
f(x, δ)

)}
must be convex. Because partial minimization preserves convexity and the sum of a linear
and a convex function is convex, this is true as long as (x, t) 7→ tEψ (f(x, δ)/t) is a con-
vex function. But (f(x, δ), t) 7→ tEψ (f(x, δ)/t) is the perspective of the convex function
f(x, δ) 7→ Eψ (f(x, δ)), and the perspective of a convex function is convex (see §3.2.6 of [1]).
Therefore, problem (3.2) is convex.

While convex, problem (3.2) may still be intractable: the expectation integral may be
costly or impossible to compute for some distributions on δ, and the infimum may have
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a closed-form solution only for certain choices of ψ, as demonstrated in the following two
examples.

Example (square-positive generating function). For the generating function ψ(z) =
(1/α2)(z + α)2+ (the square of the positive part), we can derive a sufficient condition for the con-
straint

inf
t>0

{
−tε+ tEψ

(
1

t
f(x, δ)

)}
≤ 0 (3.3)

in problem (3.2) to hold. We have

tEψ

(
1

t
f(x, δ)

)
=

t

α2
E

[(
1

t
f(x, δ) + α

)2

+

]
=

1

α2t
E
[
(f(x, δ) + αt)2+

]
≤ 1

α2t
E
[
(f(x, δ) + αt)2

]
,

where the second line follows from the fact that t > 0, and the third from the fact that z2+ ≤ z2 for
all z. Expanding the quadratic term and simplifying, constraint (3.3) holds whenever

inf
t>0

{
(1− ε)t+

1

α2t
E
[
f(x, δ)2

]
+

2

α
E f(x, δ)

}
≤ 0. (3.4)

Applying the first-order optimality conditions to the term inside the infimum (a convex function of
t), we have

t∗ =

√
E [f(x, δ)2]

α2(1− ε)
.

Substituting t∗ and simplifying, constraint (3.4) is equivalent to(
1 + α3/2

)√
(1− ε) E [f(x, δ)2] + 2 E f(x, δ) ≤ 0. (3.5)

Importantly, this result depends only on the first two moments of f(x, δ). For example, suppose
f(x, δ) = δTx, E δ = µ, and E δδT = Σ ∈ Sn++. Then E f(x, δ) = µTx and E[f(x, δ)2] = xTΣx, so
inequality (3.5) reduces to the second-order cone constraint(

1 + α3/2
)√

(1− ε)
∥∥∥Σ1/2x

∥∥∥
2

+ 2µTx ≤ 0.

This gives the following conservative approximation of CCPε:

minimize cTx

subject to
(
1 + α3/2

)√
(1− ε)

∥∥Σ1/2x
∥∥
2

+ 2µTx ≤ 0

x ∈ X.

Assuming X is described by a system of linear equalities and linear, convex quadratic, or second-
order cone inequalities, this is a (tractable) second-order cone program. The only required distri-
butional information is the first two moments of δ.
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Example (hinge generating function). With the generating function ψ(z) = (1/α)(z + α)+,
it is less clear how to ensure satisfaction of the constraint (3.3) in problem (3.2). We have

tEψ

(
1

t
f(x, δ)

)
=

t

α
E

[(
1

t
f(x, δ) + α

)
+

]
=

1

α
E
[
(f(x, δ) + αt)+

]
≤ 1

α
E |f(x, δ) + αt| .

Thus, constraint (3.3) holds whenever

inf
t>0

{
−tε+

1

α
E |f(x, δ) + αt|

}
≤ 0.

While convex, the term inside the infimum is not differentiable, so we cannot apply the first-order
optimality condition.

3.3 Joint chance constraints

We now extend the results in §3.2 to the case of multiple chance constraints. While this case
can technically be reduced to the case of a single chance constraint by taking the pointwise
maximum of the constraint functions, this may destroy useful structure.

We consider the problem

minimize cTx
subject to P {f(x, δ) � 0} ≥ 1− ε

x ∈ X,

where f : Rn × Rd → Rm is convex. Writing f(x, δ) = (f1(x, δ), . . . , fm(x, δ)), a point
x is feasible for the chance constraint if P∩mi=1 {fi(x, δ) ≤ 0} ≥ 1 − ε or, equivalently, if
P∪mi=1 {fi(x, δ) > 0} ≤ ε. But

P
m⋃
i=1

{fi(x, δ) > 0} ≤
m∑
i=1

P {fi(x, δ) > 0} ,

so we can construct a conservative approximation of the chance constraint by bounding the
right-hand probability.

One way to accomplish this is to require P {fi(x, δ) > 0} ≤ εi for i = 1, . . . ,m, for some
ε1, . . . , εm ≥ 0 satisfying

∑m
i=1 εi ≤ ε. This gives the following conservative approximation

of our jointly chance-constrained problem:

minimize cTx
subject to P {fi(x, δ) ≤ 0} ≥ 1− εi, i = 1, . . . ,m

x ∈ X.
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Applying the results in §3.1-3.2 to each chance constraint gives the following (again conser-
vative) approximation:

minimize cTx
subject to inft>0 {−tεi + tEψi (fi(x, δ)/t)} ≤ 0, i = 1, . . . ,m

x ∈ X.

Remark. Specifying the generating functions ψ1, . . . , ψm and bounds ε1, . . . , εm are im-
portant modeling steps that can strongly influence the tractability and quality of this ap-
proximation scheme.

3.4 Bernstein approximations for affinely perturbed con-

straints

We now consider a special case of CCPε with f(x, δ) affine in δ:

f(x, δ) = f0(x) +
d∑
i=1

δifi(x).

Here the known, deterministic functions f0, . . . , fd : Rn → R are convex on X. For i =
1, . . . , d, we assume

A1. the component δi of δ is independent of δj for all j 6= i,

A2. the support ∆i of δi is a compact set,

A3. the moment generating function Mi(t) = E etδi of δi is finite-valued for all t ∈ R, and

A4. if ∆i contains a negative number, then fi is affine on X.

Under these assumptions, the problem

minimize cTx

subject to inft>0

{
−t ln ε+ f0(x) +

∑d
i=1 t lnMi(fi(x)/t)

}
≤ 0

x ∈ X

is a convex, conservative approximation to CCPε. One way to show this is to set ψ(z) = ez

and apply the results in §3.2. It can also be shown more directly as follows. For any t > 0,
the chance constraint P {f(x, δ) ≤ 0} ≥ 1− ε can be written as

P

{
1

t

(
f0(x) +

d∑
i=1

δifi(x)

)
> 0

}
≤ ε
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or, equivalently, as

P

{
exp

(
1

t

(
f0(x) +

d∑
i=1

δifi(x)

))
> 1

}
≤ ε.

By Markov’s inequality,

P

{
exp

(
1

t

(
f0(x) +

d∑
i=1

δifi(x)

))
> 1

}
≤ E exp

(
1

t

(
f0(x) +

d∑
i=1

δifi(x)

))

= ef0(x)/t E
d∏
i=1

eδifi(x)/t

= ef0(x)/t
d∏
i=1

Mi (δifi(x)/t) ,

where the last line follows from the mutual independence of δ1, . . . , δd and the definition of
Mi. Therefore, the chance constraint holds if there exists a t > 0 such that

ef0(x)/t
d∏
i=1

Mi (δifi(x)/t) ≤ ε,

or, equivalently,

f0(x) + t
d∑
i=1

lnMi

(
1

t
δifi(x)

)
≤ t ln ε.

By a similar argument to the one mentioned in §3.2, we can sharpen this result to say that
the chance constraint holds if

inf
t>0

{
f0(x) + t

d∑
i=1

lnMi

(
1

t
δifi(x)

)
− t ln ε

}
≤ 0.

The convexity of this constraint can be established using an argument similar to that in
§3.2. It involves the perspective function and the convexity and monotonicity of logarithmic
moment generating functions.

Summarizing, a convex, conservative approximation to CCPε with f(x, δ) affine in δ is

minimize cTx

subject to inft>0

{
f0(x) + t

∑d
i=1 lnMi (δifi(x)/t)− t ln ε

}
≤ 0

x ∈ X.
(3.6)

The results in this section extend naturally to joint chance constraints.
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Chapter 4

Tractable robust convex programs

In this chapter, we consider the following special case of the general robust convex program:

minimize cTx
subject to Ax �K b for all (A, b) ∈ ∆.

(4.1)

Here the generalized inequality Ax �K b means that b−Ax ∈ K, where K ⊂ Rm is a proper
cone (i.e., K is a closed, convex cone with nonempty interior that contains no line.) See §2.4
of [1] for more on cones and generalized inequalities.

When the proper cone K is specified, problem (4.1) can be reduced to the canonical RCP
form of §1.1 by writing the generalized inequality as a system of scalar convex inequalities
and constraining the pointwise maximum of their left-hand sides. In order to derive tractable
robust convex programs, however, it is useful to retain the conic structure of problem (4.1).

In these notes, we consider only the case of K = Rm
+ , so that problem (4.1) is a robust

linear program. We enumerate the uncertainty sets ∆ that lead to tractable problems. The
approach generalizes, with some modifications, to robust second-order cone programs and
robust semidefinite programs (see chapters 6 and 8 of [5]).

4.1 Robust linear programs

In this section, we consider the case of K = Rm
+ , which gives the robust linear program

minimize cTx
subject to δTi x ≤ bi for all δi ∈ ∆i, i = 1, . . . ,m,

(RLP)

where b1, . . . , bm ∈ R are known, deterministic constants. (The results in this section can
be extended to the case of uncertain bi.) We are interested in forms of the uncertainty sets
∆i ⊆ Rn that generate tractable optimization problems. Loosely speaking, this requires that
the maximization problem generated by each robust constraint,

maximize δTi x
subject to δi ∈ ∆i,
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have a tractable dual. This holds in particular if each ∆i is defined by a set of linear
generalized inequalities:

∆i = {δi | Ciδi �Ki
di} ,

for some proper cone Ki and known, deterministic Ci ∈ Rli×n and di ∈ Rli .

4.1.1 Polyhedral uncertainty sets

A simple, solvable case of RLP involves polyhedral uncertainty sets:

∆i = {δi | Ciδi � di} .

(When applied to vectors, the symbol � without subscript denotes generalized inequality
with respect to the nonnegative orthant – in other words, componentwise inequality.) The
corresponding robust constraint is

sup
{
δTi x

∣∣ Ciδi � di
}
≤ bi.

An x ∈ Rn is feasible for this constraint if the optimal value of the following linear
program in δi is no larger than bi:

maximize xT δi
subject to Ciδi � di.

If ∆i is nonempty, then this problem is feasible, so strong duality implies that its optimal
value equals the optimal value of the dual linear program

minimize dTi λi
subject to CT

i λi = x
λi � 0,

with variable λi ∈ Rli . Therefore, x is feasible for the ith robust constraint if there exists a
λi � 0 satisfying CT

i λi = x and dTi λi ≤ bi.
We can write RLP with polyhedral uncertainty sets as

minimize cTx
subject to dTi λi ≤ bi, i = 1, . . . ,m

CT
i λi = di, i = 1, . . . ,m

λi � 0, i = 1, . . . ,m.

(4.2)

This problem remains a linear program, but the variable (x, λ1, . . . , λm) has dimension n+ l,
where l =

∑m
i=1 li. The robust constraint also introduces m inequality constraints, l equality

constraints, and l nonnegativity constraints.
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Figure 4.1: the ellipsoid {δ0i +Diu | ‖u‖2 ≤ ρi}. The matrix (ρiDi)
2 has eigenvalues λ1 and

λ2 and eigenvectors v1 and v2.

4.1.2 Ellipsoidal uncertainty sets

Another solvable case of RLP arises when the uncertainty sets are ellipsoids:

∆i =
{
δ0i +Diu

∣∣ ‖u‖2 ≤ ρi
}
.

Here the ellipsoid center is δ0i . Its size and shape are determined by the known, deterministic
scalar ρi > 0 and matrix Di. Without loss of generality, we can assume Di ∈ Sn+. The
ellipsoid ∆i in R2 is illustrated in figure 4.1.

The corresponding robust constraint is sup{δTi x | δi ∈ ∆i} ≤ bi or, equivalently,

xT δ0i + sup
{
xTDiu

∣∣ ‖u‖2 ≤ ρ
}
≤ bi.

An x ∈ Rn is feasible for this constraint if the optimal value of the following second-order
cone program in u is no larger than bi − xT δ0i :

maximize xTDiu
subject to ‖u‖2 ≤ ρ.

This problem maximizes a linear function over the Euclidean ball of radius ρ. The solution
is the longest feasible vector in the direction of DT

i x, which is u∗ = (ρ/
∥∥DT

i x
∥∥
2
)DT

i x. The

optimal value is ρ
∥∥DT

i x
∥∥
2
, so x is feasible for the ith robust constraint if ρ

∥∥DT
i x
∥∥
2
≤

bi − xT δ0i .
We can therefore write RLP with ellipsoidal uncertainty sets as

minimize cTx
subject to (δ0i )

Tx+ ρ
∥∥DT

i x
∥∥
2
≤ bi, i = 1, . . . ,m.

(4.3)

Unlike the polyhedral case, this problem has the same dimension as the original RLP. How-
ever, the ellipsoidal uncertainty sets promote the robust linear program to a second-order
cone program, which is generally more costly to solve.
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4.1.3 Generalization

The argument in §4.1.1-4.1.2 can be generalized to accommodate uncertainty sets of the form

∆i = {δi | Ciδi �Ki
di} ,

where Ki is a proper cone and Ci ∈ Rli×n and di ∈ Rli are known.
To see this, we note that x is feasible for the constraint

δTi x ≤ bi for all δi ∈ ∆i

if and only if the optimal value of the problem

minimize xT δi
subject to Ciδi �Ki

di

is no larger than bi. Assuming strong duality holds, an equivalent condition is that the
optimal value of the dual

maximize −dTi λi
subject to CT

i λi + x = 0
λi ∈ K∗i

is no larger than bi. (Here K∗i =
{
y
∣∣ xTy ≥ 0 for all x ∈ K

}
is the dual cone of K.) This

holds if and only if there exists a λi ∈ K∗i satisfying −dTi λi ≤ bi and CT
i λi + x = 0.

Therefore, the robust LP with uncertainty sets defined by general conic inequalities is
equivalent to

minimize cTx
subject to −dTi λi ≤ bi, i = 1, . . . ,m

CT
i λi + x = 0, i = 1, . . . ,m

λi ∈ K∗i , i = 1, . . . ,m.

(4.4)

Here the optimization variable (x, λ1, . . . , λm) has dimension n + l, where l =
∑m

i=1 li. The
m robust constraints have been reduced to m inequality constraints, l equality constraints,
and l cone constraints.

It is easy to see that problem (4.4) reduces to problem (4.2) when Ki = Rli
+, i = 1, . . . ,m.

Problem (4.4) also reduces to problem (4.3) when Ki =, i = 1, . . . ,m. To see this, recall
that ∥∥DT

i x
∥∥
2
≤ (1/ρ)(−(δ0i )

Tx+ bi) ⇐⇒
[

DT
i x

−(δ0i )
Tx+ b

]
∈ SOn+1,

where SOn+1 is the second-order cone in Rn+1.
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Chapter 5

Affine policies for stochastic linear
programs

In this chapter, we consider the following situation. Given some matrices A, B, and C, we
must decide a function x (also called a policy or decision rule). At some point in the future,
an uncertain parameter δ will be revealed. At that time, we will incur a cost δTCTx(δ). Our
goal is to minimize the expected value of this cost, subject to the constraint that our policy
x must satisfy Ax(δ) � Bδ almost surely.

Formally, we consider the single-stage stochastic linear program

minimize E δTCTx(δ)

subject to
Ax(δ) + s(δ) = Bδ
s(δ) � 0

}
P-a.s.

(SP)

The optimization variables are x ∈ L2
k,n and s ∈ L2

k,m, where L2
r,s denotes the space of

Borel-measurable, square-integrable functions from Rr to Rs. The notation “P-a.s.” means
“almost surely under the probability measure P.” The matrices A ∈ Rm×n, B ∈ Rm×k, and
C ∈ Rn×k are known exactly. The uncertain parameter δ ∈ Rk has support

∆ = {δ | Wδ � h} ,

where

W =

 eT1
−eT1
Ŵ

 ∈ Rl×k, h =

 1
−1
0

 ∈ Rl,

for some Ŵ ∈ R(l−2)×k. In other words, any δ ∈ ∆ satisfies δ1 = 1 and Ŵ δ � 0.
Problem SP is intractable in general. In fact, even if δ is uniformly distributed on the

unit hypercube, problem SP is known to be #P-hard (meaning, loosely speaking, that it
is at least as hard as any problem in NP.) Therefore, in §5.1, we will derive a tractable
approximation of problem SP by restricting attention to policies that are affine in δ. In §5.2,
we will employ similar methods to derive a bound on the suboptimality of our approximate
solutions.
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To facilitate these approximations, we assume

A1. ∆ is nonempty and bounded, and

A2. ∆ spans Rk.

Assumption A1 will allow us to apply linear programming strong duality in §5.1. Assumption
A2 guarantees that the moment matrix

M = E δδT

is positive definite (hence invertible). To see this, first note that M is positive semidefinite:
For any v,

vTMv = E vT δδTv = E(vT δ)2 ≥ 0.

To see that M is also positive definite, suppose that v 6= 0. Then vTMv = 0 only if vT δ = 0
for all δ ∈ ∆. But ∆ spans Rk by assumption A2, so this can hold only if v = 0, a
contradiction. Thus, vTMv > 0 for all v 6= 0.

5.1 Primal affine approximation

In this section, we develop a method for solving problem SP approximately. We restrict
attention to linear policies x(δ) = Xδ and s(δ) = Sδ, for some X ∈ Rn×k and S ∈ Rm×k.
Since δ1 = 1 with probability one for any δ ∈ ∆, a linear policy in δ is actually affine in the
truly uncertain parameters δ2, . . . , δk. Hence the title of this section.

With the restriction to linear policies, we can simplify the objective function of problem
SP, and derive tractable reformulations of its constraints. The objective function becomes

E δTCTx(δ) = E δTCTXδ

= E tr(δTCTXδ)

= E tr(δδTCTX)

= tr(MCTX).

Since linear functions are continuous, the equality constraint

Ax(δ) + s(δ) = Bδ P-a.s. (5.1)

is equivalent to
AXδ + Sδ = Bδ for all δ ∈ ∆

⇐⇒ (AX + S −B)δ = 0 for all δ ∈ ∆.

But ∆ spans Rk by assumption A2, so this holds if and only if

AX + S = B. (5.2)

23



This is a finite-dimensional reformulation of the original equality constraint (5.1), with x(·)
and s(·) restricted to be linear functions.

Similarly, linearity (hence continuity) of s implies that the inequality constraint

s(δ) � 0 P-a.s. (5.3)

is equivalent to
sTi δ ≥ 0 for all δ ∈ ∆, i = 1, . . . ,m,

where S =
[
s1 · · · sm

]T
. But by definition of ∆, the constraint sTi δ ≥ 0 for all δ ∈ ∆

holds if and only if the optimal value of the linear program

minimize sTi δ
subject to Wδ � h

is nonnegative. The dual of this linear program is

maximize hTλi
subject to W Tλi = si

λi � 0.

Since ∆ is nonempty and bounded by assumption A1, strong duality implies that sTi δ ≥ 0
for all δ ∈ ∆ if and only if there exists a λi ∈ Rl

+ such that W Tλi = si and hTλi ≥ 0.
Applying this result for each i = 1, . . . ,m, the constraint (5.3) holds if and only if there

exist λ1, . . . , λm ∈ Rl such that

λTi W = sTi , i = 1, . . . ,m

λTi h ≥ 0, i = 1, . . . ,m

λi � 0, i = 1, . . . ,m.

This system can be written more compactly by introducing a matrix Λ =
[
λ1 · · · λm

]T
.

With this notation, the constraint (5.3) holds if and only if there exists a Λ ∈ Rm×l such
that

ΛW = S

Λh � 0

Λij ≥ 0, i = 1, . . . ,m, j = 1, . . . , l.

Collecting our objective function and constraint reformulations, we have the following
primal linear approximation of problem SP:

minimize tr(MCTX)
subject to AX + ΛW = B

Λh � 0
Λij ≥ 0, i = 1, . . . ,m, j = 1, . . . , l.

(SPu)

This is a finite-dimensional, deterministic linear program with optimization variables X ∈
Rn×k and Λ ∈ Rm×l. Because we have reduced the search space from square-integrable
functions to linear functions, the optimal value of problem SPu is an upper bound on the
optimal value of problem SP.
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5.2 Dual affine approximation

In §5.1, we derived a primal approximation to the single-stage stochastic program SP. The
derivation involved constructing an inner approximation of the SP feasible region by re-
stricting the search space from square integrable functions to linear ones. The resulting
approximation provides an upper bound on the optimal value of SP. Because the primal lin-
ear approximation is tractable, it also provides a means of generating solutions to SP that,
while suboptimal, might be quite good.

In this section, we develop a means of quantifying how good the primal linear approx-
imate solutions are. This involves constructing a lower bound on the SP optimal value by
dualizing its equality constraints and imposing another linearity restriction. Once we have
derived a lower bound, we can compare it to the upper bound from the primal linear ap-
proximation. The difference between the upper and lower bounds is itself an upper bound
on the suboptimality of the primal linear approximate solutions.

We begin by dualizing the equality constraints in problem SP, giving the equivalent
reformulation

minimize E
[
δTCTx(δ)

]
+ supy∈L2k,m

{
E
[
y(δ)T (Ax(δ) + s(δ)−Bδ)

]}
subject to s(δ) � 0 P-a.s..

(5.4)

Here the equivalence follows from the fact that with probability one, the supremum over y
yields zero whenever Ax(δ) + s(δ) = Bδ, and +∞ otherwise.

We seek a tractable problem whose optimal value lower bounds the optimal value of
problem (5.4). To that end, we note that

sup
y∈L2k,m

{
E
[
y(δ)T (Ax(δ) + s(δ)−Bδ)

]}
≥ sup

Y ∈Rm×k

{
E
[
δTY T (Ax(δ) + s(δ)−Bδ)

]}
. (5.5)

In other words, the optimal value of problem (5.4) cannot increase when the dual search
space is restricted from square-integrable functions y to linear functions y(δ) = Y δ.

The right-hand side of inequality (5.5) can be simplified:

E
[
δTY T (Ax(δ) + s(δ)−Bδ)

]
= E

[
tr
(
δTY T (Ax(δ) + s(δ)−Bδ)

)]
= tr

(
Y T E

[
(Ax(δ) + s(δ)−Bδ) δT

])
Therefore, the optimal value of problem SP cannot be less than the optimal value of the
problem

minimize E
[
δTCTx(δ)

]
+ supY ∈Rm×k

{
tr
(
Y T E

[
(Ax(δ) + s(δ)−Bδ) δT

])}
subject to s(δ) � 0 P-a.s.

(5.6)

The supremum in problem (5.6) yields zero whenever E
[
(Ax(δ) + s(δ)−Bδ) δT

]
= 0 and

yields +∞ otherwise. Therefore, we can replace the supremum with the constraint

E
[
(Ax(δ) + s(δ)−Bδ) δT

]
= 0

⇐⇒ AEx(δ)δT + E s(δ)δT = BM,
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where the equivalence follows from the linearity of expectation and the definition of the
moment matrix M .

Recall that x : Rk → Rn and s : Rk → Rm are general square-integrable functions. We
therefore have no clean expressions for the terms Ex(δ)δT and E s(δ)δT . However, let us
change variables to matrices X ∈ Rn×k and S ∈ Rm×k, defined such that

XM = Ex(δ)δT

SM = E s(δ)δT .

We have shown that M is positive definite (hence invertible), so the matrices X and S can
be uniquely determined from the functions x and s.

With this change of variables, the constraint AEx(δ)δT + E s(δ)δT = BM is equivalent
to (AX + S −B)M = 0. Since M is invertible, this holds if and only if

AX + S = B.

Given XM = Ex(δ)δT , we also have that

E δTCTx(δ) = tr
(
CT Ex(δ)δT

)
= tr(CTXM).

Therefore, an equivalent reformulation of problem (5.6) is

minimize tr(MCTX)
subject to AX + S = B

∃ x ∈ L2
k,n s.t. XM = Ex(δ)δT

∃ s ∈ L2
k,m s.t. SM = E s(δ)δT and s(δ) � 0

}
P-a.s.

(5.7)

Problem (5.7) is still intractable due to the second and third constraints. However,
the second constraint is redundant and can be deleted. To see this, note that given any
X ∈ Rn×k, we can produce an x ∈ L2

k,n with XM = Ex(δ)δT by setting x(δ) = Xδ. The
third constraint can be replaced by

(W − heT1 )MST � 0.

A proof of this fact can be found in §2.4 of [6].
Thus, the optimal value of the problem

minimize tr(MCTX)
subject to AX + S = B

((W − heT1 )MST )ij ≥ 0, i = 1, . . . , l, j = 1, . . . ,m.
(5.8)

lower bounds the optimal value of problem SP. Like the primal linear approximation problem
SPu, the dual linear approximation problem SPl is a finite-dimensional linear program with
optimization variables X ∈ Rn×k and S ∈ Rm×k.

The primal and dual linear approximations give the following method for solving problem
SP approximately and bounding the suboptimality gap.
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1. Compute a solution (Xu, Su) to the primal linear approximation SPu.

2. Compute a solution (X l, Sl) to the dual linear approximation SPl.

3. Observe that

tr
(
MCTXu

)
− E δTCTx∗(δ) ≤ tr

(
MCT

(
Xu −X l

))
,

where x∗ ∈ L2
k,n is the optimal value of problem SP.

5.3 Example: a two-stage stochastic linear program

We consider the problem

minimize cTx+ E δTDTy(δ)

subject to
Axx+ Ayy(δ) + s(δ) = Bδ
s(δ) � 0

}
P-a.s.

(5.9)

Here we must decide both the vector x ∈ Rnx and the policy y ∈ L2
k.ny

. At some point in

the future, we will realize δ and incur cost cTx + δTDy(δ). Our goal is to choose x and y
to minimize this cost, subject to the constraint that Axx+Ayy(δ) � Bδ almost surely. The
problem data are Ax ∈ Rm×nx , Ay ∈ Rm×ny , B ∈ Rm×k, c ∈ Rnx , and D ∈ Rny×k, as well

as Ŵ ∈ R(l−2)×k, which defines the support ∆ of δ, and the moment matrix M ∈ Sk++.
The primal affine approximation of this problem is

minimize cTx+ tr(MDTY )
subject to Axxe

T
1 + AyY + ΛW = B

Λh � 0
Λij ≥ 0, i = 1, . . . ,m, j = 1, . . . , l,

(5.10)

with variables x ∈ Rnx , Y ∈ Rny×k, and Λ ∈ Rm×l. The dual affine approximation is

minimize cTx+ tr(MDTY )
subject to Axxe

T
1 + AyY + S = B

((W − heT1 )MST )ij ≥ 0, i = 1, . . . , l, j = 1, . . . ,m.
(5.11)

with variables x ∈ Rnx , Y ∈ Rny×k, and S ∈ Rm×k.
We will compare the affine policy to a simple approximation method called sample average

approximation. In this method, we generate the independent samples δ1, . . . , δN from the
distribution of δ, then solve the problem

minimize cTx+ (1/N)
∑N

i=1 δ
T
i D

Tyi
subject to Axx+ Ayyi � Bδi, i = 1, . . . , N.

(5.12)

Here the variables are x ∈ Rnx and y1, . . . , yN ∈ Rny . With probability one, the true
realization of δ will not equal any of the samples δi, so implementing the sample average
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Figure 5.1: feasible region (black) and cost vector (c,Dδ) = (1,−(1 + δ2)) (red) for δ2 = 0
(left) and δ2 = 1/2 (right). Different values of δ2 give different optimal vertices.

approximation policy requires interpolation. For large N , the optimal value of the sample
average approximation approaches the optimal value of the true problem (5.9). The sample
average approximation policy is much more costly to compute than the affine policies, how-
ever. Problem (5.12) has nx+Nny variables and mN constraints, compared to nx+kny+ml
variables and l + m + lm constraints in problem (5.10) and nx + kny + km variables and
lm+m constraints in problem (5.11).

5.3.1 Problem instance

We consider a simple problem instance with k = 2 and δ uniformly distributed on ∆ =
{δ | δ1 = 1, 0 ≤ δ2 ≤ 1}, so that l = 4 and

Ŵ =

[
0 1
1 −1

]
, M =

[
1 1/2

1/2 1/3

]
.

The dimensions are nx = ny = 1, with constraint matrices

Ax =

−1
0
−2

 , Ay =

0
1
1

 , B =

0 0
2 0
1 1

 ,
giving the feasible region{

(x, y) ∈ R× L2
2,1

∣∣ x ≥ 0, y(δ) ≤ max
{

2,1T δ + 2x
}

P-a.s.
}
.

We consider costs c = 1 and D = −1T . Figure 5.1 shows the problem geometry for two
fixed values of the uncertain parameter δ2. Figure 5.2 shows the optimal values of the
approximation problems. Figure 5.3 shows a histogram of the costs incurred by each policy,
over 100,000 Monte Carlo simulations.
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Figure 5.2: for large N , the optimal value of the sample average approximation problem
(5.12) (red) approaches the optimal value of the true problem (5.9), which lies between the
primal and dual affine approximations.
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Figure 5.3: cost histogram of the three policies over 100,000 Monte Carlo runs. In the
sample average policy, we compute y(δ) by linearly interpolating the solutions y1, . . . , yN
corresponding to the samples δ1, . . . , δN .
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