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Chapter 1

Introduction

1.1 Notation

1.1.1 Vectors and scalars

Let R be the set of real numbers and N = {1, 2, 3, . . .} be the set of natural numbers. For any
n ∈ N, we denote the set of real n-dimensional column vectors by Rn. We indicate vectors
with bold font. For vectors x ∈ Rn and y ∈ Rm, we write (x,y) to indicate the column
vector in Rn+m obtained by stacking x above y:

(x,y) =

[
x
y

]
.

This notation extends to any finite list of elements. In particular, we represent a vector
x ∈ Rn with components x1, . . . , xn ∈ R with any of the following, interchangeably:

x = (x1, . . . , xn) =

x1...
xn

 =
[
x1 . . . xn

]>
.

1.1.2 Random vectors and variables

We indicate random variables and random vectors with capital letters. With some abuse
of notation1, we write X ∈ Rn to mean that X is a real n-dimensional random vector with
components X1, . . . , Xn. We indicate particular realizations of X by x, and of Xi by xi.
Nonbold capital letters may represent sets, matrices, or scalar random variables. When not
clear from context, the precise meaning will be made clear in the text.

In Monte Carlo simulation, we often consider samples from the distribution of a random
vector X. We denote such samples by X1,X2, . . . . The notation Xi, which indicates the ith

sample (a random vector), should not be confused with Xi, which indicates the ith component
of X. When necessary, we indicate the jth component of Xi ∈ Rn by (Xi)j.

1To be precise, an n-dimensional random vector is a function from a sample space Ω to Rn.

3



1.1.3 Functions

We use nonstandard notation for functions. Traditionally, a function f that maps real n-
dimensional vectors into real scalars is written f : D → R, where D ⊆ Rn is the domain
of f . Instead of this notation, we write f : Rn → R to declare the input-output syntax
of f , with the understanding that f may not be defined on all of Rn. When necessary, we
indicate the domain of f by dom f . We indicate vector-valued functions with bold font, e.g.,
f : Rn → Rm.

When discussing algorithms’ performance, we occasionally use ‘big O’ notation. For
functions f, g : R → R, we say that f is big O of g as x → ∞, denoted f(x) = O(g(x)), if
there exist some constants M > 0 and x0 ∈ R such that

|f(x)| ≤M |g(x)| for all x ≥ x0.

Put another way (and assuming g(x) 6= 0 for all sufficiently large x), f(x) = O(g(x))
as x → ∞ if the ratio |f(x)/g(x)| remains bounded as x → ∞. Similarly, we say that
f(x) = O(g(x)) as x→ a ∈ R if there exists some constants M, δ > 0 such that

|x− a| < δ =⇒ |f(x)| ≤M |g(x)| .

1.1.4 Probability, expectation, variance, and covariance

We denote the probability of an event A by PA. For example, the probability that a random
variable X exceeds a threshold x is written P {X > x}. We denote expectation by E. For a
random variable X ∈ R, the variance of X is

VarX := E[X − EX]2 = EX2 − E[X]2.

Here the symbol := means ‘is defined as.’ The covariance between random variables X and
Y is

Cov(X, Y ) := E[(X − EX)(Y − EY )],

so Cov(Y,X) = Cov(X, Y ) and Cov(X,X) = VarX. The correlation between X and Y is

ρ :=
Cov(X, Y )√
VarX VarY

.

For a random vector X = (X1, . . . , Xn) ∈ Rn, we define the n× n covariance matrix

Cov X := E
[
(X− EX)(X− EX)>

]
=


VarX1 Cov(X1, X2) . . . Cov(X1, Xn)

Cov(X2, X1) VarX2 . . . Cov(X2, Xn)
...

. . .
...

Cov(Xn, X1) Cov(Xn, X2) . . . VarXn

 .
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Since Cov(Xj, Xi) = Cov(Xi, Xj), Cov X is symmetric for any X. The covariance between
random vectors X ∈ Rn and Y ∈ Rm is the n×m matrix

Cov(X,Y) := E[(X− EX)(Y − EY)>]

=

Cov(X1, Y1) . . . Cov(X1, Ym)
...

. . .
...

Cov(Xn, Y1) . . . Cov(Xn, Ym)

 ,
so Cov(Y,X) = Cov(X,Y)> and Cov(X,X) = Cov X.

1.2 The basic problem

We consider the problem of estimating a parameter

θ := Eh(X).

Here X is a random vector in Rm and h : Rm → R. The random variables X1, . . . , Xm

may be continuous, discrete, or mixed. They can represent static quantities, or they may
be the values of some stochastic processes over time. The dimension m could be very large.
The function h may be nonlinear, nonsmooth, or not even analytically representable. For
example, h could be the indicator function IA : Rm → R of some bizarre set A ⊂ Rm, in
which case θ = E IA(X) = P {X ∈ A}. We assume only that E |h(X)| and Varh(X) are
finite.

In principle, the parameter θ could be computed analytically or by deterministic methods
for numerical integration. If X is continuous with probability density function (pdf) f defined
on all of Rm, for example, then the expected value of h(X) is the multiple integral

Eh(X) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

h(x)f(x)dx1 · · · dxm.

In practice, however, this multiple integral is usually too complex to evaluate analytically.
Furthermore, the computational costs of deterministic methods for numerical integration
typically increase exponentially quickly with the dimension m of X. By contrast, Monte
Carlo methods for computing Eh(X) converge at a rate that is independent of m. This
makes Monte Carlo methods attractive tools for complex, high-dimensional systems.

1.3 The Monte Carlo framework

Rather than computing expectation integrals analytically or by deterministic numerical
methods, Monte Carlo methods generate independent, identically distributed (iid) random
samples X1, . . . ,Xn from the distribution of X and estimate Eh(X) by the corresponding
sample average,

θ̄n :=
1

n

n∑
i=1

h (Xi) .
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1.3.1 Statistical properties of Monte Carlo estimators

Since X1, . . . ,Xn have the same distribution as X, the sample average θ̄n is an unbiased
estimator of θ:

E θ̄n =
1

n

n∑
i=1

Eh (Xi) =
nEh(X)

n
= θ.

We assume that E |h(X)| <∞, so the strong Law of Large Numbers implies that θ̄n is also
a consistent estimator of θ:

θ̄n → θ almost surely as n→∞.

We also assume that
σ2 := Varh(X) <∞,

so h(X1), h(X2), . . . is a sequence of iid random variables with finite mean θ and finite
variance σ2. Therefore, the Central Limit Theorem gives the asymptotic distribution of θ̄n:

√
n(θ̄n − θ)

σ
⇒ N (0, 1) as n→∞. (1.1)

Here ⇒ denotes convergence in distribution and N (0, 1) is a standard normal random vari-
able.

1.3.2 Selecting a sample size

How big must our sample be before we can be confident that our Monte Carlo estimator is
accurate? To make the question precise, let’s define a confidence level2 α ∈ (0, 1) and an
error tolerance ε > 0. With these definitions, a precise statement of our goal is: Find a value
of n for which

P
{∣∣θ̄n − θ∣∣ ≤ ε

}
= 1− α.

The Central Limit Theorem (1.1) gives us an approximate3 answer. Because
√
n(θ̄n−θ)/σ

is asymptotically distributed as a standard normal random variable, for large n we have

P
{∣∣θ̄n − θ∣∣ ≤ ε

}
= P

{∣∣∣∣√n(θ̄n − θ)
σ

∣∣∣∣ ≤ √nεσ
}

≈ P
{
|N (0, 1)| ≤

√
nε

σ

}
= P

{
N (0, 1) ≤

√
nε

σ

}
− P

{
N (0, 1) ≤ −

√
nε

σ

}
= 2P

{
N (0, 1) ≤

√
nε

σ

}
− 1,

2Typical values of α are 0.05 and 0.01.
3It’s approximate because the Central Limit Theorem only gives the asymptotic distribution of θ̄n in the

limit of large n. How large must n be before θ̄n starts to ‘look normal’? It depends on ‘how normal’ the
distribution of h(X) is, but the typical rule of thumb is that n should be at least 30.
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where the last line follows by symmetry and normalization of the standard normal pdf.
To guarantee that P

{∣∣θ̄n − θ∣∣ ≤ ε
}
≈ 1− α, therefore, we should choose n such that

2P
{
N (0, 1) ≤

√
nε

σ

}
− 1 = 1− α,

⇐⇒ Φ

(√
nε

σ

)
= 1− α/2,

where Φ is the standard normal cumulative distribution function (cdf). With the definition

z1−α/2 := Φ−1(1− α/2),

the required sample size is

n =
(σz1−α/2

ε

)2
.

In practice, we usually don’t know the variance σ2 of h(X). It can be estimated, however,
by the sample variance

σ̄2
n :=

1

n− 1

n∑
i=1

(h (Xi)− θ̄n)2.

The sample variance is an unbiased and consistent estimator of σ2. By the Converging
Together Theorem, therefore, we can replace σ by σ̄n in the Central Limit Theorem:

√
n(θ̄n − θ)
σ̄n

⇒ N (0, 1) as n→∞. (1.2)

This gives a two-stage procedure for deciding how large a sample size to use:

1. Choose a pilot sample size n0 (say, 50 or 100), generate X1, . . . ,Xn0 iid from the
distribution of X, and estimate σ by σ̄n0 .

2. Set n = (σ̄n0z1−α/2/ε)
2.

1.3.3 Constructing confidence intervals

In the previous section, we asked,

Given α and ε, what sample size n ∈ N is required to be 100(1− α)% confident
that θ lies in the interval [θ̄n − ε, θ̄n + ε]?

A closely related question is,

Given α and n, for what error tolerance ε > 0 can we be 100(1− α)% confident
that θ lies in the interval [θ̄n − ε, θ̄n + ε]?

By the same reasoning applied in §1.3.2, the answer to the second question is

ε =
σz1−α/2√

n
.

Because σ is usually unknown, we replace σ by σ̄n when constructing confidence intervals.
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1.3.4 The Monte Carlo algorithm

Algorithm 1 (Monte Carlo estimation of θ = Eh(X)). Given confidence level α ∈ (0, 1)
and sample size n ∈ N:

1. generate X1, . . . ,Xn iid from the distribution of X

2. estimate θ = Eh(X) and σ2 = Varh(X) by

θ̄n =
1

n

n∑
i=1

h (Xi) , σ̄2
n =

1

n− 1

n∑
i=1

(h (Xi)− θ̄n)2

3. conclude with approximately 100(1− α)% confidence that

θ ∈
[
θ̄n −

σ̄nz1−α/2√
n

, θ̄n +
σ̄nz1−α/2√

n

]

1.3.5 Convergence rate

The confidence interval half-width ε = σz1−α/2/
√
n gives a measure of the Monte Carlo

convergence rate. For fixed α, ε is directly proportional to the standard deviation σ of h(X),
meaning that Monte Carlo simulation works better on problems with less variability.

The confidence interval half-width also decreases as n → ∞, but only at the rate of
O(1/

√
n). Put another way, the sample size required to achieve a confidence interval half-

width ε is O(1/ε2) as ε → 0. This is slow : Suppose we have achieved a confidence interval
half-width ε1 using a sample size n1, and we’d like to reduce the confidence interval half-width
to ε2 = ε1/10. The sample size n2 required to achieve this reduction satisfies

n2

n1

≈ 1/ε22
1/ε21

=

(
ε1
ε2

)2

= 100.

In other words, for every order of magnitude decrease in estimation error, we must increase
the sample size by two orders of magnitude. By contrast, most deterministic numerical
methods, e.g., for integration or optimization, are O(1/

√
ε) or faster. But as discussed in

§1.2, the Monte Carlo convergence rate is the same regardless of the dimension of X.

1.3.6 What’s hard about Monte Carlo simulation?

The Monte Carlo algorithm 1 seems simple to implement, and it often is. This is one of the
nice things about Monte Carlo simulation. However, there are two sticking points:
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1. How can we generate the random samples X1, . . . ,Xn from the distribution of X?

2. As discussed in §1.3.5, the Monte Carlo convergence rate of O(1/
√
n) is slow. How can

it be improved?

We discuss the first question in Chapter 2, and the second question in Chapter 3. Chapter
4 covers methods for gradient estimation, also known as sensitivity analysis.
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Chapter 2

Generating random variables

In order to implement the Monte Carlo algorithm 1, we need to be able to generate iid
samples from the distribution of X. Computers (at least today’s non-quantum variety) are
fundamentally deterministic machines. So how can we generate random numbers in software?

This question is the focus of this chapter. The answer: First, we use a deterministic
algorithm to generate a stream of numbers between zero and one that ‘look like’ iid Uni(0, 1)
random variables (see §2.1). Then we (again deterministically) transform these numbers into
sequences that ‘look like’ iid realizations of X1, . . . ,Xn (see §2.2).

2.1 Uniform random variables

The goal of uniform random number generation is to produce a stream of numbers u1, u2, . . .
that ‘looks like’ a sequence of iid Uni(0, 1) random variables. Most uniform random number
generators are based on the deterministic linear recurrence

xi = (a1xi−1 + · · ·+ akxi−k) mod m. (2.1)

Here xi := (xi−k+1, . . . , xi) ∈ S is the state of the random number generator at stage i and
S ⊂ Rk is the state space. The initial state x0 is called the seed of the random number
generator. The order k ∈ N, modulus m ∈ N, and coefficients a1, . . . , ak ∈ R are chosen by
the generator designer.

The ‘modulo’ operation a mod b is the remainder after dividing a by b. A basic fact
of modular arithmetic is that a mod b ∈ [0, b) for any a ∈ R. Therefore, xi ∈ [0,m) for
all i, so we set ui = xi/m ∈ [0, 1). Algorithms that use uniform random generators to
generate nonuniform random numbers often require ui to be strictly greater than zero, so it
is customary to modify the mapping from xi to ui slightly so that ui 6= 0.

Because computers represent real numbers only to finite precision, the state space S is
necessarily a finite set. Therefore, there must exist integers ` ≥ 0 and j ∈ (0, |S|] such that
x`+j = x`. Since the recurrence (2.1) is deterministic, the stream of states is periodic: For
all i ≥ `, xi+j = xi and ui+j = ui. The smallest j for which this holds is called the period
of the random number generator. A sequence of truly iid Uni(0, 1) random variables would
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not be periodic, so good random number generators have very long periods. It can be shown
that when the modulus m is a prime number, the coefficients a1, . . . , ak can be chosen such
that the period is mk − 1, the longest possible. A typical choice of m is 231 − 1, the largest
prime number representable on a 32-bit machine.

Most software packages have built-in random number generators, so we discuss this topic
no further except to state some desirable properties. Ideally, a uniform random number
generator should

1. have a very long period,

2. be fast and use little memory,

3. be able to generate the same sequence of numbers, repeatably (so that, for example,
different simulation algorithms can be compared under the same input samples), and

4. be able to jump ahead efficiently (so that, for example, the random number stream
can be broken into substreams that can be passed to processors running in parallel).

2.2 Nonuniform random variables

2.2.1 Inversion

Algorithm 2 (Generating X from cdf F by inversion). Given inverse cdf F−1 such
that F−1(u) = inf {x | F (x) ≥ u}:

1. generate U ∼ Uni(0, 1)

2. set X = F−1(U)

Why does inversion work?

For continuous X, the cdf of the returned variable, evaluated at any x ∈ R, is

P
{
F−1(U) ≤ x

}
= P {U ≤ F (x)} = F (x).

The first equality follows from the fact that F−1 is nondecreasing. The second follows from
the facts that F (x) ∈ [0, 1] for all x ∈ R, and that P {U ≤ u} = u for U ∼ Uni(0, 1) and
u ∈ [0, 1].

The proof also works for discrete or mixed X, provided we define

F−1(u) = inf {x | F (x) ≥ u} .

(The infimum is attained since Fx is right-continuous.) With this definition, it is not hard
to show that F−1(U) ≤ x if and only if U ≤ F (x), so the above proof works.
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Computing F−1

If X is continuous, then we can (in principle, at least) compute F−1 by solving the equation
F (F−1(x)) = x for x. For example, if X ∼ Exp(λ), then F (x) = 1− e−λx, and

F (F−1(x)) = x ⇐⇒ 1− e−λF−1(x) = x ⇐⇒ F−1(x) = −1

λ
ln(1− x).

For some continuous distributions, such as the normal distribution, an analytical expression
for F−1 cannot be found. In these cases, F−1(U) can be numerically approximated.

If X is discrete, then F−1 typically cannot be computed analytically. One exception is
the geometric distribution: If X ∼ Geo(p), then for u ∈ (0, 1),

F−1(u) =

⌈
ln(1− u)

ln(1− p)

⌉
.

2.2.2 Acceptance/rejection

Suppose X is continuous with pdf f , and that we can sample from a distribution g. If there
exists a constant c such that sup {f(x)/g(x) | x ∈ dom f} ≤ c, then we can generate samples
from f by acceptance/rejection.

Algorithm 3 (Generating X from pdf f by acceptance/rejection). Given pdf g and
constant c such that sup {f(x)/g(x) | x ∈ dom f} ≤ c:

1. generate Y ∼ g

2. generate U ∼ Uni(0, 1)

3. if U ≤ f(Y )/cg(Y ), set X = Y ; otherwise, go to step 1

The expected number of iterations before Y is accepted is exactly c, so g should be chosen
to make c is as close to one as possible.

Algorithm 4 (Generating X from pmf p by acceptance/rejection). Given pmf q and
constant c such that p(xi)/g(xi) ≤ c for all i:

1. generate Y ∼ q

2. generate U ∼ Uni(0, 1)

3. if U ≤ p(Y )/cq(Y ), set X = Y ; otherwise, go to step 1

12



Chapter 3

Improving the Monte Carlo algorithm

3.1 Comparing estimation algorithms

Suppose we have two candidate algorithms for estimating θ. Which algorithm is better? To
answer this question, we need a way to quantify each algorithm’s performance. Intuitively,
this performance metric should include both how much computational effort the algorithm
requires, and how good of an estimator it produces. If we take the former to be the algo-
rithm’s cost and the latter to be its benefit, then it is reasonable to prefer the algorithm with
the smaller cost/benefit ratio.

Definition 1 (Cost and benefit). For α ∈ (0, 1) and εα > 0, let A be an algorithm that
produces an unbiased estimator θ̂ of θ such that with approximately 100(1−α)% confidence,

θ ∈
[
θ̂ − εα, θ̂ + εα

]
.

The cost of A is the time required to compute θ̂. The benefit of A is (z1−α/2/εα)2.

Why do we choose this definition of benefit? The definition includes z1−α/2 so that the
benefit ofA is independent of the confidence level α. The benefit being inversely proportional
to εα makes sense: A useless estimator (εα →∞) gives zero benefit, and the benefit increases
monotonically as the estimator gets better (εα → 0). We square the ratio z1−α/2/εα in order
to get a simple expression for the cost/benefit ratio of the Monte Carlo algorithm 1.

3.1.1 Cost/benefit ratio of the Monte Carlo algorithm

The Monte Carlo algorithm 1 produces an estimator of θ = Eh(X) by generating samples
X1, . . . ,Xn from the distribution of X, then computing θ̄n = (h(X1)+ · · ·+h(Xn))/n. What
is the cost/benefit ratio of this algorithm?

Let t be the time required to generate X1 from the distribution of X and compute h(X1).
In general, these operations are much more computationally expensive than the simple arith-
metic operations required to compute θ̄n and σ̄n from h(X1), . . . , h(Xn). Therefore, the cost
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of algorithm 1 is approximately nt. The 100(1−α)% confidence interval half-width associated
with θ̄n is

εα =
σz1−α/2√

n
,

so the benefit of algorithm 1 is n/σ2. The approximate cost/benefit ratio is

nt

n/σ2
= tσ2.

This simple expression – the product of the single-sample computation time and the variance
constant – is the standard metric for comparing Monte Carlo algorithms.

3.1.2 Goal of this chapter

The goal of this chapter is to reduce the cost/benefit ratio of Monte Carlo algorithm 1. We
discuss five methods that aim to accomplish this by reducing the estimator variance without
unduly increasing computation time. The methods cleverly construct a new random variable
Y such that Y 6= h(X) but EY = θ. For example, Y can be computed by applying some
function f : Rm → R to X, where f 6= h but E f(X) = Eh(X). Or, Y can be another
function g : Rd → R of some other random vector Z ∈ Rd. In either case, we require the
estimator

θ̂n :=
1

n

n∑
i=1

Yi

to be asymptotically distributed according to

√
n(θ̂n − θ)
σy

⇒ N (0, 1) as n→∞

for some variance constant σ2
y . We want to choose Y such that the cost/benefit ratio of

estimating θ by θ̂n is smaller than that of estimating θ by θ̄n. In other words, we want

tyσ
2
y < tσ2,

where ty is the time required to generate one sample from the distribution of Y .

3.2 Conditional Monte Carlo

Suppose we discover some random vector Z ∈ Rd such that

1. it is easy to generate samples from the distribution of Z, and

2. we can compute E [h(X) | Z = z] exactly for any realization z of Z.
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Can we use this new information to reduce the cost/benefit ratio of the Monte Carlo algo-
rithm 1?

Conditional Monte Carlo methods do exactly that. The basic idea is to use iterated
expectation:

Eh(X) = E [E [h(X) | Z]] .

Here the inner expectation is taken with respect to the conditional distribution of h(X) given
Z, and the outer expectation is taken with respect to the distribution of Z. Put another
way, the expected value (with respect to the distribution of Z) of the random variable

Y := E [h(X) | Z]

is exactly Eh(X). Therefore, we can estimate θ = Eh(X) by

θ̂n :=
1

n

n∑
i=1

Yi,

where Y1, . . . , Yn are iid samples from the distribution of Y .
To find the asymptotic distribution of θ̂n, we apply iterated variance:

Varh(X) = EVar (h(X) | Z) + VarE [h(X) | Z] .

Because Varh(X) = σ2, Y = E [h(X) | Z], and EVar (h(X) | Z) ≥ 0, we have

σ2
y := VarY = σ2 − EVar (h(X) | Z)

≤ σ2.

Since σ2 < ∞ by assumption, Y1, Y2, . . . is a sequence of iid random variables with finite
expectation θ and finite variance σ2

y. By the Central Limit Theorem, therefore, θ̂n is asymp-
totically distributed according to

√
n(θ̂n − θ)
σy

⇒ N (0, 1) as n→∞.

When constructing confidence intervals, we estimate the unknown variance constant σ2
y by

σ̂2
y,n :=

1

n− 1

n∑
i=1

(Yi − θ̂n)2.
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3.2.1 The Conditional Monte Carlo algorithm

Algorithm 5 (Conditional Monte Carlo estimation of θ = Eh(X)). Given con-
fidence level α ∈ (0, 1), sample size n ∈ N, and function g : Rd → R such that
g(z) = E [h(X) | Z = z]:

1. generate Z1, . . . ,Zn iid from the distribution of Z

2. compute Y1 = g(Z1), . . . , Yn = g(Zn)

3. estimate θ = EY and σ2
y = VarY by

θ̂n =
1

n

n∑
i=1

Yi, σ̂2
n =

1

n− 1

n∑
i=1

(Yi − θ̂n)2

4. conclude with approximately 100(1− α)% confidence that

θ ∈
[
θ̂n −

z1−α/2σ̂y,n√
n

, θ̂n +
z1−α/2σ̂y,n√

n

]

3.2.2 Cost/benefit ratio

What is the cost/benefit ratio of the conditional Monte Carlo algorithm 5? Let ty be the
time required to generate Z1 from the distribution of Z and compute Y1 = g(Z1). The time
required to generate the samples and compute the g(Zi) is usually much larger than the time
required to execute the arithmetic operations in step 3 of algorithm 5, so the approximate
cost is nty. The conditional Monte Carlo 100(1 − α)% confidence interval half-width is
εα = z1−α/2σy/

√
n, so the benefit of algorithm 5 is (z1−α/2/εα)2 = n/σ2

y. Therefore, the
approximate cost/benefit ratio is

nty
n/σ2

y

= tyσ
2
y.

We have shown that σ2
y ≤ σ2 (where σ2 = Varh(X)), so the conditional Monte Carlo

algorithm 5 improves the cost/benefit ratio of the Monte Carlo algorithm 1 if ty ≤ t (where
t is the time required to generate X1 from the distribution of X and compute h(X1)). In
particular, this requires that the subroutine g be reasonably efficient.
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3.3 Control variates

Suppose that in the process of generating Xi from the distribution of X and computing
h(Xi), we also generate a sample Zi from the distribution of an intermediate random vector
Z ∈ Rd. Suppose as well that

1. µz := EZ is known exactly,

2. Σzz := Cov Z ∈ Rd×d is nonsingular, and

3. E[Z2
1 + · · ·+ Z2

d ] <∞.

The second and third assumptions are technical conditions, but the assumption that µz is
known exactly is crucial. In fact, it’s the fundamental reason that the method of control
variates works: As a byproduct of the Monte Carlo algorithm 1, we get additional information
for free. The components Z1, . . . , Zd of Z are called control variates.

How can we use control variates to construct an estimator of θ = Eh(X) that has smaller
variance than the standard Monte Carlo estimator θ̄n? Consider the random variable

Y (λ) := h(X)− λ>(Z− µz),

where λ ∈ Rd is an arbitrary parameter vector over which we will eventually optimize. If
Y1(λ), . . . , Yn(λ) are generated iid from the distribution of Y (λ), then the estimator

θ̂n(λ) :=
1

n

n∑
i=1

Yi(λ)

of θ is unbiased and consistent for any λ. Furthermore, assumption 3 implies that the
variance of Y (λ) is finite:

σ2
y(λ) := VarY (λ) = Varh(X)− 2λ>Cov(Z, h(X)) + λ>(Cov Z)λ

= σ2 − 2λ>Σzy + λ>Σzzλ

<∞,

where
Σzy := Cov(Z, h(X)) ∈ Rd.

Because Y1(λ), Y2(λ), . . . is a sequence of iid random variables with finite mean θ and finite
variance σ2

y(λ), the Central Limit Theorem gives the asymptotic distribution of θ̂n(λ):

√
n(θ̂n(λ)− θ)
σy(λ)

⇒ N (0, 1) as n→∞.
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3.3.1 Choosing the parameter λ

To maximize the variance reduction achieved by the control variates method, we minimize
σ2
y(λ) = VarY (λ) over λ. Because σ2

y(·) is a convex function, the first-order condition
∇σ2

y(λ
?) = 0 is necessary and sufficient for the the global optimality of λ?. Thus,

∇σ2
y(λ

?) = −2Σzy + 2Σzzλ
? = 0 =⇒ λ? = Σ−1zz Σzy.

By assumption 2, the inverse Σ−1zz exists.
In practice, the components of Σzz and Σzy, which are built from variances and correlation

coefficients, are usually unknown. Therefore, λ? is usually not computable. We can estimate
λ?, however, by

λ̂n := Σ̂−1zz Σ̂zy,

where

Σ̂zz :=
1

n− 1

n∑
i=1

(Zi − µz)(Zi − µz)
>, Σ̂zy :=

1

n− 1

n∑
i=1

(Zi − µz)(h(Xi)− θ̄n).

This gives the approximately optimal control variates estimator of θ:

θ̂n(λ̂n) =
1

n

n∑
i=1

Yi(λ̂n).

An unbiased and consistent estimator of σ2
y(λ

?) = VarY (λ?) is

σ̂2
y,n(λ̂n) :=

1

n− 1

n∑
i=1

(
Yi(λ̂n)− θ̂n(λ̂n)

)2
.

By the Converging Together and Central Limit Theorems, therefore, the estimator θ̂n(λ̂n)
of θ is asymptotically distributed according to

√
n(θ̂n(λ̂n)− θ)
σ̂y,n(λ̂n)

⇒ N (0, 1) as n→∞.

3.3.2 Choosing the control variate Z

Plugging λ? into σ2
y(·), the minimum variance is

σ2
y(λ

?) = σ2 − 2(Σ−1zz Σzy)
>Σzy + (Σ−1zz Σzy)

>Σzz(Σ
−1
zz Σzy)

= σ2 −Σ>zyΣ
−1
zz Σzy

= (1−R2)σ2,

where

R2 :=
Σ>zyΣ

−1
zz Σzy

σ2
∈ [0, 1].
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To maximize the variance reduction, we want to choose the control variates Z1, . . . , Zd so
that R2 is as close to 1 as possible. In the worst-case scenario, where R = 0, we achieve no
variance reduction. By assumption 2, Σzz (hence Σ−1zz ) is positive definite, so R = 0 occurs
only if Σzy = 0, meaning every control variate is uncorrelated with h(X).

In the case of a single control variate (d = 1), R reduces to the correlation coefficient
between h(X) and Z. In the scalar case, therefore, we want to choose the control variate Z
to be as strongly correlated (either positively or negatively) with h(X) as possible.

3.3.3 The control variates algorithm

Algorithm 6 (Control variates estimation of θ = Eh(X)). Given confidence level
α ∈ (0, 1), sample size n ∈ N, and control variate expectation µz:

1. generate (X1,Z1), . . . , (Xn,Zn) iid from the joint distribution of (X,Z)

2. estimate λ? by λ̂n = Σ̂−1zz Σ̂zy, where

Σ̂zz =
1

n− 1

n∑
i=1

(Zi − µz)(Zi − µz)
>, Σ̂zy =

1

n− 1

n∑
i=1

(Zi − µz)(h(Xi)− θ̄n),

and θ̄n = (h(X1) + · · ·+ h(Xn))/n is the usual Monte Carlo estimator of θ

3. compute

Yi(λ̂n) = h(Xi)− λ̂
>
n (Zi − µz), i = 1, . . . , n

4. estimate θ = EY (λ̂n) and σ2
y(λ̂n) = VarY (λ̂n) by

θ̂n(λ̂n) =
1

n

n∑
i=1

Yi(λ̂n), σ̂2
y,n(λ̂n) =

1

n− 1

n∑
i=1

(
Yi(λ̂n)− θ̂n(λ̂n)

)2
5. conclude with approximately 100(1− α)% confidence that

θ ∈

[
θ̂n(λ̂n)−

σ̂y,n(λ̂n)z1−α/2√
n

, θ̂n(λ̂n) +
σ̂y,n(λ̂n)z1−α/2√

n

]

3.3.4 Cost/benefit ratio

The computational cost of the control variates algorithm 6 is greater than that of the Monte
Carlo algorithm 1. Indeed, step 3 of the control variates algorithm requires computing the
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Monte Carlo estimator θ̄n. The control variates method also requires inverting Σ̂zz ∈ Rd×d,
which may become costly if d is large, i.e., if many control variates are used.

For large n, however, the time required to compute θ̂n(λ̂n) is approximately nt, where
t is the time required to generate X1 and compute h(X1). Therefore, the approximate
cost/benefit ratio of the control variates algorithm 6 is

tσ2
y(λ

?) = (1−R2)tσ2.

Recall that the cost/benefit ratio of the Monte Carlo algorithm 1 is tσ2. Therefore, the
method of control variates reduces the cost/benefit ratio by

tσ2 − (1−R2)tσ2 = R2tσ2.

The cost/benefit ratio reduction can be large when the control variates Z1, . . . , Zd are chosen
such that

R2 =
Cov(Z, h(X))>(Cov Z)−1 Cov(Z, h(X))

Varh(X)

is close to 1.

3.4 Evil twins

In the Monte Carlo algorithm 1, we generate samples X1, . . . ,Xn independently from the
distribution of X. This means that h(X1), . . . , h(Xn) are also independent. But suppose
that every time we generated Xi from the distribution of X, we generated another sample
X′i from the distribution of X such that h(Xi) and h(X′i) were dependent. Could we design
an algorithm to take advantage of this dependence?

The method of evil twins, also known as antithetic variates, does exactly that. We call
h(X′i) the evil twin or antithesis of h(Xi). Let’s define

Yi :=
h(Xi) + h(X′i)

2
, θ̂n :=

1

n

n∑
i=1

Yi.

The evil twins estimator θ̂n of θ is unbiased and consistent. Furthermore, Y1, Y2, . . . is a
sequence of iid random variables with mean θ <∞ and variance

σ2
y := VarY = Var

(
h(X1) + h(X′1)

2

)
=

Varh(X1) + Varh(X′1) + 2 Cov(h(X1), h(X′1))

4

=
(1 + ρ)σ2

2
<∞,
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where ρ ∈ [−1, 1] is the correlation between h(X1) and h(X′1). By the Central Limit Theo-
rem, therefore, θ̂n is asymptotically distributed according to

√
n(θ̂n − θ)
σy

⇒ N (0, 1) as n→∞. (3.1)

When constructing confidence intervals, we estimate the unknown variance constant σ2
y by

σ̂2
y,n :=

1

n− 1

n∑
i=1

(Yi − θ̂n)2.

3.4.1 Cost/benefit ratio

What is the cost/benefit ratio of the evil twins algorithm? Recall our definition that t is the
time required to generate X1 from the distribution of X and compute h(X1). Computing
Y1 = (h(X1)+h(X′1))/2 requires time 2t, so the time required to compute θ̂n is approximately
2tn. The asymptotic distribution (3.1) gives an approximate 100(1−α)% confidence interval
half-width of εα = z1−α/2σy/

√
n, so the benefit of the evil twins algorithm is (z1−α/2/εα)2 =

n/σ2
y. Therefore, the evil twins cost/benefit ratio is

2tn

n/σ2
y

= 2tσ2
y = 2t

(
(1 + ρ)σ2

2

)
= t(1 + ρ)σ2.

Do evil twins have a lower cost/benefit ratio than the Monte Carlo algorithm 1? The
approximate cost/benefit ratio reduction is

tσ2 − t(1 + ρ)σ2 = −ρtσ2.

Therefore, evil twins reduce the cost/benefit ratio whenever ρ < 0, meaning h(Xi) and h(X′i)
are negatively correlated. If h(X′i) is a perfect evil twin of h(X), meaning ρ = −1, then the
cost/benefit ratio is reduced to zero. If h(Xi) and h(X′i) are positively correlated, however,
then evil twins increase the cost/benefit ratio.

3.4.2 Inducing a negative correlation between h(Xi) and h(X′i)

As discussed in §3.4.1, the evil twins algorithm hinges on the ability to make h(X′i) negatively
correlated with h(Xi). But h can be a very complicated function, and we have control only
over the inputs Xi and X′i. So how can we induce this negative correlation?

In this section, we provide a method to guarantee that the correlation ρ between h(Xi)
and h(X′i) is negative. We assume that

1. h : Rm → R is monotonic in each of its arguments,

2. the components X1, . . . , Xm of X are independent, and
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3. the function F−1 : Rm → Rm, defined by

F−1(u) =

F
−1
1 (u1)

...
F−1m (um)

 ,
is well-defined on (0, 1)m, where Fj is the cdf of Xj.

Assumptions 2 and 3 guarantee that we can generate Xi and X′i from the distribution of
X using the inversion method (see §2.2.1). We do this by first generating Ui ∼ Uni(0, 1)m,
then setting

Xi = F−1(Ui), X′i = F−1(1−Ui),

where 1 = (1, . . . , 1) ∈ Rm. Because 1 −Ui is uniformly distributed on (0, 1)m, X′i has the
same distribution as Xi (hence X).

We claim that (Xi)j and (X′i)j are negatively correlated for each j = 1, . . . ,m. To see
this, observe that each Fj is a cdf, hence nondecreasing. It can be shown that F−1j is also

nondecreasing. This means that (Xi)j = F−1j ((Ui)j) is small when (Ui)j is small, and (Xi)j
is large when (Ui)j is large. By contrast, (X′i)j = F−1j (1 − (Ui)j) is large when (Ui)j is
small (hence 1− (Ui)j is large), and (X′i)j is small when (Ui)j is large. This suggests that
the correlation between (Xi)j and (X′i)j is negative for each j.

Does the negative correlation between each (Xi)j and (X′i)j also mean that h(Xi) and
h(X′i) are negatively correlated? Not necessarily, but assumption 1 guarantees that this is
the case. A formal proof of this fact, along with a more rigorous statement of the argument
in the previous paragraph, can be found in the appendix of Chapter 8 of [2].

The componentwise monotonicity of h is a sufficient but not necessary condition for evil
twins to improve efficiency. If this condition doesn’t hold (or holds with respect to some
but not all arguments of h), then evil twins may still reduce variance – but there are no
guarantees.
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3.4.3 The evil twins algorithm

Algorithm 7 (Evil twins estimation of θ = Eh(X)). Given confidence level α ∈ (0, 1),
sample size n ∈ N, and inverse cdf F−1 : Rm → Rm defined such that if U ∼ Uni(0, 1)m,
then F−1(U) has the distribution of X:

1. generate U1, . . . ,Un iid from the Uni(0, 1)m distribution

2. compute Y1, . . . , Yn, where

Yi =
h(F−1(Ui)) + h(F−1(1−Ui))

2

3. estimate θ = EY and σ2
y = VarY by

θ̂n :=
1

n

n∑
i=1

Yi, σ̂2
y,n :=

1

n− 1

n∑
i=1

(Yi − θ̂n)2

4. conclude with approximately 100(1− α)% confidence that

θ ∈
[
θ̂n −

σ̂y,nz1−α/2√
n

, θ̂n +
σ̂y,nz1−α/2√

n

]

3.5 Importance sampling

3.5.1 Motivation: Rare-event simulation

Importance sampling is a technique that’s mainly used for rare-event simulation, where we
want to estimate very small, but positive, probabilities. For example, an electric power
system operator might be interested in the probability that a power outage will happen
tomorrow, under two different generator dispatch scenarios. In a well-designed system, this
probability should be small in either scenario. However, the difference between the two
probabilities is a key reliability consideration.

Standard Monte Carlo methods are bad at rare-event simulation. Suppose, for example,
we want to estimate P {X ∈ A} for some random vector X ∈ Rm and set A ⊂ Rm. We can
do this with the Monte Carlo algorithm 1 by setting h = IA, where IA : Rm → R is the
indicator function of the set A. If Eh(X) = P {X ∈ A} is small, say 10−10, then we expect
to generate about 1010 samples Xi from the distribution of X before observing Xi ∈ A
even once. If generating Xi is computationally expensive, then we probably can’t afford to
generate this many replications – let alone enough replications to estimate P {X ∈ A} with
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any degree of accuracy. Loosely speaking, importance sampling circumvents this difficulty
by preferentially sampling from the important values of the support of X.

3.5.2 The importance sampling estimator

Suppose the random vector X ∈ Rm is continuous with pdf f . Let g be another pdf with
the same support as f , i.e.,

f(x) 6= 0 =⇒ g(x) 6= 0

for all x ∈ Rm. (We say that any g satisfying this property is an importance sampling
density.) Then

θ = Eh(X) =

∫
Rm

h(x)f(x)dx =

∫
Rm

(
h(x)f(x)

g(x)

)
g(x)dx

= E h̃(X̃).

Here the random vector X̃ has pdf g, and h̃ : Rm → R is defined by

h̃(x) =

{
0 if f(x) = 0

h(x)f(x)/g(x) otherwise.

If we can generate iid samples X̃1, . . . , X̃n from g, then we can estimate θ by

θ̂n :=
1

n

n∑
i=1

Yi,

where Yi = h̃(X̃i). The estimator θ̂n of θ is unbiased and consistent. If E[h̃(X̃)2] <∞, then

σ2
y := Var h̃(X̃) = E[h̃(X̃)2]− θ2 <∞,

so Y1, Y2, . . . is a sequence of iid random variables with finite expectation θ and finite variance
σ2
y . By the Central Limit Theorem, therefore, θ̂n is asymptotically distributed according to

√
n(θ̂n − θ)
σy

⇒ N (0, 1) as n→∞.

When constructing confidence intervals, we estimate the unknown variance constant σ2
y by

σ̂2
y,n :=

1

n− 1

n∑
i=1

(Yi − θ̂n)2.
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3.5.3 The importance sampling algorithm

Algorithm 8 (Importance sampling estimation of θ = Eh(X)). Given confidence level
α ∈ (0, 1), sample size n ∈ N, and importance sampling density g:

1. generate X̃1, . . . , X̃n iid from g

2. compute Y1 = h̃(X̃1), . . . , Yn = h̃(X̃n), where

h̃(x) =

{
0 if f(x) = 0

h(x)f(x)/g(x) otherwise,

and f is the pdf of X

3. estimate θ = E h̃(X̃) and σ2
y = Var h̃(X̃) by

θ̂n =
1

n

n∑
i=1

Yi, σ̂2
y,n =

1

n

n∑
i=1

(Yi − θ̂n)2

4. conclude with approximately 100(1− α)% confidence that

θ ∈
[
θ̂n −

σ̂y,nz1−α/2√
n

, θ̂n +
σ̂y,nz1−α/2√

n

]

3.5.4 Cost/benefit ratio

The cost/benefit ratio of the importance sampling algorithm 8 need not be smaller than
that of the Monte Carlo algorithm 1. In fact, it can be far larger if the importance sampling
density g is chosen poorly. To see this, let’s consider the cost and benefit of the importance
sampling algorithm 8.

For simplicity, we assume that the time required to generate X̃1 from g and compute
h̃(X̃1) is similar to t, the time required to generate X1 from the distribution of X and
compute h(X). Under this assumption, the cost of the importance sampling algorithm 8 is
approximately nt.

The importance sampling variance constant is

σ2
y = Var h̃(X̃) =

∫
Rm

h̃(x)2g(x)dx− θ2

=

∫
Rm

(
h(x)f(x)

g(x)

)2

g(x)dx− θ2.
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The approximate 100(1 − α)% confidence interval half-width is εα = σ̂y,nz1−α/2/
√
n, so the

benefit of the importance sampling algorithm 8 is (z1−α/2/εα)2 = n/σ2
y. The approximate

cost/benefit ratio is

nt

n/σ2
y

= tσ2
y = t

(∫
Rm

(
h(x)f(x)

g(x)

)2

g(x)dx− θ2
)
.

In the current problem setting, the Monte Carlo variance constant is

σ2 = Varh(X) =

∫
Rm

h(x)2f(x)dx− θ2.

Therefore, the cost/benefit ratio reduction (or increase, if negative) of the importance sam-
pling algorithm 8 relative to the Monte Carlo algorithm 1 is

tσ2 − tσ2
y = t

(∫
Rm

h(x)2f(x)dx−
∫
Rm

(
h(x)f(x)

g(x)

)2

g(x)dx

)

= t

∫
Rm

(
h(x)2f(x)− h(x)2f(x)2

g(x)

)
dx

= t

∫
Rm

(
1− f(x)

g(x)

)
h(x)2f(x)dx.

The importance sampling algorithm 8 improves upon the Monte Carlo algorithm 1 only if
this integral is positive. But this is far from guaranteed – in fact, for some choices of g the
integral can approach −∞, making the importance sampling estimator useless. In the next
section, we discuss heuristics for choosing g in order to (hopefully) keep this from happening.

3.5.5 Choosing an importance sampling density

To maximize the reduction in cost/benefit ratio achieved by the importance sampling algo-
rithm 8, we want to choose the importance sampling density g in order to make the integral∫

Rm

(
1− f(x)

g(x)

)
h(x)2f(x)dx

as large as possible.
Recall that f and g are densities, so f/g is nonnegative and 1− f/g ≤ 1. To maximize

the integral, therefore, we should choose g such that 1 − f(x)/g(x) ≈ 1 when h(x)2f(x) is
large. This gives one rule of thumb:

Choose g such that g(x)� f(x) when h(x)2f(x) is large.

Because the pdf g must normalize, making g(x) large in some places requires making it small
in others. This is risky business: If for some x, g(x) is close to zero but f(x) is large, then
1 − f(x)/g(x) could be much less than zero. If this happens when h(x)2f(x) is also large,
then the value of the integral could be greatly reduced, or even made negative. To avoid
this, we should follow another rule of thumb:
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Choose g such that g(x) < f(x) only when h(x)2f(x) is small.

What is the best possible choice of the importance sampling density g? Suppose we knew
θ a priori and chose g = g? := hf/θ. If h > 0, then g? is nonnegative, normalizes, and has
the same support as f , so g? is an importance sampling density. With this choice of g,

σ2
y =

∫
Rm

(
h(x)f(x)

g?(x)

)2

g?(x)dx− θ2

=

∫
Rm

(
h(x)f(x)θ

h(x)f(x)

)2

g?(x)dx− θ2

= θ2
∫
Rm

g?(x)dx− θ2

= 0.

That is, g? = hf/θ gives an estimator with the best possible variance, zero. Of course, θ is
what we set out to estimate, so it is never known a priori. But it does give a heuristic that
can lead to good importance sampling estimators:

Choose g ‘similar to’ hf .

One concrete interpretation of what it means for g and hf to be ‘similar’ is that their
maximum values coincide. This interpretation motivates the maximum principle:

Choose g such that sup {g(x) | x ∈ D} = sup {h(x)f(x) | x ∈ D}.

The maximum principle can work well when g is selected from the same family of densities
that f belongs to.

3.6 Stratification

Suppose we discover some random vector Z ∈ Rd such that for any subset A of the range of
Z,

1. we can easily compute P {Z ∈ A}, and

2. we can sample from the conditional distribution of h(X), given that Z ∈ A.

Can we use this new random vector Z to reduce the cost/benefit ratio of the Monte Carlo
algorithm 1? Stratification aims to do exactly that. The idea is to divide the range of Z
into separate regions, generate samples of Z from each region, and combine the results to
estimate θ = Eh(X).

Let’s make the idea of ‘dividing the range of Z into separate regions’ precise. For s ∈ N,
let A1, . . . , As be disjoint subsets of Rd. We say that

P := {A1, . . . , As}
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is a partition if
pj := P {Z ∈ Aj} > 0, j = 1, . . . , s,

and
s∑
j=1

pj = 1.

If P is a partition, then we call each Aj a stratum (plural strata). By assumption 1, we can
easily compute the probabilities p1, . . . , ps.

3.6.1 Stratum estimators

Let’s define random variables Y1, . . . , Ys ∈ R such that Yj has the conditional distribution of
h(X), given that Z ∈ Aj. We also define a random variable I that indicates which stratum
Z falls in:

I =


1 if Z ∈ A1

...
...

s if Z ∈ As.
Applying iterated expectation, we have

θ = Eh(X) = E [E [h(X) | I]] =
s∑
j=1

pj E [h(X) | I = j] =
s∑
j=1

pj EYj =
s∑
j=1

pjθj,

where
θj := EYj.

Therefore, we can estimate θ by averaging estimates of θ1, . . . , θs, weighted by p1, . . . , ps.
Each θj can be estimated by choosing a sample size nj, generating iid samples Yj,1, . . . , Yj,nj

from the distribution of Yj (by assumption 2, this is doable), and computing

θ̂j,nj
:=

1

nj

nj∑
i=1

Yj,i.

The estimator θ̂j,nj
of θj is unbiased and consistent. If VarYj is finite, then for all j,

Yj,1, Yj,2, . . . is a sequence of iid random variables with finite expectation θj and finite variance

σ2
j := VarYj.

By the Central Limit Theorem, therefore,

θ̂j,nj
⇒ N

(
θj,

σ2
j

nj

)
as nj →∞. (3.2)

The variances σ2
1, . . . , σ

2
s are typically unknown, but σ2

j can be estimated by

σ̂2
j,nj

:=
1

nj − 1

nj∑
i=1

(Yj,i − θ̂j,nj
)2.
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3.6.2 Overall estimators

Having estimated θ1, . . . , θs by θ̂1,n1 , . . . , θ̂s,ns , we can estimate θ by

θ̂n =
s∑
j=1

pj θ̂j,nj
, (3.3)

where
n := n1 + · · ·+ ns

is the total sample size. Combining equations (3.2) and (3.3) gives the asymptotic distribu-
tion of θ̂n as n1 →∞, . . . , ns →∞:

θ̂n ⇒
s∑
j=1

pjN
(
θj,

σ2
j

nj

)

= N

(
s∑
j=1

pjθj,
s∑
j=1

p2jσ
2
j

nj

)

= N
(
θ,

σ2
strat

n

)
.

We have defined the variance constant

σ2
strat :=

s∑
j=1

p2jσ
2
j

qj
, (3.4)

which depends on both the partition P and the vector

q :=
1

n

n1
...
ns


of stratum sample fractions. When constructing confidence intervals, we estimate the un-
known variance constant σ2

strat by

σ̂2
strat,n :=

s∑
j=1

p2j σ̂
2
j,nj

qj
.
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3.6.3 The stratification algorithm

Algorithm 9 (Stratification estimation of θ = Eh(X)). Given confidence level α ∈
(0, 1), stratum sample sizes n1, . . . , ns ∈ N, and stratum probabilities p1, . . . , ps:

1. for j = 1, . . . , s

(a) generate Yj,1, . . . , Yj,nj
iid from the conditional distribution of h(X), given Z ∈ Aj

(b) estimate θj = EYj and σ2
j = VarYj by

θ̂j,nj
=

1

nj

nj∑
i=1

Yj,i, σ̂2
j,nj

=
1

nj − 1

nj∑
i=1

(Yj,i − θ̂j,nj
)2

2. estimate θ = Eh(X) and σ2
strat = n

∑s
j=1 p

2
jσ

2
j/nj by

θ̂n =
s∑
j=1

pj θ̂j,nj
, σ̂2

strat,n = n
s∑
j=1

p2j σ̂
2
j,nj

nj

3. conclude with approximately 100(1− α)% confidence that

θ ∈
[
θ̂n −

σ̂strat,nz1−α/2√
n

, θ̂n +
σ̂strat,nz1−α/2√

n

]

3.6.4 Cost/benefit ratio

The computational effort required to compute the stratification estimator θ̂n is typically
dominated by the time required to generate Yj,1, . . . , Yj,nj

for each j = 1, . . . , s. Therefore,
the cost of the stratification algorithm 9 is approximately

s∑
j=1

njtj,

where tj is the time required to generate Yj,1 from the conditional distribution of h(X), given
Z ∈ Aj.

The stratification 100(1 − α)% confidence interval half-width is εα = σstratz1−α/2/
√
n,

giving a benefit of (z1−α/2/εα)2 = n/σ2
strat. Therefore, the approximate cost/benefit ratio of

the stratification algorithm 9 is ∑s
j=1 njtj

n/σ2
strat

= σ2
strat

s∑
j=1

qjtj.
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Recalling that the cost/benefit ratio of the Monte Carlo algorithm 1 is tσ2, the cost/benefit
ratio reduction (or increase, if negative) from stratification is

tσ2 − σ2
strat

s∑
j=1

qjtj.

The reduction may not be positive: Although it is not difficult to ensure that σ2
strat ≤ σ2

(see §3.6.6), it is not always the case that
∑s

j=1 qjtj ≤ t. In some cases, sampling from
the conditional distribution of h(X), given Z ∈ Aj, takes considerably longer than sampling
directly from the distribution of X and evaluating h.

Given a total sample size n, we have two degrees of freedom in implementing the strati-
fication algorithm 9:

1. the partition P = {A1, . . . , As}, and

2. the stratum sample fractions q = (q1, . . . , qs).

The next two sections discuss methods for choosing P and q in order to minimize the
cost/benefit ratio of the stratification algorithm 9.

3.6.5 Choosing a partition

In order for the stratification algorithm 9 to be implementable, the partition P must be
chosen such that P {Z ∈ Aj} can be computed for all j. Assuming P is admissible in this
sense, we are free to choose both the number of strata s, and the ‘shape’ of the strata
(by choice of the Aj). These choices influence both the approximate stratification runtime∑s

j=1 qjtj and the variance constant σ2
strat.

In order to reduce runtime, P should be chosen so that for all j, the time required to
sample from the conditional distribution of h(X), given Z ∈ Aj, is not too much larger than
the time required to sample from the distribution of X directly and evaluate h.

In order to reduce variance (for fixed q), P should be chosen such that the stratum
probabilities pj and variances σ2

j make

σ2
strat =

s∑
j=1

p2jσ
2
j

qj

small. Unfortunately, the variances σ2
j are generally not known a priori. A good rule of

thumb is to choose P such that the stratum means θj vary strongly with j, but the variance
σ2
j within any particular stratum is small.
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3.6.6 Allocating samples

Once the partition P is fixed, we are free to choose any sample size fractions q1, . . . , qs that
satisfy

qj ≥ 0,
s∑
j=1

qj = 1.

This choice influences both the stratification runtime
∑s

j=1 qjtj and the variance constant

σ2
strat.

Suppose tj, the time required to generate one sample from the conditional distribution
of h(X), given Z ∈ Aj, is disproportionately large for some j. Then we can reduce runtime
by taking fewer samples from that stratum, i.e., by making that qj small.

To reduce the variance constant σ2
strat, we can choose q such that qj is large whenever

p2jσ
2
j is large. It can be shown that (for fixed P) the sample size fractions that minimize

σ2
strat are

q?j :=
pjσ

2
j

p1σ2
1 + · · ·+ psσ2

s

, j = 1, . . . , s.

Unfortunately, the variances σ2
j are generally not known a priori. One way to handle this is

to run some initial pilot simulations with modest sample sizes to estimate the σ2
j . Another

way is to use a suboptimal allocation heuristic called proportional sampling.

Proportional sampling

In proportional sampling, we set
qj = qj,prop := pj

for all j. Proportional sampling is easy to implement. It also guarantees that the variance
constant σ2

prop is no larger than σ2. To see this, observe that

σ2
prop =

s∑
j=1

p2jσ
2
j

qj,prop
=

s∑
j=1

pjσ
2
j .

How does σ2
prop compare to the variance constant σ2 in the Monte Carlo algorithm 1? By

iterated variance,

σ2 = Varh(X) = EVar (h(X) | I) + VarE [h(X) | I] .

But VarE [h(X) | I] ≥ 0 (all variances are nonnegative), so

σ2 ≥ EVar (h(X) | I)

=
s∑
j=1

pj Var (h(X) | I = j)

=
s∑
j=1

pjσ
2
j

= σ2
prop.
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3.6.7 Post-stratification

We conclude our discussion of stratification with a variant called post-stratification, also
known as something for nothing. The basic idea is that in some situations, sampling from
the conditional distribution of h(X), given that Z ∈ Aj, is hard. In these situations, we
can still get a variance reduction by estimating θ using the Monte Carlo algorithm 1, then
applying stratification after the fact.

How is this possible? First, we generate iid realizations (X1,Z1), . . . , (Xn,Zn) from
the joint distribution of (X,Z). We then compute the number1 of realizations of Z in each
stratum:

Nj :=
n∑
i=1

IAj
(Zi),

where IAj
is the indicator function of the stratrum Aj. We can then estimate the stratum

mean θj = E [h(X) | Z ∈ Aj] by

θ̂j,Nj
:=

1

Nj

n∑
i=1

h(Xi)IAj
(Zi).

Similarly, we estimate the stratum variance σ2
j by

σ̂j,Nj
:=

1

Nj − 1

n∑
i=1

(h(Xi)IAj
(Zi)− θ̂j,Nj

)2.

The post-stratification estimator of θ is

θ̂post,n :=
s∑
j=1

pj θ̂j,Nj
.

An estimator of the post-stratification variance constant is

σ̂2
post,n := n

s∑
j=1

p2j σ̂
2
j,Nj

Nj

.

Amazingly, the post-stratification variance constant is asymptotically equal to the propor-
tional stratification variance constant. When sampling from the conditional distribution of
h(X), given Z ∈ Aj, is slow for some j, the post-stratification algorithm 10 can have a lower
cost/benefit ratio than the stratification algorithm 9 (for the same partition, sample size,
and sample allocations).

1Note that N1, . . . , Ns are random variables.
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3.6.8 The post-stratification algorithm

Algorithm 10 (Post-stratification estimation of θ = Eh(X)). Given confidence level
α ∈ (0, 1), stratum probabilities p1, . . . , ps, and sample size n ∈ N:

1. generate (X1,Z1), . . . , (Xn,Zn) iid from the joint distribution of (X,Z)

2. for j = 1, . . . , s

(a) compute the number of Zi in stratum Aj:

Nj =
n∑
i=1

IAj
(Zi)

(b) estimate θj = E [h(X) | Z ∈ Aj] and σ2
j = Var (h(X) | Z ∈ Aj) by

θ̂j,Nj
=

1

Nj

n∑
i=1

h(Xi)IAj
(Zi), σ̂j,Nj

=
1

Nj − 1

n∑
i=1

(h(Xi)IAj
(Zi)− θ̂j,Nj

)2

3. estimate θ = Eh(X) and σ2
post by

θ̂post,n =
s∑
j=1

pj θ̂j,Nj
, σ̂2

post,n = n
s∑
j=1

p2j σ̂
2
j,Nj

Nj

4. conclude with approximately 100(1− α)% confidence that

θ ∈
[
θ̂post,n −

σ̂post,nz1−α/2√
n

, θ̂post,n +
σ̂post,nz1−α/2√

n

]
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Chapter 4

Gradient estimation

In this chapter, we extend the basic problem in §1.2 to allow θ to depend on a deterministic
parameter vector u ∈ Rd. This dependence may be structural (meaning the function h
depends on u), distributional (meaning the distribution of X depends on u), or both:

θ(u) := Eu h(X,u). (4.1)

Here the notation Eu emphasizes the dependence of the distribution of X on u. To make
this notation explicit, suppose X is continuous. In this case, the pdf f of X depends on u,
so the expectation is

Eu h(X,u) =

∫
Rm

h(x,u)f(x,u)dx.

When θ depends on u, a natural question to ask is how θ responds to small perturbations
in u about its nominal value. For example, suppose u1, . . . , ud represent the generation levels
of d power plants, X1, . . . , Xm represent the (random) demand for electricity at m nodes in
the power network, and θ(u) represents the probability of a power outage. The grid operator
would no doubt be interested to know that, say, θ increases wildly in response to a small
decrease in one of the uj.

The study of how θ changes with u is called sensitivity analysis. It leads directly to the
topic of this chapter: Estimating the gradient of θ at some point u0 ∈ Rd,

g(u0) := ∇θ(u)|u0 =


∂θ
∂u1

∣∣∣
u0

...
∂θ
∂ud

∣∣∣
u0

 .
Gradient estimation is also used in numerical algorithms for choosing u in order to minimize
or maximize θ(u). This field is called simulation-based optimization.

Throughout this chapter, we assume that for j = 1, . . . , d,

1. θ is differentiable with respect uj at u0, and

2. Var ∂h/∂uj|u0 is finite in a neighborhood of u0.
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4.1 Finite difference approximation

4.1.1 Forward difference

Recall that the partial derivative of θ with respect to uj is defined by

gj(u0) =
∂θ

∂uj

∣∣∣∣
u0

:= lim
ε→0

θ(u0 + εej)− θ(u0)

ε
,

where ej is the jth standard basis vector in Rd. Truncating the limit at some small but finite
ε gives the forward difference approximation of gj(u0):

∆f(j,u0, ε) :=
θ(u0 + εej)− θ(u0)

ε
.

We can’t evaluate θ exactly, so the forward difference approximation is not computable. How-
ever, we can estimate it using Monte Carlo simulation. To do this, we generate X1, . . . ,Xn

iid from the distribution of X, then compute

∆̂f,n(j,u0, ε) :=
θ̄n(u0 + εej)− θ̄n(u0)

ε
,

where

θ̄n(u) :=
1

n

n∑
i=1

h(Xi,u)

is the usual Monte Carlo estimator of θ(u).

Bias-Variance trade-off

There are two sources of error in the forward difference estimator. The first is the truncation
of the limit, which introduces a bias. The second is the approximation of θ by θ̄n, which
introduces some variance. Both the bias and variance depend on the perturbation ε. We
now explore the trade-off between the two.

Taylor expanding θ about u0, we have

E ∆̂f,n(j,u0, ε) = ∆f(j,u0, ε)

=
θ(u0 + εej)− θ(u0)

ε

=
1

ε

((
θ(u0) +

ε

1!

∂θ

∂uj

∣∣∣∣
u0

+
ε2

2!

∂2θ

∂u2j

∣∣∣∣
u0

+ . . .

)
− θ(u0)

)
= gj(u0) +O(ε)
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as ε→ 0. To make the bias small, therefore, we want to make ε small. However, the variance
of the forward difference estimator is

Var ∆̂f,n(j,u0, ε) =
1

ε2
Var

(
θ̄n(u0 + εej)− θ̄n(u0)

)
=

1

ε2
(
Var θ̄n(u0 + εej) + Var θ̄n(u0)− 2Cov(θ̄n(u0 + εej), θ̄n(u0))

)
≈ 1

ε2
(
2 Var θ̄n(u0)− 2 Cov(θ̄n(u0 + εej), θ̄n(u0))

)
,

provided Var θ̄n(·) is continuous at u0. If θ̄n(u0 + εej) and θ̄n(u0) are computed using
independent samples, then the covariance term vanishes and

Var ∆̂f,n(j,u0, ε) ≈
2 Varh(X,u)|u0

nε2
= O(1/ε2)

as ε→ 0. To make the variance small, therefore, we want to make ε large.
The bias-variance trade-off appears explicitly in the mean squared error of the forward

difference estimator:

MSE ∆̂f,n(j,u0, ε) = Bias(∆̂f,n(j,u0, ε))
2︸ ︷︷ ︸

O(ε2)

+ Var ∆̂f,n(j,u0, ε)︸ ︷︷ ︸
O(1/ε2)

.

The bias-variance trade-off can be alleviated by computing θ̄n(u0 +εej) and θ̄n(u0) using the
same samples X1, . . . ,Xn (i.e., using common random numbers). This is because for small
ε, we expect h(X,u0 + εej) to be positively correlated with h(X,u0), making Cov(θ̄n(u0 +
εej), θ̄n(u0)) large.

Asymptotic distribution

We can write the forward difference estimator as

∆̂f,n(j,u0, ε) =
θ̄n(u0 + εej)− θ̄n(u0)

ε

=
1

ε

(
1

n

n∑
i=1

h(Xi,u0 + εej)−
1

n

n∑
i=1

h(Xi,u0)

)

=
1

n

n∑
i=1

Zf,i(j,u0, ε),

where

Zf,i(j,u, ε) :=
h(Xi,u + εej)− h(Xi,u)

ε
.

Because X1,X2, . . . are iid, Zf,1(j,u0, ε), Zf,2(j,u0, ε), . . . is a sequence of iid random variables
with expectation gj(u0) + O(ε) and finite variance. By the Central Limit and Converging
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Together theorems, therefore, ∆̂f,n(j,u0, ε) is asymptotically distributed according to

√
n
(

∆̂f,n(j,u0, ε)− gj(u0) +O(ε)
)

σ̂f,n(j,u0, ε)
⇒ N (0, 1) as n→∞,

where

σ̂2
f,n(j,u0, ε) :=

1

n− 1

n∑
i=1

(
Zf,i(j,u0, ε)− ∆̂f,n(j,u0, ε)

)2
is an estimator of the variance of Zf(j,u0, ε) := (h(X,u0+εej)−h(X,u0))/ε. This asymptotic
distribution lets us compute confidence intervals for gj(u0) (up to an unknown O(ε) bias).
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The forward difference algorithm

Algorithm 11 (Forward difference estimation of g(u) = ∇Eu h(X,u) at u0 using
common random numbers). Given confidence level α ∈ (0, 1), sample size n ∈ N, and
perturbations ε1, . . . , εd:

1. generate X1, . . . ,Xn iid from the distribution of X

2. compute and store h(X1,u0), . . . , h(Xn,u0)

3. for j = 1, . . . , d

(a) for i = 1, . . . , n, compute

Zf,i(j,u0, εj) =
h(Xi,u0 + εjej)− h(Xi,u0)

εj

(b) estimate gj(u0) by

∆̂f,n(j,u0, εj) =
1

n

n∑
i=1

Zf,i(j,u0, εj)

(c) estimate VarZf(j,u0, εj) by

σ̂2
f,n(j,u0, εj) =

1

n− 1

n∑
i=1

(
Zf,i(j,u0, εj)− ∆̂f,n(j,u0, εj)

)2
(d) conclude with approximately 100(1− α)% confidence that

gj(u0) +O(εj) ∈[
∆̂f,n(j,u0, εj)−

σ̂f,n(j,u0, εj)z1−α/2√
n

, ∆̂f,n(j,u0, εj) +
σ̂f,n(j,u0, εj)z1−α/2√

n

]

4.1.2 Central difference

An equivalent expression for the partial derivative of θ with respect to uj, evaluated at
u0 ∈ Rd, is

gj(u0) = lim
ε→0

θ(u0 + (ε/2)ej)− θ(u0 − (ε/2)ej)

ε
.

This gives rise to the central difference approximation of gj(u0):

∆c(j,u0, ε) :=
θ(u0 + (ε/2)ej)− θ(u0 − (ε/2)ej)

ε
.
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As with forward differences, we use Monte Carlo simulation to estimate ∆c(j,u0, ε) by

∆̂c,n(j,u0, ε) =
θ̄n(u0 + (ε/2)ej)− θ̄n(u0 − (ε/2)ej)

ε
.

Bias reduction

The main advantage of central difference approximation is that it reduces bias relative to
forward difference approximation. To see this, we again Taylor expanding θ about u0:

E ∆̂c,n(j,u0, ε) = ∆c(j,u0, ε)

=
θ(u0 + (ε/2)ej)− θ(u0 − (ε/2)ej)

ε

=
1

ε

((
θ(u0) +

ε/2

1!

∂θ

∂uj

∣∣∣∣
u0

+
(ε/2)2

2!

∂2θ

∂u2j

∣∣∣∣
u0

+
(ε/2)3

3!

∂3θ

∂u3j

∣∣∣∣
u0

+ . . .

)

−

(
θ(u0) +

−ε/2
1!

∂θ

∂uj

∣∣∣∣
u0

+
(−ε/2)2

2!

∂2θ

∂u2j

∣∣∣∣
u0

+
(−ε/2)3

3!

∂3θ

∂u3j

∣∣∣∣
u0

+ . . .

))

=
1

ε

(
ε
∂θ

∂uj

∣∣∣∣
u0

+
ε3

24

∂3θ

∂u3j

∣∣∣∣
u0

+ . . .

)
= gj(u0) +O(ε2).

As ε → 0, the O(ε2) central difference bias vanishes much faster than the O(ε) forward
difference bias.

The variance of the central difference estimator is

Var ∆̂c,n(j,u0, ε) =
1

ε2
Var

(
θ̄n(u0 + (ε/2)ej)− θ̄n(u0 − (ε/2)ej)

)
≈ 1

ε2
(
2 Var θ̄n(u0)− 2 Cov(θ̄n(u0 + (ε/2)ej), θ̄n(u0 − (ε/2)ej))

)
,

provided Var θ̄n(·) is continuous at u0. If we compute θ̄n(u0 + (ε/2)ej) and θ̄n(u0− (ε/2)ej)
using common random numbers, then h(X,u0+(ε/2)ej) should be positively correlated with
h(X,u0 − (ε/2)ej), making Cov(θ̄n(u0 + (ε/2)ej), θ̄n(u0 − (ε/2)ej)) large.

Asymptotic distribution

We can write the central difference estimator as

∆̂c,n(j,u0, ε) =
θ̄n(u0 + (ε/2)ej)− θ̄n(u0 − (ε/2)ej)

ε

=
1

ε

(
1

n

n∑
i=1

h(Xi,u0 + (ε/2)ej)−
1

n

n∑
i=1

h(Xi,u0 − (ε/2)ej)

)

=
1

n

n∑
i=1

Zc,i(j,u0, ε),
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where

Zc,i(j,u, ε) :=
h(Xi,u + (ε/2)ej)− h(Xi,u− (ε/2)ej)

ε
.

Because X1,X2, . . . are iid, Zc,1(j,u0, ε), Zc,2(j,u0, ε), . . . is a sequence of iid random vari-
ables with expectation gj(u0) + O(ε2) and finite variance. By the Central Limit and Con-

verging Together theorems, therefore, ∆̂c,n(j,u0, ε) is asymptotically distributed according
to √

n
(

∆̂c,n(j,u0, ε)− gj(u0) +O(ε2)
)

σ̂c,n(j,u0, ε)
⇒ N (0, 1) as n→∞,

where

σ̂2
c,n(j,u0, ε) :=

1

n− 1

n∑
i=1

(
Zc,i(j,u0, ε)− ∆̂c,n(j,u0, ε)

)2
is an estimator of the variance of Zc(j,u0, ε) := (h(X,u0 + (ε/2)ej)− h(X,u0− (ε/2)ej))/ε.
This asymptotic distribution lets us compute confidence intervals for gj(u0) (up to an un-
known O(ε2) bias).
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The central difference algorithm

Algorithm 12 (Central difference estimation of g(u) = ∇Eu h(X,u) at u0 using
common random numbers). Given confidence level α ∈ (0, 1), sample size n ∈ N, and
perturbations ε1, . . . , εd:

1. generate X1, . . . ,Xn iid from the distribution of X

2. for j = 1, . . . , d

(a) for i = 1, . . . , n, compute

Zc,i(j,u0, εj) =
h(Xi,u0 + (εj/2)ej)− h(Xi,u0 − (εj/2)ej)

εj

(b) estimate gj(u0) by

∆̂c,n(j,u0, εj) =
1

n

n∑
i=1

Zc,i(j,u0, εj)

(c) estimate VarZc(j,u0, εj) by

σ̂2
c,n(j,u0, εj) =

1

n− 1

n∑
i=1

(
Zc,i(j,u0, εj)− ∆̂c,n(j,u0, εj)

)2
(d) conclude with approximately 100(1− α)% confidence that

gj(u0) +O(ε2j) ∈[
∆̂c,n(j,u0, εj)−

σ̂c,n(j,u0, εj)z1−α/2√
n

, ∆̂c,n(j,u0, εj) +
σ̂c,n(j,u0, εj)z1−α/2√

n

]

4.1.3 Comparison

Costs. Both the forward difference algorithm 11 and the central difference algorithm 12
require generating n iid samples from the distribution of X and computing d sample averages
and sample standard deviations. Therefore, the two algorithms’ computational effort differs
only in the number of evaluations of h. The forward difference algorithm evaluates h a
total of (d + 1)n times, compared to 2dn evaluations in the central difference algorithm.
If d is large and evaluating h is slow, then forward differences can be much faster than
central differences. For large d, it can be beneficial to use simultaneous perturbations, where
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u1, . . . , ud are perturbed simultaneously rather than one at a time; see §3.2 of Chapter 9 of
[3] for details.

Benefits. The the forward difference algorithm 11 and central difference algorithm 12
yield estimators of gj(u0) with similar variance. However, the forward difference bias is
O(εj), so the O(ε2j) central difference bias vanishes much faster as εj → 0. This makes
central differences more attractive than forward differences for most applications.

4.2 Infinitesimal perturbation analysis

While the forward and central difference algorithms are general and can work very well, they
both produce biased estimates of g(u0). They also require the user to specify the perturba-
tions ε1, . . . , εd. It is not always obvious how these perturbations should be chosen, because
they influence both the bias and variance of the gradient estimators. A third drawback of
the forward and central difference algorithms is that they are computationally intensive,
requiring (d+ 1)n or 2dn evaluations of h, respectively.

Infinitesimal perturbation analysis (IPA) is an alternative to finite difference methods.
IPA produces unbiased estimates, is usually simple to implement, and is more computa-
tionally efficient than finite difference methods. IPA only applies, however, if the following
conditions hold:

1. The distribution of X does not depend on u, i.e.,

θ(u) := Eh(X,u). (4.2)

(Contrast this with the general definition (4.1), which includes both structural and
distributional dependence.)

2. For fixed X, ∇uh(X,u) is known exactly at u0.

3. The structure of h and the distribution of X allow us to swap the order of integration
and differentiation:

∇Eh(X,u) = E∇uh(X,u).

If these conditions hold, then

ĝn(u0) :=
1

n

n∑
i=1

∇uh(Xi,u)|u0

is an unbiased estimator of g(u0), provided X1, . . . ,Xn are sampled from the distribution
of X. If X1,X2, . . . are also independent, then ∂h(X1,u)/∂uj|u0 , ∂h(X2,u)/∂uj|u0 , . . . is a
sequence of iid random variables with expectation gj(u0) and finite variance. By the Central
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Limit and Converging Together Theorems, therefore, ĝn,j(u0) is asymptotically distributed
according to √

n(ĝn,j(u0)− gj(u0))

σ̂n,j(u0)
⇒ N (0, 1) as n→∞,

where

σ̂2
n(j,u0) :=

1

n− 1

n∑
i=1

(
∂h(Xi,u)

∂uj

∣∣∣∣
u0

− ĝn,j(u0)

)2

is an estimator of Var ∂h(X,u)/∂uj|u0 . This allows us to construct confidence intervals for
the partial derivatives of θ with respect to u1, . . . , ud.

4.2.1 The IPA algorithm

Algorithm 13 (IPA estimation of g(u) = ∇Eh(X,u) at u0). Given confidence level
α ∈ (0, 1) and sample size n ∈ N:

1. generate X1, . . . ,Xn iid from the distribution of X

2. estimate g(u0) = ∇Eh(X,u0) = E∇h(X,u0) by

ĝn(u0) =
1

n

n∑
i=1

∇h(Xi,u0)

3. for j = 1, . . . , d

(a) estimate Var ∂h(X,u)/∂uj|u0 by

σ̂2
n,j(u0) =

1

n− 1

n∑
i=1

(
∂h(Xi,u)

∂uj

∣∣∣∣
u0

− ĝn,j(u0)

)2

(b) conclude with approximately 100(1− α)% confidence that

∂θ

∂uj
∈
[
ĝn,j(u0)−

σ̂n,j(u0)z1−α/2√
n

, ĝn,j(u0) +
σ̂n,j(u0)z1−α/2√

n

]

4.2.2 When does IPA work?

IPA can be applied if assumptions 1–3 hold. The first assumption depends on the model and
simulator. The second assumption can be relaxed. If we don’t have an analytical expression
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for ∂h(Xi,u)/∂uj|u0 , we can approximate it by the central difference

h(Xi,u0 + (ε/2)ej)− h(Xi,u0 − (ε/2)ej)

ε
.

Since h(Xi, ·) can be evaluated exactly, we do not need Monte Carlo techniques to evaluate
this central difference. If the perturbation ε is sufficiently small, then the O(ε2) bias is
negligible.

The third assumption,
∇Eh(X,u) = E∇uh(X,u),

is the most restrictive. A sufficient condition for it to hold is that both of the following are
satisfied:

• h(X,u) is differentiable with respect to each uj at u0 with probability 1, and

• there exist δ > 0 and ` : Rm → R such that E `(X) is finite, and for almost every X,

max {‖v − u0‖ , ‖w − u0‖} ≤ δ =⇒ |h(X,v)− h(X,w)| ≤ `(X) ‖v −w‖ .

The second condition says that h(X,u) is almost surely Lipschitz continuous on a δ-neighborhood
of u0, and that the Lipschitz constant `(X) has finite expected value.

4.3 The likelihood ratio method

IPA is unbiased, simple to implement, and computationally efficient. However, it can only
be applied if all u-dependence is in the function h. By contrast, the likelihood ratio method
applies only when h is independent of u, i.e., when

θ(u) := Eu h(X).

(Contrast this with the general definition (4.1), which includes both structural and dis-
tributional dependence, and with the IPA definition (4.2), which includes only structural
dependence.) The basic idea of the likelihood ratio method is to use the importance sam-
pling trick (see §3.5) to reduce the problem to one with only structural dependence, then
apply IPA.

Suppose X is continuous with pdf f(·,u) and f̃ is an importance sampling density. (Recall
that this means f̃ has the same support as f(·,u), i.e.,

f(x,u) 6= 0 =⇒ f̃(x) 6= 0

for all x ∈ Rm.) Then

θ(u) = Eu h(X) =

∫
Rm

h(x)f(x,u)dx =

∫
Rm

(
h(x)f(x,u)

f̃(x)

)
f̃(x)dx

= E h̃(X̃,u).
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Here the random vector X̃ has pdf f̃ , and h̃ : Rm × Rd → R is defined by

h̃(x) =

{
0 if f(x) = 0

h(x,u)f(x,u)/f̃(x) otherwise.

By working with X̃ ∼ f̃(·) instead of X ∼ f(·,u) and h̃ instead of h, we have found that

θ(u) = Eu h(X) = E h̃(X̃,u).

In other words, we have transformed all distributional dependence on u into structural
dependence on u. If h̃ and X̃ satisfy the conditions in §4.2.2, therefore, we can estimate
∇θ(u) using IPA.

4.3.1 The likelihood ratio algorithm

Algorithm 14 (Likelihood ratio estimation of g(u) = ∇Eu h(X) at u0). Given confi-
dence level α ∈ (0, 1), sample size n ∈ N, and importance sampling density f̃ :

1. generate X̃1, . . . , X̃n iid from f̃

2. estimate g(u0) = ∇E h̃(X̃,u0) = E∇h̃(X̃,u0) by

ĝn(u0) =
1

n

n∑
i=1

∇h̃(X̃i,u0)

3. for j = 1, . . . , d

(a) estimate Var ∂h(X,u)/∂uj|u0 by

σ̂2
n,j(u0) =

1

n− 1

n∑
i=1

(
∂h(Xi,u)

∂uj

∣∣∣∣
u0

− ĝn,j(u0)

)2

(b) conclude with approximately 100(1− α)% confidence that

gj(u0) ∈
[
ĝn,j(u0)−

σ̂n,j(u0)z1−α/2√
n

, ĝn,j(u0) +
σ̂n,j(u0)z1−α/2√

n

]

4.3.2 Choosing an importance sampling density

The only requirements on the density f̃ are that
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1. we can sample from f̃ , and

2. f̃(x) 6= 0 whenever f(x,u) 6= 0.

The typical choice of f̃ is f̃(x) = f(x,u0).

4.4 Summary

Algorithm u-dependence # h calls Advantages Disadvantages

FFD general (d+ 1)n model-free
choose ε1, . . . , εd
O(εj) bias

CFD general 2dn model-free
choose ε1, . . . , εd
O(ε2j) bias

IPA structural 0
unbiased
low variance

prove ∇Eh(X,u) = E∇h(X,u)
express ∇uh(·,u) analytically

LR distributional 0 unbiased

choose f̃

prove ∇E h̃(X̃,u) = E∇h̃(X̃,u)

express ∇uh̃(·,u) analytically
often high variance
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