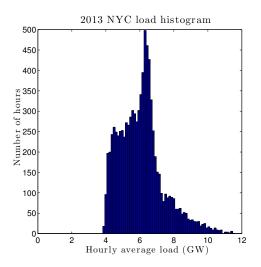
Economic MPC of Thermal Storage for Demand Response

American Control Conference, July 1, 2015

Kevin Kircher, kircher.mae.cornell.edu


Model

Simulation

Model

Simulation

Power system peaks are expensive

- $\bullet~95^{\rm th}$ percentile: 8.5 GW
- maximum: 11.5 GW
- 1 GW of new peaking capacity: \$1 billion

Depeaking with thermal storage

- peaks happen on hot summer days, driven by AC
- curtailing cooling on hot days risks bothering occupants
- storage eliminates this risk
- why **thermal** storage?
 - $\diamond\,$ electrochemical storage: ^ 500-600 k/kWh
 - $\diamond~$ thermal storage: ^ 14-20 $\rm Wh_{th}$ (equivalent to 35-60 $\rm KWh$ with chiller COP of 2.5-3)

¹R. Hensley et al., "Battery Technology Charges Ahead." McKinsey Quarterly 3 (2012): 5-50.

²A. Arteconi *et al.*, "State of the Art of Thermal Storage for Demand-Side Management." Applied Energy **93** (2012): 371-389.

Can MPC handle the incentives that real buildings face?

A challenging case study

- ConEd's default rate plan³ for large commercial buildings
 hourly energy prices determined by wholesale market
 - $\diamond~$ three-tiered demand charge
- a ConEd demand response program⁴

Main result: yes, but it's important to include true incentives, particularly demand charge, in MPC objective function

³Rider M - Day-Ahead Hourly Pricing. General Rule 24: Service Classification Riders. ConEd, 2014.

⁴Commercial System Relief Program. Demand Response Program Details, ConEd, 2014.

Model

Simulation

Physics

- DOE "large office" prototype 5 (3 floors, 14,000 $\mathrm{m}^2)$
- $\bullet\,$ quasi-steady model extends seminal work 6 to include
 - $\diamond~{\rm two~chillers}$
 - $\diamond~{\rm temperature}\xspace$ varying COPs
 - $\diamond\,$ non-ideal tank and heat exchanger efficiencies

⁵Commercial Building Prototype Models: "Large Office." *Building Energy Codes Program*, U.S. Department of Energy. (2011)

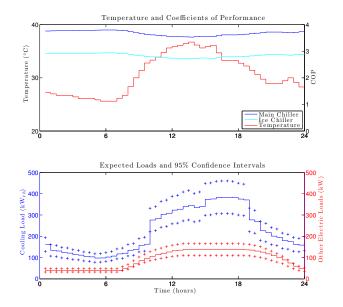
⁶Henze, G. et al. "Development of a Predictive Optimal Controller for Thermal Energy Storage Systems." HVAC&R Research 3.3 (1997): 233-264.

Physics (continued)

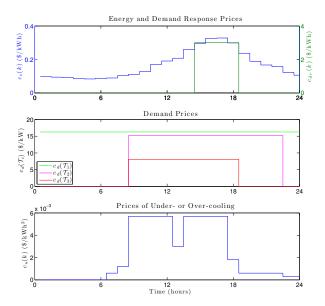
$$\mathbf{x}(k+1) = A\mathbf{x}(k) + B(k)\mathbf{u}(k) + G\mathbf{w}(k)$$

• states

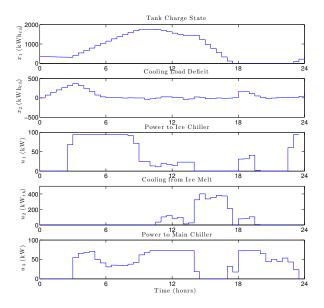
- \diamond tank charge $(x_1, \text{kWh}_{\text{th}})$
- \diamond cooling deficit (x_2 , kWh_{th})
- $\bullet \ {\rm controls}$
 - \diamond ice chiller power (u_1 , kW)
 - \diamond cooling from ice (u_2, kW_{th})
 - \diamond main chiller power (u_3 , kW)
- disturbances (Gaussian, white)
 - \diamond cooling demand (w_1 , kW_{th})
 - \diamond electrical demand (w_2 , kW)

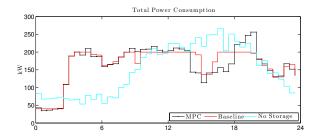

MPC optimization

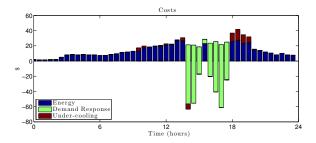
- 24-hour horizon, half-hour time steps
- minimize
 - + energy cost
 - + increase in demand cost
 - + occupant discomfort
 - + terminal cost (tank depletion)
 - demand response revenue
- subject to
 - $\diamond~$ chiller capacity and ramping limits
 - $\diamond~{\rm tank}~{\rm limit}$
- solved in CVX, driving SDPT3


Model

Simulation

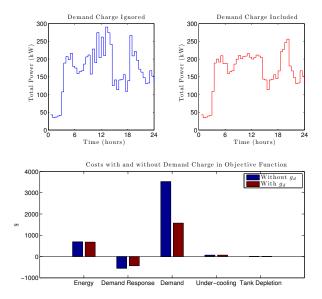

Simulation day


Prices



A typical Monte Carlo run

A typical Monte Carlo run (continued)



Model

Simulation

Important to model demand charge

Lots of extensions

- optimal tank size?
- simulate for a month, study demand charge in depth
- other economic incentives
 - $\diamond\,$ critical peak pricing
 - $\diamond~$ ancillary services
 - $\diamond~$ contracts with aggregators

All code is available by email or at kircher.mae.cornell.edu.

Thanks to...

- the Consortium for Electric Reliability Technology Solutions (CERTS) for funding
- Max Zhang for advising
- Santiago Naranjo Palacio, Brandon Hencey, and Eilyan Bitar for ideas and feedback
- you for listening!