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Power system peaks are expensive
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Depeaking with thermal storage

• peaks happen on hot summer days, driven by AC

• curtailing cooling on hot days risks bothering occupants

• storage eliminates this risk

• why thermal storage?

� electrochemical storage:1 500-600 $/kWh
� thermal storage:2 14-20 $/kWhth

(equivalent to 35-60 $/kWh with chiller COP of 2.5-3)

1
R. Hensley et al., “Battery Technology Charges Ahead.” McKinsey Quarterly 3 (2012):

5-50.
2
A. Arteconi et al., “State of the Art of Thermal Storage for Demand-Side Management.”

Applied Energy 93 (2012): 371-389.
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Can MPC handle the incentives that real buildings face?

A challenging case study

• ConEd’s default rate plan3 for large commercial buildings

� hourly energy prices determined by wholesale market
� three-tiered demand charge

• a ConEd demand response program4

Main result: yes, but it’s important to include true incentives,
particularly demand charge, in MPC objective function

3
Rider M - Day-Ahead Hourly Pricing. General Rule 24: Service Classification Riders.

ConEd, 2014.
4
Commercial System Relief Program. Demand Response Program Details, ConEd, 2014.
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Physics

• DOE “large office” prototype5 (3 floors, 14,000 m2)

• quasi-steady model extends seminal work6 to include

� two chillers
� temperature-varying COPs
� non-ideal tank and heat exchanger efficiencies

5
Commercial Building Prototype Models: “Large Office.” Building Energy Codes Program,

U.S. Department of Energy. (2011)
6
Henze, G. et al. “Development of a Predictive Optimal Controller for Thermal Energy

Storage Systems.” HVAC&R Research 3.3 (1997): 233-264.
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Physics (continued)

x(k + 1) = Ax(k) + B(k)u(k) + Gw(k)

• states

� tank charge (x1, kWhth)
� cooling deficit (x2, kWhth)

• controls

� ice chiller power (u1, kW)
� cooling from ice (u2, kWth)
� main chiller power (u3, kW)

• disturbances (Gaussian, white)

� cooling demand (w1, kWth)
� electrical demand (w2, kW)
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MPC optimization

• 24-hour horizon, half-hour time steps

• minimize

+ energy cost
+ increase in demand cost
+ occupant discomfort
+ terminal cost (tank depletion)
− demand response revenue

• subject to

� chiller capacity and ramping limits
� tank limit

• solved in CVX, driving SDPT3
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Simulation day
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Prices

0 6 12 18 24
0

0.2

0.4

Energy and Demand Response Prices

c
e
(k

)
($

/
k
W

h
)

0 6 12 18 24
0

2

4

c
d
r
(k

)
($

/
k
W

h
)

0 6 12 18 24
0

5

10

15

20

Demand Prices

c
d
(T

i)
($

/
k
W

)

c d(T1)
c d(T2)
c d(T3)

0 6 12 18 24
0

2

4

6
x 10

−3 Prices of Under- or Over-cooling

Time (hours)

c
u
(k

)
($

/
k
W

h
2
)

13 / 19



A typical Monte Carlo run
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A typical Monte Carlo run (continued)
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Important to model demand charge
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Lots of extensions

• optimal tank size?

• simulate for a month, study demand charge in depth

• other economic incentives

� critical peak pricing
� ancillary services
� contracts with aggregators

All code is available by email or at kircher.mae.cornell.edu.
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