Lecture 9 – 1st law with property tables Purdue ME 200, Thermodynamics I

Kevin J. Kircher, kircher@purdue.edu

Outline

Applying the 1st law with property tables

Example #1

Example #2

1st law for closed systems

• for closed systems (no mass transfer),

$$\Delta \mathsf{KE} + \Delta \mathsf{PE} + \Delta U = Q - W$$

- KE is system's center-of-mass kinetic energy
- PE is system's center-of-mass gravitational potential energy
- *U* is system's internal energy
- Q is heat transfer from surroundings to system
- W is work done by system on surroundings

How to evaluate ΔU ?

- once in a while, we have a mathematical formula for ΔU
- for example,
 - $\diamond~\sim$ incompressible solids and liquids with \sim constant specific heats
 - $\diamond~\sim \!\! \text{ideal}$ gases with $\sim \!\! \text{constant}$ specific heats
- but usually, we just have empirical data in property tables

Evaluating ΔU with property tables

• for any process moving a closed system from state 1 to 2,

$$\Delta U = U_2 - U_1 = m(u_2 - u_1)$$

• if system is a single phase in state *i*,

 \diamond can find u_i in compressed liquid or superheated vapor table

• if system is a two-phase liquid-vapor mixture in state *i*,

$$\diamond \ u_i = u_{\mathsf{liq}} + x_i(u_{\mathsf{vap}} - u_{\mathsf{liq}})$$

- \diamond can find u_{liq} and u_{vap} in saturation table
- \diamond quality x_i must be given or calculated

Outline

Applying the 1st law with property tables

Example #1

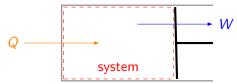
Example #2

A piston compresses 10 kg of CO₂ gas from 1 MPa and 0.5 m³ to 0.2 m³ and 50 °C. The process is polytropic with n = 1.2. How much energy transfers via

- (a) work?
- (b) heat transfer?

Given and find

• given:


- find:
 - (a) W(b) Q

Assumptions

- closed system ($\Delta m = 0$)
- no center-of-mass motion ($\Delta KE = \Delta PE = 0$)
- quasi-equilibrium process (equilibrium state is well-defined)
- polytropic process $(p_1V_1^n = p_2V_2^n)$ with n = 1.2

System diagram and basic equations

• system diagram:

• basic equations:

$$\Delta \mathsf{KE} + \Delta \mathsf{PE} + \Delta U = Q - W$$
 $W = \int_{V_1}^{V_2} p \mathsf{d} V$

Solution to part (a)

- process is polytropic, so $pV^n = c$ (some constant)
- work is therefore

$$W = \int_{V_1}^{V_2} p \mathrm{d}V = c \int_{V_1}^{V_2} V^{-n} \mathrm{d}V = \frac{c \left(V_2^{1-n} - V_1^{1-n}\right)}{1-n}$$

• but $c = p_1 V_1^n = p_2 V_2^n$, so

$$W = \frac{p_2 V_2^n V_2^{1-n} - p_1 V_1^n V_1^{1-n}}{1-n} = \frac{p_2 V_2 - p_1 V_1}{1-n}$$

• from polytropic assumption, $p_2V_2^n = p_1V_1^n$, so

$$p_2 = \frac{p_1 V_1^n}{V_2^n} = \frac{(1000 \text{kPa})(0.5 \text{m}^3)^{1.2}}{(0.2 \text{m}^3)^{1.2}} = 3000 \text{kPa}$$

Solution to part (a) (continued)

• plugging numbers into the expression for work,

$$W = \frac{p_2 V_2 - p_1 V_1}{1 - n}$$

= $\frac{(3000 \text{kPa})(0.2 \text{m}^3) - (1000 \text{kPa})(0.5 \text{m}^3)}{1 - (1.2)}$
= -500 \text{kJ}

• since W is negative, surroundings do work on system

Solution to part (b)

- since $\Delta KE = \Delta PE = 0$, 1st law simplifies to $\Delta U = Q W$
- change in internal energy is $\Delta U = m(u_2 u_1)$
- can find u_1 and u_2 in superheated vapor table for CO₂
- \bullet at ${\it T}_2=$ 50 °C and ${\it p}_2=$ 3 MPa, ${\it u}_2=$ 335.94 kJ/kg

	1	Internal	l					
Temp.	Volume	Energy	Enthalpy	Entropy				
(C)	(m³/kg)	(kJ/kg)	(kJ/kg)	(kJ/kg/K)				
	p = 30.	p = 30.0 bar = 3.0 MPa, T _{sat} = -5.55°C						
Sat.	0.012207	284.09	320.71	1.2098				
0	0.012931	290.52	329.32	1.2416				
5	0.013525	295.83	336.41	1.2673				
10	0.014082	300.83	343.08	1.2911				
15	0.014610	305.60	349.44	1.3134				
20	0.015116	310.21	355.56	1.3344				
30	0.016074	319.07	367.30	1.3738				
40	0.016980	327.61	378.55	1.4104				
50	0.017847	335.94	389.48	1.4447				

Solution to part (b) (continued)

• need to interpolate to find u_1 at $p_1 = 1$ MPa

 \diamond specific volume in state 1 is $v_1 = V_1/m = 0.05 \text{ m}^3/\text{kg}$

- \diamond nearby, $u_a = 316.68 \text{ kJ/kg}$ at $v_a = 0.0491 \text{ m}^3/\text{kg}$
- ♦ and $u_b = 320.21 \text{ kJ/kg}$ at $v_b = 0.050196$

		Internal							
Temp.	Volume	Energy	Enthalpy	Entropy					
(C)	(m ³ /kg)	(kJ/kg) (kJ/kg		(kJ/kg/K)					
	p = 10.	p = 10.0 bar = 1.0 MPa, T _{sat} = -40.12°C							
Sat.	0.038453	283.94	322.39	1.3835					
-40	0.038485	284.03	322.52	1.3841					
-35	0.039766	287.85	327.61	1.4057					
-30	0.041012	291.59	332.60	1.4264					
-25	0.042228	295.26	337.49	1.4463					
-20	0.043418	298.89	342.31	1.4655					
-15	0.044587	302.49	347.08	1.4842					
-10	0.045738	306.06	351.80	1.5023					
-5	0.046872	309.61	356.48	1.5199					
0	0.047992	313.15	361.14	1.5371					
5	0.049100	316.68	365.78	1.5540					
10	0.050196	320.21	370.40	1.5704					

so interpolated specific internal energy is

$$u_1 = u_a + \frac{u_b - u_a}{v_b - v_a}(v_1 - v_a) = 319.58$$
kJ/kg

11/20

Solution to part (b) (continued)

• rearranging 1st law and plugging in ΔU definition gives

$$Q = \Delta U + W = m(u_2 - u_1) + W$$

= (10kg)[(335.94kJ/kg) - (319.58kJ/kg)] + (-500kJ)
= -336.3kJ

• since Q < 0, heat transfers from system to surroundings

What did we learn?

- superheated CO₂ gas got squished from 0.5 to 0.2 m^3
- gas temperature rose from ${\sim}10$ to 50 $^{\circ}C$
- gas pressure rose from 10 to 30 bar
- system gained 500 kJ from surroundings via work
- system lost 336 kJ to surroundings via heat transfer
- remaining 164 kJ ended up as internal energy

Outline

Applying the 1st law with property tables

Example #1

Example #2

A rigid tank has two compartments. The left-hand compartment contains 0.005 m³ of saturated liquid water at 80 °C. The right-hand compartment contains 10 m³ of water at 200 °C and 70 kPa. The divider is removed and the water mixes. The water is then heated to saturated vapor.

- (a) What is the internal energy after mixing but before heating?
- (b) How much energy is added via heat transfer?

Given and find

• given:

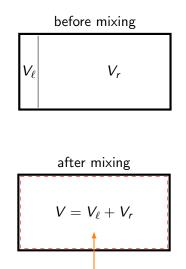
 $\diamond\,$ left: saturated liquid with $V_\ell=0.005$ m^3, $T_\ell=80~^\circ\text{C}$

- \diamond right: $V_r = 10 \text{ m}^3$, $T_r = 200 \text{ }^\circ\text{C}$, $p_r = 70 \text{ kPa}$
- $\diamond\,$ from saturation table and superheated vapor table,

►
$$v_{\ell} = 0.001029 \text{ m}^3/\text{kg}, u_{\ell} = 334.96 \text{ kJ/kg}$$

▶
$$v_r = 3.108 \text{ m}^3/\text{kg}$$
, $u_r = 2659.3 \text{ kJ/kg}$

- find:
 - $\diamond \ \ U_1 \ (\text{internal energy after mixing but before heating}) \\ \diamond \ \ Q$


Assumptions and basic equation

• assumptions:

- ◊ closed system (no mass transfer into tank)
- \diamond rigid tank (volume is constant, W = 0)
- \diamond no center-of-mass motion ($\Delta KE = \Delta PE = 0$)
- basic equation:

$$\Delta \mathsf{KE} + \Delta \mathsf{PE} + \Delta U = Q - W$$

System diagram

Solution to part (a)

• internal energy after mixing is

$$U_1 = U_{\ell} + U_r = m_{\ell}u_{\ell} + m_ru_r = \frac{V_{\ell}u_{\ell}}{v_{\ell}} + \frac{V_ru_r}{v_r}$$

• from saturation table and superheated vapor table,

$$v_{\ell} = 0.001029 \text{ m}^3/\text{kg}, u_{\ell} = 334.96 \text{ kJ/kg}$$

$$\diamond~v_r=3.108~{
m m^3/kg},~u_r=2659.3~{
m kJ/kg}$$

• so internal energy is

$$U_1 = \frac{(0.005\text{m}^3)(334.96\text{kJ/kg})}{0.001029\text{m}^3/\text{kg}} + \frac{(10\text{m}^3)(2659.3\text{kJ/kg})}{3.108\text{m}^3/\text{kg}}$$
$$= 1.628\text{MJ} + 8.556\text{MJ} = 10.18\text{MJ}$$

Solution to part (b)

• since $\Delta KE = \Delta PE = W = 0$, 1st law simplifies to

$$Q = \Delta U = U_2 - U_1 = mu_2 - U_1$$

- can find u₂ by interpolating saturation table
- mass is $m = m_{\ell} + m_r = V_{\ell} / v_{\ell} + V_r / v_r = 8.08$ kg
- so $v_2 = (V_\ell + V_r)/m = 1.239 \text{ m}^3/\text{kg}$

Solution to part (b) (continued)

Temp. (C)	Press. (bar)	Volume (v _f , m ³ /kg)	Internal Energy (u _f , kJ/kg)	Enthalpy (h _f , kJ/kg)	Entropy (s _f , kJ/kg/K)	Volume (v _g , m ³ /kg)	Internal Energy (u _g , kJ/kg)	Enthalpy (h _g , kJ/kg)	Entropy (s _g , kJ/kg/K)
100	1.0142	0.0010435	419.06	419.17	1.3072	1.6718	2506.0	2675.6	7.3541
110	1.4338	0.0010516	461.26	461.42	1.4188	1.2093	2517.7	2691.1	7.2381

• interpolating saturation table with $v_2 = 1.239 \text{ m}^3/\text{kg}$ gives

$$u_2 = u_a + \frac{u_b - u_a}{v_b - v_a}(v_2 - v_a) = 2517.0$$
kJ/kg

• so heat transfer is

$$Q = mu_2 - U_1 = (8.08 \text{kg})(2517.0 \text{kJ/kg}) - 10180 \text{kJ}$$

= 10.16MJ