Lecture 9 - 1st law with property tables

Purdue ME 200, Thermodynamics I

Kevin J. Kircher, kircher@purdue.edu

Outline

Applying the 1st law with property tables

Example \#1

Example \#2

1st law for closed systems

- for closed systems (no mass transfer),

$$
\Delta \mathrm{KE}+\Delta \mathrm{PE}+\Delta U=Q-W
$$

- KE is system's center-of-mass kinetic energy
- PE is system's center-of-mass gravitational potential energy
- U is system's internal energy
- Q is heat transfer from surroundings to system
- W is work done by system on surroundings

How to evaluate ΔU ?

- once in a while, we have a mathematical formula for ΔU
- for example,
$\diamond ~ \sim$ incompressible solids and liquids with \sim constant specific heats
$\diamond ~ \sim i d e a l ~ g a s e s ~ w i t h ~ \sim c o n s t a n t ~ s p e c i f i c ~ h e a t s ~$
- but usually, we just have empirical data in property tables

Evaluating ΔU with property tables

- for any process moving a closed system from state 1 to 2 ,

$$
\Delta U=U_{2}-U_{1}=m\left(u_{2}-u_{1}\right)
$$

- if system is a single phase in state i,
\diamond can find u_{i} in compressed liquid or superheated vapor table
- if system is a two-phase liquid-vapor mixture in state i,
$\diamond u_{i}=u_{\text {liq }}+x_{i}\left(u_{\text {vap }}-u_{\text {liq }}\right)$
\diamond can find $u_{\text {liq }}$ and $u_{\text {vap }}$ in saturation table
\diamond quality x_{i} must be given or calculated

Outline

Applying the 1st law with property tables

Example \#1

Example \#2

Problem statement

A piston compresses 10 kg of CO_{2} gas from 1 MPa and $0.5 \mathrm{~m}^{3}$ to $0.2 \mathrm{~m}^{3}$ and $50^{\circ} \mathrm{C}$. The process is polytropic with $n=1.2$. How much energy transfers via
(a) work?
(b) heat transfer?

Given and find

- given:

$$
\begin{aligned}
& \diamond m=10 \mathrm{~kg} \\
& \diamond p_{1}=1 \mathrm{MPa}=1000 \mathrm{kPa}, V_{1}=0.5 \mathrm{~m}^{3} \\
& \diamond V_{2}=0.2 \mathrm{~m}^{3}, T_{2}=50^{\circ} \mathrm{C}
\end{aligned}
$$

- find:
(a) W
(b) Q

Assumptions

- closed system ($\Delta m=0)$
- no center-of-mass motion ($\Delta \mathrm{KE}=\triangle \mathrm{PE}=0$)
- quasi-equilibrium process (equilibrium state is well-defined)
- polytropic process $\left(p_{1} V_{1}^{n}=p_{2} V_{2}^{n}\right)$ with $n=1.2$

System diagram and basic equations

- system diagram:

- basic equations:

$$
\begin{aligned}
\Delta \mathrm{KE}+\Delta \mathrm{PE}+\Delta U & =Q-W \\
W & =\int_{V_{1}}^{V_{2}} p \mathrm{~d} V
\end{aligned}
$$

Solution to part (a)

- process is polytropic, so $p V^{n}=c$ (some constant)
- work is therefore

$$
W=\int_{V_{1}}^{V_{2}} p \mathrm{~d} V=c \int_{V_{1}}^{V_{2}} V^{-n} \mathrm{~d} V=\frac{c\left(V_{2}^{1-n}-V_{1}^{1-n}\right)}{1-n}
$$

- but $c=p_{1} V_{1}^{n}=p_{2} V_{2}^{n}$, so

$$
W=\frac{p_{2} V_{2}^{n} V_{2}^{1-n}-p_{1} V_{1}^{n} V_{1}^{1-n}}{1-n}=\frac{p_{2} V_{2}-p_{1} V_{1}}{1-n}
$$

- from polytropic assumption, $p_{2} V_{2}^{n}=p_{1} V_{1}^{n}$, so

$$
p_{2}=\frac{p_{1} V_{1}^{n}}{V_{2}^{n}}=\frac{(1000 \mathrm{kPa})\left(0.5 \mathrm{~m}^{3}\right)^{1.2}}{\left(0.2 \mathrm{~m}^{3}\right)^{1.2}}=3000 \mathrm{kPa}
$$

Solution to part (a) (continued)

- plugging numbers into the expression for work,

$$
\begin{aligned}
W & =\frac{p_{2} V_{2}-p_{1} V_{1}}{1-n} \\
& =\frac{(3000 \mathrm{kPa})\left(0.2 \mathrm{~m}^{3}\right)-(1000 \mathrm{kPa})\left(0.5 \mathrm{~m}^{3}\right)}{1-(1.2)} \\
& =-500 \mathrm{~kJ}
\end{aligned}
$$

- since W is negative, surroundings do work on system

Solution to part (b)

- since $\triangle \mathrm{KE}=\triangle \mathrm{PE}=0$, 1st law simplifies to $\Delta U=Q-W$
- change in internal energy is $\Delta U=m\left(u_{2}-u_{1}\right)$
- can find u_{1} and u_{2} in superheated vapor table for CO_{2}
- at $T_{2}=50^{\circ} \mathrm{C}$ and $p_{2}=3 \mathrm{MPa}, u_{2}=335.94 \mathrm{~kJ} / \mathrm{kg}$

Temp. (C)	Volume $\left(\mathrm{m}^{3} / \mathrm{kg}\right)$	Internal Energy (kJ/kg)	Enthalpy (kJ/kg)	Entropy $(\mathrm{kJ} / \mathrm{kg} / \mathrm{K})$
	p = 30.0 bar $=3.0 \mathrm{MPa}, \mathrm{T}_{\text {sat }}=-5.55^{\circ} \mathrm{C}$			
Sat.	0.012207	284.09	320.71	1.2098
0	0.012931	290.52	329.32	1.2416
5	0.013525	295.83	336.41	1.2673
10	0.014082	300.83	343.08	1.2911
15	0.014610	305.60	349.44	1.3134
20	0.015116	310.21	355.56	1.3344
30	0.016074	319.07	367.30	1.3738
40	0.016980	327.61	378.55	1.4104
50	0.017847	335.94	389.48	1.4447

Solution to part (b) (continued)

- need to interpolate to find u_{1} at $p_{1}=1 \mathrm{MPa}$
\diamond specific volume in state 1 is $v_{1}=V_{1} / m=0.05 \mathrm{~m}^{3} / \mathrm{kg}$
\diamond nearby, $u_{a}=316.68 \mathrm{~kJ} / \mathrm{kg}$ at $v_{a}=0.0491 \mathrm{~m}^{3} / \mathrm{kg}$
\diamond and $u_{b}=320.21 \mathrm{~kJ} / \mathrm{kg}$ at $v_{b}=0.050196$

Temp. (C)	Volume $\left(\mathrm{m}^{3} / \mathrm{kg}\right)$	Internal Energy (kJ/kg)	Enthalpy (kJ/kg)	$\begin{gathered} \text { Entropy } \\ (\mathrm{kJ} / \mathrm{kg} / \mathrm{K}) \\ \hline \end{gathered}$
	$\mathrm{p}=10.0$ bar $=1.0 \mathrm{MPa}, \mathrm{T}_{\text {sat }}=-40.12{ }^{\circ} \mathrm{C}$			
Sat.	0.038453	283.94	322.39	1.3835
-40	0.038485	284.03	322.52	1.3841
-35	0.039766	287.85	327.61	1.4057
-30	0.041012	291.59	332.60	1.4264
-25	0.042228	295.26	337.49	1.4463
-20	0.043418	298.89	342.31	1.4655
-15	0.044587	302.49	347.08	1.4842
-10	0.045738	306.06	351.80	1.5023
-5	0.046872	309.61	356.48	1.5199
0	0.047992	313.15	361.14	1.5371
5	0.049100	316.68	365.78	1.5540
10	0.050196	320.21	370.40	1.5704

\diamond so interpolated specific internal energy is

$$
u_{1}=u_{a}+\frac{u_{b}-u_{a}}{v_{b}-v_{a}}\left(v_{1}-v_{a}\right)=319.58 \mathrm{~kJ} / \mathrm{kg}
$$

Solution to part (b) (continued)

- rearranging 1st law and plugging in ΔU definition gives

$$
\begin{aligned}
Q & =\Delta U+W=m\left(u_{2}-u_{1}\right)+W \\
& =(10 \mathrm{~kg})[(335.94 \mathrm{~kJ} / \mathrm{kg})-(319.58 \mathrm{~kJ} / \mathrm{kg})]+(-500 \mathrm{~kJ}) \\
& =-336.3 \mathrm{~kJ}
\end{aligned}
$$

- since $Q<0$, heat transfers from system to surroundings

What did we learn?

- superheated CO_{2} gas got squished from 0.5 to $0.2 \mathrm{~m}^{3}$
- gas temperature rose from ~ 10 to $50^{\circ} \mathrm{C}$
- gas pressure rose from 10 to 30 bar
- system gained 500 kJ from surroundings via work
- system lost 336 kJ to surroundings via heat transfer
- remaining 164 kJ ended up as internal energy

Outline

Applying the 1st law with property tables

Example \#1

Example \#2

Problem statement

A rigid tank has two compartments. The left-hand compartment contains $0.005 \mathrm{~m}^{3}$ of saturated liquid water at $80^{\circ} \mathrm{C}$. The right-hand compartment contains $10 \mathrm{~m}^{3}$ of water at $200^{\circ} \mathrm{C}$ and 70 kPa . The divider is removed and the water mixes. The water is then heated to saturated vapor.
(a) What is the internal energy after mixing but before heating?
(b) How much energy is added via heat transfer?

Given and find

- given:
\diamond left: saturated liquid with $V_{\ell}=0.005 \mathrm{~m}^{3}, T_{\ell}=80^{\circ} \mathrm{C}$
\diamond right: $V_{r}=10 \mathrm{~m}^{3}, T_{r}=200^{\circ} \mathrm{C}, p_{r}=70 \mathrm{kPa}$
\diamond from saturation table and superheated vapor table,
- $v_{\ell}=0.001029 \mathrm{~m}^{3} / \mathrm{kg}, u_{\ell}=334.96 \mathrm{~kJ} / \mathrm{kg}$
- $v_{r}=3.108 \mathrm{~m}^{3} / \mathrm{kg}, u_{r}=2659.3 \mathrm{~kJ} / \mathrm{kg}$
- find:
$\diamond U_{1}$ (internal energy after mixing but before heating) $\diamond Q$

Assumptions and basic equation

- assumptions:
\diamond closed system (no mass transfer into tank)
\diamond rigid tank (volume is constant, $W=0$)
\diamond no center-of-mass motion $(\Delta \mathrm{KE}=\Delta \mathrm{PE}=0)$
- basic equation:

$$
\Delta \mathrm{KE}+\Delta \mathrm{PE}+\Delta U=Q-W
$$

System diagram
before mixing

Solution to part (a)

- internal energy after mixing is

$$
U_{1}=U_{\ell}+U_{r}=m_{\ell} u_{\ell}+m_{r} u_{r}=\frac{V_{\ell} u_{\ell}}{v_{\ell}}+\frac{V_{r} u_{r}}{v_{r}}
$$

- from saturation table and superheated vapor table,

$$
\begin{aligned}
& \diamond v_{\ell}=0.001029 \mathrm{~m}^{3} / \mathrm{kg}, u_{\ell}=334.96 \mathrm{~kJ} / \mathrm{kg} \\
& \diamond v_{r}=3.108 \mathrm{~m}^{3} / \mathrm{kg}, u_{r}=2659.3 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

- so internal energy is

$$
\begin{aligned}
U_{1} & =\frac{\left(0.005 \mathrm{~m}^{3}\right)(334.96 \mathrm{~kJ} / \mathrm{kg})}{0.001029 \mathrm{~m}^{3} / \mathrm{kg}}+\frac{\left(10 \mathrm{~m}^{3}\right)(2659.3 \mathrm{~kJ} / \mathrm{kg})}{3.108 \mathrm{~m}^{3} / \mathrm{kg}} \\
& =1.628 \mathrm{MJ}+8.556 \mathrm{MJ}=10.18 \mathrm{MJ}
\end{aligned}
$$

Solution to part (b)

- since $\Delta K E=\triangle P E=W=0$, 1st law simplifies to

$$
Q=\Delta U=U_{2}-U_{1}=m u_{2}-U_{1}
$$

- can find u_{2} by interpolating saturation table
- mass is $m=m_{\ell}+m_{r}=V_{\ell} / v_{\ell}+V_{r} / v_{r}=8.08 \mathrm{~kg}$
- so $v_{2}=\left(V_{\ell}+V_{r}\right) / m=1.239 \mathrm{~m}^{3} / \mathrm{kg}$

Solution to part (b) (continued)

Temp. (C)	Press. (bar)	$\begin{aligned} & \text { Volume } \\ & \left(\mathrm{v}_{\mathrm{f}}, \mathrm{~m}^{3} / \mathrm{kg}\right) \end{aligned}$	Internal Energy ($\mathrm{u}_{\mathrm{f}, \mathrm{kJ}} \mathrm{kg}$)	Enthalpy ($\mathrm{h}_{\mathrm{f}}, \mathrm{kJ} / \mathrm{kg}$)	$\begin{gathered} \text { Entropy } \\ \left(\mathrm{s}_{\mathrm{f}}, \mathrm{~kJ} / \mathrm{kg} / \mathrm{K}\right) \end{gathered}$	$\begin{aligned} & \text { Volume } \\ & \left(\mathrm{v}_{\mathrm{g}}, \mathrm{~m}^{3} / \mathrm{kg}\right) \end{aligned}$	Internal Energy ($\mathrm{u}_{\mathrm{g}}, \mathrm{kJ} / \mathrm{kg}$)	Enthalpy $\left(h_{g}, k J / k g\right)$	$\begin{gathered} \text { Entropy } \\ \left(\mathrm{s}_{\mathrm{g}}, \mathrm{~kJ} / \mathrm{kg} / \mathrm{K}\right) \end{gathered}$
100	1.0142	0.0010435	419.06	419.17	1.3072	1.6718	2506.0	2675.6	7.3541
110	1.4338	0.0010516	461.26	461.42	1.4188	1.2093	2517.7	2691.1	7.2381

- interpolating saturation table with $v_{2}=1.239 \mathrm{~m}^{3} / \mathrm{kg}$ gives

$$
u_{2}=u_{a}+\frac{u_{b}-u_{a}}{v_{b}-v_{a}}\left(v_{2}-v_{a}\right)=2517.0 \mathrm{~kJ} / \mathrm{kg}
$$

- so heat transfer is

$$
\begin{aligned}
Q & =m u_{2}-U_{1}=(8.08 \mathrm{~kg})(2517.0 \mathrm{~kJ} / \mathrm{kg})-10180 \mathrm{~kJ} \\
& =10.16 \mathrm{MJ}
\end{aligned}
$$

