Lecture 13 – Conservation of mass Purdue ME 200, Thermodynamics I

Kevin J. Kircher, kircher@purdue.edu

Outline

Background and notation

Calculating mass flows

Conservation of mass

Example

Open and closed systems systems

- a closed system or control mass is a fixed quantity of matter
- an open system or control volume is a region of space
- the boundary of a control volume is called a **control surface**

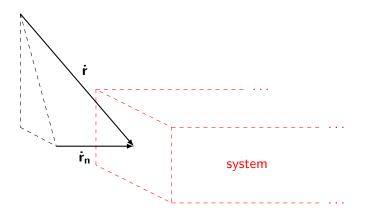
	open	closed
energy crosses boundary?	yes	yes
matter crosses boundary?	yes	no

Velocity and volume notation

- Moran et al. use V for velocity in this chapter
- but we already use V for volume and v for specific volume
- so we'll call velocity **r**
- this follows mechanics notation:
 - $\diamond~$ position vector is ${\bf r}$
 - $\diamond~$ velocity vector is $\dot{\textbf{r}}$
 - ♦ magnitude of velocity vector is $\dot{r} = \|\dot{\mathbf{r}}\| = \sqrt{\dot{\mathbf{r}} \cdot \dot{\mathbf{r}}}$

Normal component of velocity

- the subscript *n* means **normal** to system boundary
- specifically, \dot{r}_n is
 - $\diamond~$ the magnitude
 - $\diamond~$ of the component of the velocity vector
 - $\diamond\,$ along the normal vector to the boundary



surroundings

Outline

Background and notation

Calculating mass flows

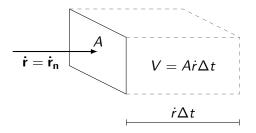
Conservation of mass

Example

One-dimensional flow

- in the one-dimensional flow model,
 - $\diamond~$ mass flows are always normal to boundary (so $\dot{r}_n=\dot{r})$
 - $\diamond\,$ intensive properties are uniform over entrance/exit surfaces
 - \nearrow this includes density and velocity of mass flow \nwarrow

Calculating one-dimensional mass flows



- consider one-dimensional flow across a surface of area A
- in time Δt , mass $\Delta m = \rho A \dot{r} \Delta t$ crosses surface
- as $\Delta t
 ightarrow 0$, $rac{\Delta m}{\Delta t}
 ightarrow \dot{m} =
 ho A \dot{r}$
- \star don't mix up density ρ (kg/m³) and pressure p (kPa)

Calculating non-one-dimensional mass flows

• if the one-dimensional assumptions don't hold, then

$$\dot{m} = \iint_{B} \rho \dot{r}_{n} \mathrm{d}A$$

- *B* is the system boundary (in general, a 2D surface in 3D)
- dA is a differential surface area element
- ρ and \dot{r}_n may vary along the boundary
- you'll rarely if ever need this form; if you do, see the textbook

Outline

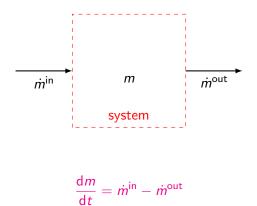
Background and notation

Calculating mass flows

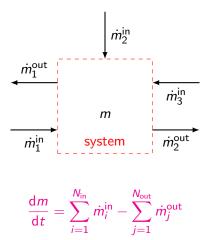
Conservation of mass

Example

Single-input, single-output form



Multiple-input, multiple-output form



Steady-state form

- in steady state, all properties are constant with respect to time
- in particular, mass (a property) is constant, so dm/dt = 0 and

$$\sum_{i=1}^{\mathcal{N}_{\mathsf{in}}}\dot{m}_i^{\mathsf{in}} = \sum_{j=1}^{\mathcal{N}_{\mathsf{out}}}\dot{m}_j^{\mathsf{out}}$$

Outline

Background and notation

Calculating mass flows

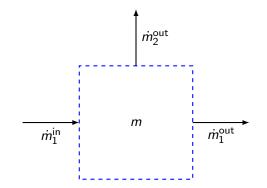
Conservation of mass

Example

Lake Mead, the reservoir above the Hoover Dam on the Colorado River, initially contains 35 billion m^3 of water. Lake Mead receives 10 billion m^3 per year from the Glen Canyon Dam and other tributaries. The Hoover Dam releases water at an average speed of 0.5 m/s through a cross-sectional area of 700 m². Lake Mead loses 500 million m^3 per year via evaporation. How long until Lake Mead runs dry?

 $12 \, / \, 19$

System diagram



Given and find

• given:

- \diamond initial volume: V(0) = 35 billion m³
- \diamond final volume: $V(t) = 0 \text{ m}^3$
- \diamond $\dot{V}_1^{in} = 10$ billion m³ per year = 317.1 m³/s
- \diamond at output 1, $\dot{r} = 0.5 \text{ m/s}$ and $A = 700 \text{ m}^2$
- \diamond $\dot{V}_2^{\rm out}$ = 500 million m³ per year = 15.9 m³/s

• find:

 \diamond time *t* when water volume reaches $V(t) = 0 \text{ m}^3$

Assumptions and basic equations

assume:

- $\diamond~$ one-dimensional flow at output 1
- ◊ time-invariant flow at all inputs and outputs
- ◊ time-invariant, spatially-uniform water density
- basic equation:

$$\frac{\mathrm{d}m}{\mathrm{d}t} = \sum_{i=1}^{N_{\mathrm{in}}} \dot{m}_i^{\mathrm{in}} - \sum_{j=1}^{N_{\mathrm{out}}} \dot{m}_j^{\mathrm{out}}$$

Solution

• from conservation of mass,

$$\frac{\mathrm{d}m}{\mathrm{d}t} = \dot{m}_1^{\mathrm{in}} - \dot{m}_1^{\mathrm{out}} - \dot{m}_2^{\mathrm{out}}$$

• but $m = \rho V$ and ρ is time-invariant and spatially uniform, so

$$\rho \frac{\mathrm{d}V}{\mathrm{d}t} = \rho \left(\dot{V}_1^{\mathrm{in}} - \dot{V}_1^{\mathrm{out}} - \dot{V}_2^{\mathrm{out}} \right)$$

or

$$\frac{\mathrm{d}V}{\mathrm{d}t} = \dot{V}_1^{\mathrm{in}} - \dot{V}_1^{\mathrm{out}} - \dot{V}_2^{\mathrm{out}}$$

Solution (continued)

- flow is one-dimensional, so $\dot{m}_1^{\rm out}=
ho{\it A}\dot{r},$ or equivalently,

$$\dot{V}_1^{\text{out}} = rac{\dot{m}_1^{\text{out}}}{
ho} = A\dot{r} = (700\text{m}^2)(0.5\text{m/s}) = 350\text{m}^3/\text{s}$$

• so volumetric flow rate is

$$\frac{dV}{dt} = \dot{V}_1^{\text{in}} - \dot{V}_1^{\text{out}} - \dot{V}_2^{\text{out}}$$

= 317.1m³/s - 350m³/s - 15.9m³/s
= -48.8m³/s

Solution (continued)

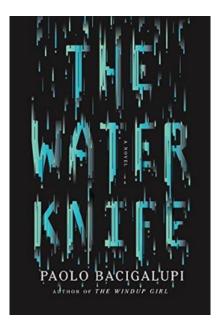
• since dV/dt is constant,

$$V(t) = V(0) + \left(\frac{\mathrm{d}V}{\mathrm{d}t}\right)t$$

• therefore,

$$t = \frac{V(t) - V(0)}{dV/dt} = \frac{0m^3 - 3.5 \times 10^{10}m^3}{-48.8m^3/s}$$

= 22.7 years



 $19 \, / \, 19$