Lecture 2 – Definitions Purdue ME 200, Thermodynamics I

Kevin J. Kircher, kircher@purdue.edu

Outline

Systems

Properties

States and processes

System, surroundings and boundary

- a system is a portion of space or matter we want to study
- the surroundings are everything but the system
- the **boundary** separates the system from the surroundings

Types of system

- an open system or control volume is a region of space
- a closed system or control mass is a collection of matter
- an isolated system does not interact with the surroundings

	open	closed	isolated
energy crosses boundary?	yes	yes	no
matter crosses boundary?	yes	no	no

Outline

Systems

Properties

States and processes

Extensive, intensive and specific properties

- system **properties** are characteristics that can be quantified with no knowledge of the system's history
- **extensive** properties are additive when systems combine (clone the system and they double)
- **intensive** properties are independent of system size (clone the system and they stay the same)
- a specific property is an extensive property per unit mass
- e.g., specific volume is $v = V/m = 1/\rho$ (in m³/kg)
- is specific volume extensive? intensive?

Pressure

- pressure is force per unit area
- its units are Pascals (1 Pa = 1 N/m^2)
- common assumption:

 $\diamond\,$ the pressure at any point is the same in all directions

- this is true for fluids at rest
- it's a good approximation for most purposes in this class
- this assumption lets us calculate pressure by
 - 1. finding the weight pressing down on a horizontal surface
 - 2. dividing by the surface area

5 / 20

Absolute, gage and vacuum pressures

- this class almost always uses absolute pressure
 - ◊ absolute pressure is measured relative to a vacuum
 - $\diamond\,$ a system's absolute pressure is denoted by p
- atmospheric pressure is $p_{atm} = 101.3$ kPa
- the quantity $|p p_{atm}|$ is called
 - ◊ gage pressure for systems above atmospheric pressure

◊ vacuum pressure for systems below atmospheric pressure

Temperature

- temperature is a surprisingly subtle concept
- it's not quite what we sense as 'hot' or 'cold'
- it's closely related to
 - $\diamond\,$ a pointer in the direction of natural heat transfer
 - $\diamond\,$ an averaged kinetic energy of molecules, atoms or particles

Thermal equilibrium

- imagine a block that feels hot and another that feels cold
- bring them together and periodically touch them
- the hot block will start to feel cooler; the cold block, warmer
- eventually, their feelings of warmth will stop changing
- and both blocks will feel equally warm

- at that point, the blocks are in thermal equilibrium
- and we postulate that their temperatures are equal

Oth law of thermodynamics

• Oth law: thermal equilibrium is transitive

- \diamond if A is in thermal equilibrium with B
- $\diamond~$ and B is in thermal equilibrium with C
- $\diamond\,$ then A is in thermal equilibrium with C
- the 0th law underpins all thermometers
- to measure the temperature of thing C,
 - \diamond in the lab, calibrate thermometer *B* to well-understood *A*
 - $\diamond\,$ in the field, bring B into thermal equilibrium with C

Defining temperature scales

- pick temperatures T_1 and T_2 at conditions 1 and 2
- a degree is defined as the fraction $1/(T_2 T_1)$
- Anders Celsius picked
 - $\diamond~T_1=0~^\circ\text{C}$ at water's freezing point at atmospheric pressure
 - $\diamond~$ $T_2 = 100~^\circ\text{C}$ at water boil
 - $\diamond~$ so 1 $^{\circ}\text{C}$ is 1/100th of the $\Delta\mathcal{T}$ between water freeze and boil
- Daniel Fahrenheit picked
 - \diamond $T_1 = 0$ °F on a very cold day (later 32 °F at water freeze)
 - $\diamond~$ $T_2 = 100~^\circ\text{F}$ at body temperature (later 212 $^\circ\text{F}$ at water boil)
 - $\diamond~$ so 1 $^\circ\text{F}$ is 1/180th of the $\Delta\mathcal{T}$ between water freeze and boil

Absolute temperature scales

- experiments show that there's a lower limit on temperature
- we call this temperature absolute zero
- absolute temperature scales have T = 0 at absolute zero
- Kelvin and Rankine defined absolute temperature scales
 - ◊ Kelvin (William Thomson) matched Celsius' degree definition (1 K is 1/100th of the Δ*T* between water freeze and boil)
 - \diamond William Rankine matched Fahrenheit's definition (1/180th)

Temperature scales

 $T[K] = T[^{\circ}C] + 273.2 = 5T[^{\circ}R]/9 = 5(T[^{\circ}F] + 459.7)/9$

Moran et al. (2018): Fundamentals of Engineering Thermodynamics.

Mental conversion between $^\circ\text{C}$ and $^\circ\text{F}$

13/20

Outline

Systems

Properties

States and processes

States and equilibrium

- a state is a list of properties that fully characterize a system
- a system in **equilibrium** does not change state when isolated (loosely, properties are spatially uniform within the system)
- in equilibrium, the state is usually a *short* list of properties
- out of equilibrium, the list may be long and complicated
- an equation of state relates properties to one another
- different systems have different equations of state

Ideal gas example

- in an ideal gas, particles do not interact with one another
 - $\diamond\,$ no real gas behaves exactly like an ideal gas
 - \diamond but it's often a good approximation (e.g. for air at p_{atm})
- a system of ideal gas has equation of state pv = RT
 - $R = \overline{R}/M$ (in J/kg/K) is a constant for any particular gas
 - R = 8.31 J/mol/K is the universal gas constant
 - M = m/n is the molecular weight of the gas (in kg/mol)
 - $\diamond m$ is the mass of gas in the system
 - \diamond *n* is the number of moles of gas in the system
- any two of (p, v, T) fully characterize a system of ideal gas
 - \diamond given (p, v), temperature is determined by T = pv/R
 - \diamond given (v, T), pressure is determined by p = RT/v
 - \diamond given (p, T), specific volume is determined by v = RT/p

Quick exercise

Convert the ideal gas law from the form pv = RT to $pV = n\bar{R}T$.

Hint: Use v = V/m, $R = \overline{R}/M$ and M = m/n.

Solution

$$pv = RT$$

$$p(V/m) = (\bar{R}/M)T$$

$$pV = \frac{m}{M}\bar{R}T$$

$$pV = \frac{m}{(m/n)}\bar{R}T$$

$$pV = n\bar{R}T$$

Processes

- a **process** is a transition between two equilibrium states (a process can pass through non-equillibrium states)
- a **path** is a sequence of states that a process passes through
- a cycle is a process that begins and ends in the same state
- a quasi-equilibrium process stays close to equilibrium states
- quasi-equilibrium approximation is inexact, but often useful

Non-equilibrium process

- system passes through weird, high-dimensional states
- path can't be visualized in two dimensions

Quasi-equilibrium process

- system stays very close to equilibrium states
- path can be visualized in two dimensions