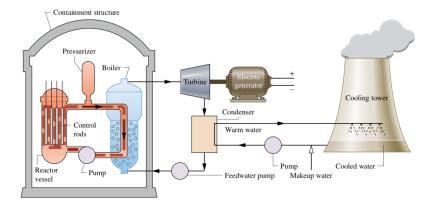
Lecture 17 – Integrating equipment into machines

Purdue ME 200, Thermodynamics I

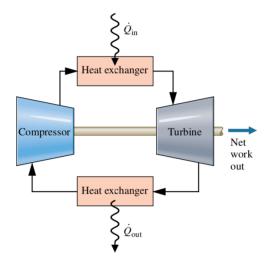
Kevin J. Kircher, kircher@purdue.edu

Outline

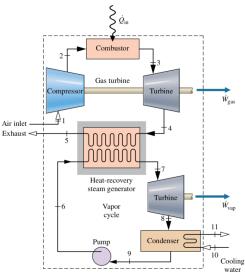

Integrating equipment into machines

Example

Equipment integration

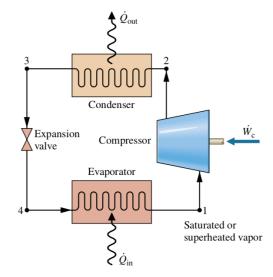

- real machines usually combine many pieces of equipment
 - ◊ nozzles and diffusers (backward nozzles)
 - turbines and pumps/compressors (backward turbines)
 - \diamond throttles
 - ◊ heat exchangers
- we can analyze machines by breaking them into subsystems
- choosing appropriate system boundaries can simplify analysis

A nuclear power plant


Moran et al., Fundamentals of Engineering Thermodynamics (2018)

A simple-cycle gas turbine

Moran et al., Fundamentals of Engineering Thermodynamics (2018)


A combined-cycle gas turbine

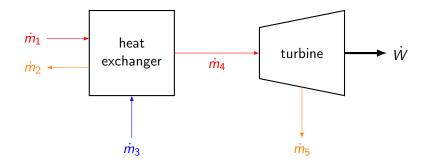
Moran et al., Fundamentals of Engineering Thermodynamics (2018)

4 / 17

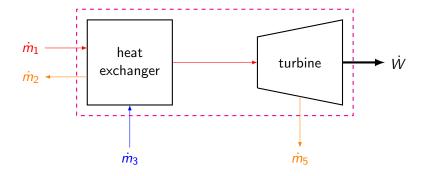
A vapor-compression refrigerator

Moran et al., Fundamentals of Engineering Thermodynamics (2018)

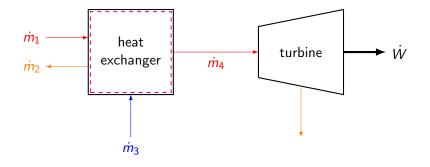
Outline


Integrating equipment into machines

Example


Water from a geothermal well enters a heat exchanger at 200 $^\circ\text{C},$ 20 bar and 100 kg/s and exits at 140 $^\circ\text{C}.$ A second stream of water enters the heat exchanger at 40 $^\circ\text{C},$ 3 bar and 10 kg/s, flows through a turbine, and exits at 7 kPa and 90% quality.

- (a) Find the turbine power.
- (b) Find the water temperature at the turbine inlet.


System diagram

System boundary for part (a)

System boundary for part (b)

Given and find

• given:

$$◊$$
 $p_1 = 20$ bar, $T_1 = 200$ °C, $\dot{m}_1 = 100$ kg/s
 $◊$ $p_3 = 3$ bar, $T_3 = 40$ °C, $\dot{m}_3 = 10$ kg/s
 $◊$ $p_5 = 7$ kPa, $x_5 = 0.9$

10 / 17

- find:
 - (a) *Ŵ* (b) *T*₄

Assumptions

- steady state
- no changes in KE or PE
- no mixing inside heat exchanger
- no pressure changes across heat exchanger
- no heat transfer across boundary of heat exchanger or turbine

Basic equations

• steady-state conservation of mass:

$$\sum_{\mathsf{in}} \dot{m}_{\mathsf{in}} = \sum_{\mathsf{out}} \dot{m}_{\mathsf{out}}$$

• steady-state 1st law with no ΔKE , ΔPE or \dot{Q} :

$$\sum_{\rm in} \dot{m}_{\rm in} h_{\rm in} = \dot{W} + \sum_{\rm out} \dot{m}_{\rm out} h_{\rm out}$$

Solution to part (a)

• steady-state 1st law on combined system:

$$\dot{m}_1h_1 + \dot{m}_3h_3 = \dot{W} + \dot{m}_2h_2 + \dot{m}_5h_5$$

- steady-state CoM on first heat exchanger pipe: $\dot{m}_2 = \dot{m}_1$
- steady-state CoM on second heat exchanger pipe: $\dot{m}_4 = \dot{m}_3$
- steady-state CoM on turbine: $\dot{m}_5 = \dot{m}_4$

.

• so steady-state 1st law on combined system simplifies to

$$W = \dot{m}_1 h_1 + \dot{m}_3 h_3 - \dot{m}_2 h_2 - \dot{m}_5 h_5$$

= $\dot{m}_1 (h_1 - h_2) + \dot{m}_3 (h_3 - h_5)$

 \implies need specific enthalpies in states 1, 2, 3 and 5

Solution to part (a) (continued)

- in state 1, $h_1 pprox h_{\mathsf{liq}}(\mathcal{T}_1) =$ 852.3 kJ/kg
- in state 2, $h_2 \approx h_{\text{liq}}(T_2) = 589.2 \text{ kJ/kg}$
- in state 3, $h_3 \approx h_{
 m liq}(T_3) = 167.5 \ {
 m kJ/kg}$

• in state 5 (
$$p_5 = 7$$
 kPa, $x_5 = 0.9$),
 $\diamond h_{liq} = 697$ kJ/kg and $h_{vap} = 2763$ kJ/kg
 \diamond so $h_5 = h_{liq} + x_5(h_{vap} - h_{liq}) = 2556$ kJ/kg

• mass flow rates \dot{m}_1 and \dot{m}_3 are given, so

$$\begin{split} \dot{W} &= \dot{m}_1(h_1 - h_2) + \dot{m}_3(h_3 - h_5) \\ &= (100 \text{kg/s})(852.3 \text{kJ/kg} - 589.2 \text{kJ/kg}) \\ &+ (10 \text{kg/s})(167.5 \text{kJ/kg} - 2556 \text{kJ/kg}) \\ &= 2395 \text{kW} \end{split}$$

Solution to part (b)

• steady-state 1st law on heat exchanger:

$$\dot{m}_1h_1 + \dot{m}_3h_3 = \dot{m}_2h_2 + \dot{m}_4h_4$$

• but $\dot{m}_2 = \dot{m}_1$ and $\dot{m}_4 = \dot{m}_3$, so

$$\dot{m}_1 h_1 + \dot{m}_3 h_3 = \dot{m}_1 h_2 + \dot{m}_3 h_4$$

 $\iff \dot{m}_1 (h_1 - h_2) = \dot{m}_3 (h_4 - h_3)$
 $\iff h_4 = h_3 + rac{\dot{m}_1 (h_1 - h_2)}{\dot{m}_3}$

Solution to part (b) (continued)

• plugging in numbers,

$$h_4 = h_3 + \frac{\dot{m}_1(h_1 - h_2)}{\dot{m}_3}$$

= 167.2kJ/kg + $\frac{(100 \text{kg/s})(852.3 \text{kJ/kg} - 589.2 \text{kJ/kg})}{10 \text{kg/s}}$
= 2798kJ/kg

- pressure is constant across heat exchanger, so $p_4 = p_3 = 3$ bar
- \bullet interpolating saturated vapor table at 3 bar and 2798 kJ/kg,

$$T_4 = 167.2^{\circ} C$$

Solution to part (b) (continued)

• we can check the h_4 calculation via 1st law on turbine:

$$\dot{W}=\dot{m}_4h_4-\dot{m}_5h_5$$

• but
$$\dot{m}_5 = \dot{m}_4 = \dot{m}_3$$
, so

$$\dot{W} = \dot{m}_3(h_4 - h_5)$$

 $\implies h_4 = h_5 + \frac{\dot{W}}{\dot{m}_3} = 2556 \text{kJ/kg} + \frac{2395 \text{kW}}{10 \text{kg/s}}$
 $= 2796 \text{kJ/kg}$

$17 \, / \, 17$