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What are differentials?

• a differential dx is just a tiny (infinitesimal) change in x

• dx can be viewed as the limit of a finite ∆x as ∆x → 0

• differentials often show up under integral signs
(to calculate total change, add up a bunch of tiny changes)
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Differentials in one dimension

x

y
f (x)

x1

y1

g(x) = y1 + f ′(x1)(x − x1)

x1 + ∆x

y1 + ∆y
g(x1 + ∆x)

∆y
g(x1 + ∆x)− y1 = f ′(x1)∆x

• suppose y = f (x) and g is the linear approximation to f at x1

• when x changes by ∆x , y changes by a true amount ∆y

• for small ∆x , the true ∆y ≈ f ′(x1)∆x
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Differentials in one dimension (continued)

• as ∆x → 0, the approximation ∆y ≈ f ′(x1)∆x becomes exact

• at any arbitrary x , we write

dy = f ′(x)dx or dy =

(
dy

dx

)
dx

• from the fundamental theorem of calculus,∫ y2

y1

dy =

∫ x2

x1

f ′(x)dx = f (x2)− f (x1) = y2 − y1

• more compactly (but less precisely), we can write∫
dy = ∆y
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Differentials in two dimensions

• consider a variable z = f (x , y)

• the differential of z is

dz =

(
∂f

∂x

)
y

dx +

(
∂f

∂y

)
x

dy

• in 2D,
∫

dz = ∆z only holds for exact differentials

• only properties (p, v , T , . . . ) have exact differentials

• other things (work W , heat Q) have inexact differentials

• we write inexact differentials with δ instead of d

• we never write
∫
δW = ∆W or

∫
δQ = ∆Q
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General form of mechanical work

C

1

2ds

F

• work done by force F on body moved over path C is

W =

∫
C

F · ds

• differential displacement ds always points along path

• dot product picks out the component of F along path

• if path starts at point 1 and ends at point 2, we may write

W =

∫ 2

1
F · ds
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Parameterization in terms of t

C

x

y

s(t1)

s(t2)

s(t)

x(t)

y(t) ds(t)

F(x(t), y(t))

W =

∫ t2

t1

F(x(t), y(t)) · ds(t)
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Calculating mechanical work

• force can be written as

F(x(t), y(t)) = Fx(x(t), y(t))i + Fy (x(t), y(t))j

• path C contains all position vectors s(t) over t1 ≤ t ≤ t2

• position vector can be written as s(t) = x(t)i + y(t)j

• so differential displacement along path is

ds(t) = dx(t)i + dy(t)j = x ′(t)dti + y ′(t)dtj

• and work done by force F over path C is

W =

∫ t2

t1

[
Fx(x(t), y(t))x ′(t) + Fy (x(t), y(t))y ′(t)

]
dt
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Example
• suppose force is F(x(t), y(t)) = −y(t)i + x(t)j

• and path is s(t) = ti + tj, 0 ≤ t ≤ 1
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Solution

• force is perpendicular to path, so F · ds = 0 and W = 0

• does the math agree?

x(t) = t, y(t) = t

x ′(t) = 1, y ′(t) = 1

Fx(x(t), y(t)) = −y(t) = −t
Fy (x(t), y(t)) = x(t) = t

• therefore,

W =

∫ t2

t1

[
Fx(x(t), y(t))x ′(t) + Fy (x(t), y(t))y ′(t)

]
dt

=

∫ 1

0
[(−t)(1) + (t)(1)] dt = 0
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Modified example

• what if path instead is s(t) = ti + t2j, 0 ≤ t ≤ 1
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Modified solution
• force is no longer perpendicular to path, so F · ds 6= 0

• along the modified path,

x(t) = t, y(t) = t2

x ′(t) = 1, y ′(t) = 2t

Fx(x(t), y(t)) = −y(t) = −t2

Fy (x(t), y(t)) = x(t) = t

• so the work is

W =

∫ t2

t1

[
Fx(x(t), y(t))x ′(t) + Fy (x(t), y(t))y ′(t)

]
dt

=

∫ 1

0

[
(−t2)(1) + (t)(2t)

]
dt

=

∫ 1

0

(
2t2 − t2

)
dt =

1

3
6= 0
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Work is path-dependent

• these examples show that work is path-dependent

• we can’t know the work done without knowing the path taken

• this implies that work is not a property

• as a reminder, we write differential work as δW , not dW

• and we never write
∫
δW = ∆W
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Work and power

• power Ẇ is defined as the time derivative of work

• from the fundamental theorem of calculus, W =
∫ t2
t1

Ẇ dt

• earlier, we found that

W =

∫ t2

t1

[
Fx(x(t), y(t))x ′(t) + Fy (x(t), y(t))y ′(t)

]
dt

• the integrand is the dot product of F(x(t), y(t)) and velocity,

v(t) = x ′(t)i + y ′(t)j

• so W =
∫ t2
t1

F · vdt, and therefore

Ẇ = F · v
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Mechanical work and energy in one dimension

• consider a body of mass m at height y and (vertical) speed v

• its kinetic energy (KE) is 1
2mv2

• its gravitational potential energy (PE) is mgy
(defining PE = 0 at y = 0)

• suppose some other forces, summing to F , act on the body

• if the body moves from y1 to y2, those forces do work

W =

∫ y2

y1

Fdy
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Conservation of energy in one dimension

mg

F

• Newton’s second law: F −mg = ma

• integrate both sides over y from y1 to y2:∫ y2

y1

(F −mg)dy = m

∫ y2

y1

ady

• the left-hand side is∫ y2

y1

(F −mg)dy =

∫ y2

y1

Fdy −mg(y2 − y1) = W −∆PE
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Conservation of energy in one dimension (continued)

• the right-hand side is

m

∫ y2

y1

ady = m

∫ y2

y1

dv

dt
dy = m

∫ y2

y1

dv

dy

dy

dt
dy = m

∫ y2

y1

v
dv

dy
dy

• change variables of integration from y to v :

� v = v1 at y = y1, and v = v2 at y = y2
� since v is a function of y , its differential is dv = (dv/dy)dy

• then the integral becomes

m

∫ v2

v1

vdv = m

[
1

2
v2
]v2
v1

=
1

2
m(v22 − v21 ) = ∆KE
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Conservation of energy in one dimension (continued)

• putting the left- and right-hand sides together gives

∆KE + ∆PE = W

• this is conservation of (mechanical) energy in one dimension

• although the derivation was 1D, the result holds in 2D and 3D

• this is a special case of the 1st law of thermodynamics

• we’ll progressively generalize the 1st law to include

� other types of work
� internal energy
� heat transfer
� mass transfer
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Sign convention

• in this derivation, W was work done by forces on body

• we usually take W to be work done by system on surroundings
(historically, thermo focused on work done by heat engines)

• with this sign convention, 1st law becomes

∆KE + ∆PE = −W

18 / 23



Example

1,000 kg of water, initially at rest, flows through a vertical
displacement of 60 m in a frictionless pipe. At the bottom, the
water flows through a turbine, which it exits at 20 m/s.

(a) How much mechanical work does the water do on the turbine?

(b) If this takes 10 s, what is the average mechanical power?
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Given and find

• given
� m = 1000 kg
� ∆z = 60 m
� v1 = 0 m/s
� v2 = 20 m/s

• find
(a) mechanical work W done by water on turbine
(b) average mechanical power Ẇav over ∆t = 10 s
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System diagram

0 m/s

60 m

turbine 20 m/s
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Assumptions and basic equations

• assumptions
� frictionless pipe (so no energy lost inside)

• basic equations
� ∆KE + ∆PE = −W
� also definitions: KE = 1

2mv2, PE = mgz
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Solution

• change in kinetic energy is

∆KE =
1

2
m(v22−v21 ) =

1

2
(1000kg)[(20m/s)2−(0m/s)2] = 200kJ

• change in potential energy is

∆PE = mg∆z = (1000kg)(10m/s2)(0m− 60m) = −600kJ

• mechanical work done by water on turbine is

W = −(∆KE + ∆PE) = 400kJ

• average mechanical power is

Ẇav =
W

∆t
=

400kJ

10s
= 40kW

23 / 23


	Differentials
	Mechanical work
	Conservation of mechanical energy

