Lecture 4 — Mechanical work and energy
Purdue ME 200, Thermodynamics |

Kevin J. Kircher, kircher@purdue.edu
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Outline

Differentials



What are differentials?

e a differential dx is just a tiny (infinitesimal) change in x
e dx can be viewed as the limit of a finite Ax as Ax — 0

e differentials often show up under integral signs
(to calculate total change, add up a bunch of tiny changes)
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Differentials in one dimension

y1+ Ay
g(x1 + Ax)

Y1

f(x)
g(x) = y1 + f'(xa)(x — x1)
7777777777 3 Ayw }g(Xl + Ax) — y1 = f'(x1)Ax

e suppose y = f(x) and g is the linear approximation to f at x;

e when x changes by Ax, y changes by a true amount Ay
e for small Ax, the true Ay =~ f'(x;)Ax
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Differentials in one dimension (continued)

e as Ax — 0, the approximation Ay =~ f’(x;)/Ax becomes exact

e at any arbitrary x, we write

/ dy
dy = f'(x)dx or dy = | == ) dx
X
e from the fundamental theorem of calculus,
Y2 X2 ,
/ dy — / F(x)dx = F(x2) — F(x1) = y2 — y1
Y1 X1

e more compactly (but less precisely), we can write
/dy = Ay
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Differentials in two dimensions

e consider a variable z = f(x, y)

e the differential of z is

of of
- () e+ () 0

e in 2D, [dz = Az only holds for exact differentials
e only properties (p, v, T, ...) have exact differentials
e other things (work W, heat Q) have inexact differentials

e we write inexact differentials with § instead of d
e we never write [dW =AW or [6Q = AQ
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Outline

Mechanical work



General form of mechanical work

F

ds 2

work done by force F on body moved over path C is

W:/F-ds
c

differential displacement ds always points along path

dot product picks out the component of F along path

if path starts at point 1 and ends at point 2, we may write

2
W_/ F-ds
1
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Parameterization in terms of t
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Calculating mechanical work

force can be written as

F(x(2), y(t)) = Fx(x(t), y(2))i + Fy (x(2), y())i

path C contains all position vectors s(t) over t; <t < t»

position vector can be written as s(t) = x(t)i + y(t)j

so differential displacement along path is

ds(t) = dx(t)i+dy(t)j = x'(t)dti + y'(t)dtj

and work done by force F over path C is

W = /tfz [FX(X(t)y}/(t))X’(t) + FY(X(t)7Y(t))y/(t)] dt
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Example

e suppose force is F(x(t),y(t)) = —y(t)i + x(t)j

e and pathiss(t) =ti+1tj, 0<t<1
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Solution

e force is perpendicular to path, so F-ds=0and W =0
e does the math agree?

X(t)=1, y(t)=1
Fu(x(t),y(t)) = —y(t) = —t
Fy(x(t), y(t)) = x(t) = ¢

e therefore,

W :/t2 [F(x(2), y(£))X'(£) + Fy (x(2), y(£))y'(t)] dt

1
(A [(—t)(1) + (t)(1)]dt =0
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Modified example

e what if path instead is s(t) = ti+ %], 0 <t <1
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Modified solution

e force is no longer perpendicular to path, so F-ds # 0
e along the modified path,

e so the work is

X(t)=1, y'(t) =2t
F(x(1),y(t)) = —y(t) = =1
Fy(x(t),y(t)) = x(t) =t
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Work is path-dependent

o these examples show that work is path-dependent

e we can't know the work done without knowing the path taken
e this implies that work is not a property

e as a reminder, we write differential work as d W, not dW

e and we never write [ W = AW
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Work and power

e power W is defined as the time derivative of work
e from the fundamental theorem of calculus, W = ff Wdt

earlier, we found that

W = /ttz [FX(X(t)7y(t))X/(t) —+ Fy(X(t)7Y(t))y/(t)] dt

the integrand is the dot product of F(x(t),y(t)) and velocity,

v(t) = X'(t)i+y'(t)]

so W = ft? F - vdt, and therefore

W=F-v
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Outline

Conservation of mechanical energy



Mechanical work and energy in one dimension

e consider a body of mass m at height y and (vertical) speed v
e its kinetic energy (KE) is 3mv?
e its gravitational potential energy (PE) is mgy
(defining PE = 0 at y = 0)
e suppose some other forces, summing to F, act on the body

e if the body moves from y; to y», those forces do work
2

W= Fdy
1
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Conservation of energy in one dimension

-

{

e Newton's second law: F — mg = ma

e integrate both sides over y from y; to y»:

¥ ¥
/ (F—mg)dy:m/ ady
y1 yi

e the left-hand side is

y2 ¥2
/ (F—mg)dyz/ Fdy — mg(y> —y1) = W — APE
At i
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Conservation of energy in one dimension (continued)

e the right-hand side is

e change variables of integration from y to v:
ov=waty=y,andv=wnaty=y
© since v is a function of y, its differential is dv = (dv/dy)dy

e then the integral becomes

m ? vdv = m 1v2 ’ —lm(v2— 2y =
- - 2~ v2) = AKE
" 2 2

Vi
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Conservation of energy in one dimension (continued)

putting the left- and right-hand sides together gives

AKE+ APE=W

this is conservation of (mechanical) energy in one dimension
although the derivation was 1D, the result holds in 2D and 3D

this is a special case of the 1st law of thermodynamics

we'll progressively generalize the 1st law to include

other types of work
internal energy
heat transfer

mass transfer

S 000
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Sign convention

e in this derivation, W was work done by forces on body

e we usually take W to be work done by system on surroundings
(historically, thermo focused on work done by heat engines)

e with this sign convention, 1st law becomes

AKE + APE = -W
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Example

1,000 kg of water, initially at rest, flows through a vertical
displacement of 60 m in a frictionless pipe. At the bottom, the
water flows through a turbine, which it exits at 20 m/s.

(a) How much mechanical work does the water do on the turbine?

(b) If this takes 10 s, what is the average mechanical power?
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Given and find

e given
o m = 1000 kg
o Az=60m

o vp=0m/s
o vp=20m/s
o find
(a) mechanical work W done by water on turbine
(b) average mechanical power W,, over At =10s
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System diagram

0m/s

60 m

turbine

20 m/s
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Assumptions and basic equations

e assumptions
o frictionless pipe (so no energy lost inside)
e basic equations

o AKE+ APE=-W
¢ also definitions: KE = %mvz, PE = mgz
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Solution

e change in kinetic energy is
AKE = %m(vf Vi) = (1000kg)[(20m /s)2—(0m/s)?] = 200kJ
e change in potential energy is
APE = mgAz = (1000kg)(10m/s®)(0m — 60m) = —600kJ
e mechanical work done by water on turbine is
W = —(AKE + APE) = 400kJ

e average mechanical power is

) W 400kJ
W,y = — = ——— = 40kW
YAt 10s 0
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