Lecture 11 – Modeling gases Purdue ME 200, Thermodynamics I

Kevin J. Kircher, kircher@purdue.edu

Outline

Ideal gases

The ideal gas model

Example #1

Example #2

What is an ideal gas?

- a collection of point-mass particles
- that do not interact with each other
- and obey classical (not quantum) mechanics

When can we use the ideal gas model?

- with most common gases (like air, O_2 , N_2 , CO_2 , CO, H_2)
- when pressure is low $(p \ll p_c)$
- and/or temperature is high ($T \gg T_c$)

Compressibility factor

• the compressibility factor is

$$Z = \frac{pv}{RT} = \frac{p\bar{v}}{\bar{R}T}$$

• if
$$Z = 1$$
, then $pv = RT$

- so a gas is ~ideal if Zpprox 1

• $p_R = p/p_c$, $T_R = T/T_c$ are reduced pressure, temperature • $Z \ge \sim 0.9$ (gas is \sim ideal) if $p_R \le \sim 0.25$ and/or $T_R \ge \sim 1.75$

Moran et al., Fundamentals of Engineering Thermodynamics (2018)

Example

- the critical point of air is $T_c \approx 133$ K and $p_c \approx 38$ bar
- so $p_R \leq 0.25$ whenever $p \leq 0.25 p_c pprox 10$ bar
- and $T_R \ge 1.75$ whenever $T \ge 1.75 T_c \approx 233$ K = -40 °C
- \implies air is ~ideal below 10 bar and/or above -40 $^\circ C$

Outline

Ideal gases

The ideal gas model

Example #1

Example #2

The ideal gas model

- the basic assumptions underlying the ideal gas model are
 - \diamond the equation of state, pv = RT
 - \diamond internal energy depends only on temperature, u = u(T)
- it follows that enthalpy depends only on temperature:

$$h = u + pv = u(T) + RT = h(T)$$

 \star equation of state can take various forms via the definitions

$$v = \frac{V}{m}, \ \bar{v} = \frac{V}{n}, \ M = \frac{m}{n}, \ \bar{R} = MR$$

Ideal gas specific heats

• specific heats depend only on temperature:

$$c_{\nu}(T,\nu) = \left(\frac{\partial}{\partial T}u(T)\right)_{\nu} = \frac{\mathrm{d}u}{\mathrm{d}T} = c_{\nu}(T)$$
$$c_{\rho}(T,p) = \left(\frac{\partial}{\partial T}h(T)\right)_{p} = \frac{\mathrm{d}h}{\mathrm{d}T} = c_{\rho}(T)$$

• differentiating both sides of h(T) = u(T) + RT gives

$$\frac{\mathrm{d}h}{\mathrm{d}T} = \frac{\mathrm{d}u}{\mathrm{d}T} + R$$

• so given one specific heat, we can always find the other from

$$c_p(T) = c_v(T) + R$$

Ideal gas specific heat ratio

• in terms of specific heat ratio $k(T) = c_p(T)/c_v(T)$,

$$c_p(T) = c_v(T) + R = \frac{c_p(T)}{k(T)} + R$$
$$\iff c_p(T) \left(1 - \frac{1}{k(T)}\right) = R$$
$$\iff c_p(T) = \frac{R}{1 - 1/k(T)}$$

• similarly,

$$c_{v}(T) = \frac{R}{k(T) - 1}$$

Ideal gas internal energy and enthalpy changes

• from the fundamental theorem of calculus,

$$\Delta u = u(T_2) - u(T_1) = \int_{T_1}^{T_2} \frac{\mathrm{d}u}{\mathrm{d}T} \mathrm{d}T = \int_{T_1}^{T_2} c_v(T) \mathrm{d}T$$
$$\Delta h = h(T_2) - h(T_1) = \int_{T_1}^{T_2} \frac{\mathrm{d}h}{\mathrm{d}T} \mathrm{d}T = \int_{T_1}^{T_2} c_p(T) \mathrm{d}T$$

- if $T_2 T_1$ is not too large, then for all T between T_1 and T_2 , $\diamond T \approx T_{av} = (T_1 + T_2)/2$ $\diamond c_v(T) \approx c_v(T_{av})$ and $c_p(T) \approx c_p(T_{av})$
- in this case, $\Delta u \approx c_v(T_{av})\Delta T$ and $\Delta h \approx c_p(T_{av})\Delta T$

Outline

Ideal gases

The ideal gas model

Example #1

Example #2

The air in a car tire, initially at 20 $^\circ\text{C}$ and 221 kPa (gage), warms to 40 $^\circ\text{C}$ after the car drives for a while. What is the new pressure of the air inside the tire?

Given and find

• given:

- \diamond T₁ = 20 °C, p₁ = 221 kPa (gage) \diamond T₂ = 40 °C
- find:

$$\diamond p_2$$

Assumptions and basic equations

• assume:

- $\diamond~$ closed system
- ♦ constant volume ($v_1 = v_2$)
- \diamond ideal gas $(p_1v_1 = RT_1, p_2v_2 = RT_2)$
- basic equations: none

System diagram

Solution

- from the ideal gas law, $p_1v_1 = RT_1$ and $p_2v_2 = RT_2$
- but $v_1 = v_2$ and R is constant, so

$$\frac{v_1}{R} = \frac{T_1}{p_1} = \frac{T_2}{p_2} = \frac{v_2}{R}$$

• rearranging the middle equation,

$$p_2 = \frac{p_1 T_2}{T_1} = \frac{(221 \text{kPa})(40^\circ \text{C})}{20^\circ \text{C}} = 442 \text{kPa}????$$

• nope! always use **absolute** T and p in the ideal gas law

$$p_2 = \frac{p_1 T_2}{T_1} = \frac{(322 \text{kPa})(331 \text{K})}{311 \text{K}} = 343 \text{kPa}$$

14 / 23

Outline

Ideal gases

The ideal gas model

Example #1

Example #2

Air, initially occupying 700 ft^3 at 120 $^\circ\text{F}$, cools to 70 $^\circ\text{F}$ in one minute at constant, atmospheric pressure.

(a) What is the average rate of heat transfer?

- (b) What is the average power associated with boundary work?
- (c) How much does the air's internal energy change?

Given and find

• given:

♦
$$T_1 = 120 \ ^{\circ}\text{F} = 322 \text{ K}, \ V_1 = 700 \text{ ft}^3 = 19.8 \text{ m}^3$$

♦
$$T_2 = 70 \ ^{\circ}F = 294 \ K$$

$$\diamond \ p = p_{\mathsf{atm}} = 101 \ \mathsf{kPa} \ (\mathsf{constant})$$

$$\diamond \Delta t = 1 \min = 60 s$$

• find:

(a)
$$Q/\Delta t$$

(b) $W/\Delta t$
(c) ΔU

Assumptions and basic equations

assume:

- ◊ closed system (no mass transfer)
- \diamond stationary ($\Delta KE = \Delta PE = 0$)
- \diamond ideal gas (*pv* = *RT*)
- \diamond constant pressure ($W = p\Delta V$ and $\Delta H = \Delta U + p\Delta V$)
- \diamond constant specific heats ($\Delta u = c_v(T_{av})\Delta T$, $\Delta h = c_p(T_{av})\Delta T$)
- basic equation:

$$\Delta \mathsf{KE} + \Delta \mathsf{PE} + \Delta U = Q - W$$

System diagram

Solution to part (a)

• from the 1st law with $\Delta KE = \Delta PE = 0$ and $W = p\Delta V$,

$$Q = \Delta U + W = \Delta U + p\Delta V = \Delta H = m\Delta h$$

• but $m = V_1/v_1$ and $\Delta h = c_p(T_{\mathsf{av}})\Delta T$, so

$$Q = \frac{V_1 c_p(T_{\mathsf{av}}) \Delta T}{v_1}$$

• from the ideal gas law, $v_1 = RT_1/p$, so

$$Q = \frac{V_1 \rho c_{\rho}(T_{\rm av}) \Delta T}{RT_1}$$

Solution to part (a) (continued)

- for air at $\,T_{\rm av}=$ 95 $^\circ{\rm F}$, $c_p(\,T_{\rm av})=$ 1.01 kJ/(kg K)
- gas constant for air is R = 0.287 kJ/(kg K)
- so average rate of heat transfer is

$$\begin{aligned} \frac{Q}{\Delta t} &= \frac{V_1 p c_p(T_{av})(T_2 - T_1)}{R T_1 \Delta t} \\ &= \frac{(19.8 \text{m}^3)(101 \text{kPa})(1.01 \text{kJ}/(\text{kg K}))(294 \text{K} - 322 \text{K})}{(0.287 \text{kJ}/(\text{kg K}))(322 \text{K})(60 \text{s})} \\ &= -10.2 \text{kW} \end{aligned}$$

• Q is negative, so heat transfers from air to surroundings

Solution to part (b)

- average power is $W/\Delta t = p(V_2 V_1)/\Delta t$
- since pressure is constant,

$$p = \frac{RT_1}{v_1} = \frac{RT_2}{v_2} \implies v_2 = \frac{v_1T_2}{T_1}$$

- but mass is constant, so $v_1=V_1/m$, $v_2=V_2/m$ and

$$V_2 = mv_2 = \frac{mv_1T_2}{T_1} = \frac{m(V_1/m)T_2}{T_1} = \frac{V_1T_2}{T_1}$$

• so average power is

$$\frac{W}{\Delta t} = \frac{p(V_2 - V_1)}{\Delta t} = \frac{p[(V_1 T_2 / T_1) - V_1]}{\Delta t} = \frac{pV_1(T_2 / T_1 - 1)}{\Delta t}$$
$$= \frac{(101 \text{kPa})(19.8 \text{m}^3)[(294 \text{K})/(322 \text{K}) - 1]}{60 \text{s}} = -2.9 \text{kW}$$

21/23

Solution to part (c)

• from the 1st law,

$$\Delta U = Q - W = \Delta t (Q/\Delta t - W/\Delta t)$$

= (60s)[-10.2kW - (-2.9kW)] = -438kJ

• can check this via $\Delta u = c_v(T_{av})\Delta T$:

$$\Delta U = mc_{v}(T_{av})(T_{2} - T_{1}) = \frac{V_{1}pc_{v}(T_{av})(T_{2} - T_{1})}{RT_{1}}$$

= \dots = -435kJ

What did we learn?

- 700 ft³ of air at 120 °F and p_{atm} cooled to 70 °F in 1 min
- rate of heat transfer was

$$rac{Q}{\Delta t} = rac{m c_p(T_{\mathsf{av}}) \Delta T}{\Delta t} pprox -10 \mathrm{kW} ext{ or } -34,000 ext{ BTU/h}$$

 \star the related formula

$$\dot{Q} \approx \dot{m}c_p \Delta T$$

is widely used in thermal engineering