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What is an ideal gas?

• a collection of point-mass particles

• that do not interact with each other

• and obey classical (not quantum) mechanics
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When can we use the ideal gas model?

• with most common gases (like air, O2, N2, CO2, CO, H2)

• when pressure is low (p � pc)

• and/or temperature is high (T � Tc)
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Compressibility factor

• the compressibility factor is

Z =
pv

RT
=

pv̄

R̄T

• if Z = 1, then pv = RT

• so a gas is ∼ideal if Z ≈ 1
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• pR = p/pc , TR = T/Tc are reduced pressure, temperature

• Z ≥ ∼0.9 (gas is ∼ideal) if pR ≤ ∼0.25 and/or TR ≥ ∼1.75

Moran et al., Fundamentals of Engineering Thermodynamics (2018)
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Example

• the critical point of air is Tc ≈ 133 K and pc ≈ 38 bar

• so pR ≤ 0.25 whenever p ≤ 0.25pc ≈ 10 bar

• and TR ≥ 1.75 whenever T ≥ 1.75Tc ≈ 233 K = −40 ◦C

=⇒ air is ∼ideal below 10 bar and/or above −40 ◦C
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The ideal gas model

• the basic assumptions underlying the ideal gas model are

� the equation of state, pv = RT
� internal energy depends only on temperature, u = u(T )

• it follows that enthalpy depends only on temperature:

h = u + pv = u(T ) + RT = h(T )

? equation of state can take various forms via the definitions

v =
V

m
, v̄ =

V

n
, M =

m

n
, R̄ = MR
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Ideal gas specific heats

• specific heats depend only on temperature:

cv (T , v) =

(
∂

∂T
u(T )

)
v

=
du

dT
= cv (T )

cp(T , p) =

(
∂

∂T
h(T )

)
p

=
dh

dT
= cp(T )

• differentiating both sides of h(T ) = u(T ) + RT gives

dh

dT
=

du

dT
+ R

• so given one specific heat, we can always find the other from

cp(T ) = cv (T ) + R
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Ideal gas specific heat ratio

• in terms of specific heat ratio k(T ) = cp(T )/cv (T ),

cp(T ) = cv (T ) + R =
cp(T )

k(T )
+ R

⇐⇒ cp(T )

(
1− 1

k(T )

)
= R

⇐⇒ cp(T ) =
R

1− 1/k(T )

• similarly,

cv (T ) =
R

k(T )− 1
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Ideal gas internal energy and enthalpy changes

• from the fundamental theorem of calculus,

∆u = u(T2)− u(T1) =

∫ T2

T1

du

dT
dT =

∫ T2

T1

cv (T )dT

∆h = h(T2)− h(T1) =

∫ T2

T1

dh

dT
dT =

∫ T2

T1

cp(T )dT

• if T2−T1 is not too large, then for all T between T1 and T2,

� T ≈ Tav = (T1 + T2)/2
� cv (T ) ≈ cv (Tav) and cp(T ) ≈ cp(Tav)

• in this case, ∆u ≈ cv (Tav)∆T and ∆h ≈ cp(Tav)∆T
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Problem statement

The air in a car tire, initially at 20 ◦C and 221 kPa (gage), warms
to 40 ◦C after the car drives for a while. What is the new pressure
of the air inside the tire?

10 / 23



Given and find

• given:
� T1 = 20 ◦C, p1 = 221 kPa (gage)
� T2 = 40 ◦C

• find:
� p2
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Assumptions and basic equations

• assume:
� closed system
� constant volume (v1 = v2)
� ideal gas (p1v1 = RT1, p2v2 = RT2)

• basic equations: none
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System diagram

system

Q
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Solution

• from the ideal gas law, p1v1 = RT1 and p2v2 = RT2

• but v1 = v2 and R is constant, so

v1
R

=
T1

p1
=

T2

p2
=

v2
R

• rearranging the middle equation,

p2 =
p1T2

T1
=

(221kPa)(40◦C)

20◦C
= 442kPa ????

• nope! always use absolute T and p in the ideal gas law

p2 =
p1T2

T1
=

(322kPa)(331K)

311K
= 343kPa

14 / 23



Outline

Ideal gases

The ideal gas model

Example #1

Example #2



Problem statement

Air, initially occupying 700 ft3 at 120 ◦F, cools to 70 ◦F in one
minute at constant, atmospheric pressure.

(a) What is the average rate of heat transfer?

(b) What is the average power associated with boundary work?

(c) How much does the air’s internal energy change?
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Given and find

• given:
� T1 = 120 ◦F = 322 K, V1 = 700 ft3 = 19.8 m3

� T2 = 70 ◦F = 294 K
� p = patm = 101 kPa (constant)
� ∆t = 1 min = 60 s

• find:
(a) Q/∆t
(b) W /∆t
(c) ∆U
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Assumptions and basic equations

• assume:
� closed system (no mass transfer)
� stationary (∆KE = ∆PE = 0)
� ideal gas (pv = RT )
� constant pressure (W = p∆V and ∆H = ∆U + p∆V )
� constant specific heats (∆u = cv (Tav)∆T , ∆h = cp(Tav)∆T )

• basic equation:

∆KE + ∆PE + ∆U = Q −W
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System diagram

system

Q W
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Solution to part (a)

• from the 1st law with ∆KE = ∆PE = 0 and W = p∆V ,

Q = ∆U + W = ∆U + p∆V = ∆H = m∆h

• but m = V1/v1 and ∆h = cp(Tav)∆T , so

Q =
V1cp(Tav)∆T

v1

• from the ideal gas law, v1 = RT1/p, so

Q =
V1pcp(Tav)∆T

RT1
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Solution to part (a) (continued)

• for air at Tav = 95 ◦F, cp(Tav) = 1.01 kJ/(kg K)

• gas constant for air is R = 0.287 kJ/(kg K)

• so average rate of heat transfer is

Q

∆t
=

V1pcp(Tav)(T2 − T1)

RT1∆t

=
(19.8m3)(101kPa)(1.01kJ/(kg K))(294K− 322K)

(0.287kJ/(kg K))(322K)(60s)

= −10.2kW

• Q is negative, so heat transfers from air to surroundings
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Solution to part (b)

• average power is W /∆t = p(V2 − V1)/∆t

• since pressure is constant,

p =
RT1

v1
=

RT2

v2
=⇒ v2 =

v1T2

T1

• but mass is constant, so v1 = V1/m, v2 = V2/m and

V2 = mv2 =
mv1T2

T1
=

m(V1/m)T2

T1
=

V1T2

T1

• so average power is

W

∆t
=

p(V2 − V1)

∆t
=

p[(V1T2/T1)− V1]

∆t
=

pV1(T2/T1 − 1)

∆t

=
(101kPa)(19.8m3)[(294K)/(322K)− 1]

60s
= −2.9kW
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Solution to part (c)

• from the 1st law,

∆U = Q −W = ∆t(Q/∆t −W /∆t)

= (60s)[−10.2kW− (−2.9kW)] = −438kJ

• can check this via ∆u = cv (Tav)∆T :

∆U = mcv (Tav)(T2 − T1) =
V1pcv (Tav)(T2 − T1)

RT1

= · · · = −435kJ
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What did we learn?

• 700 ft3 of air at 120 ◦F and patm cooled to 70 ◦F in 1 min

• rate of heat transfer was

Q

∆t
=

mcp(Tav)∆T

∆t
≈ −10kW or −34,000 BTU/h

? the related formula
Q̇ ≈ ṁcp∆T

is widely used in thermal engineering
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