Lecture 10 - Modeling liquids and solids

Purdue ME 200, Thermodynamics I

Kevin J. Kircher, kircher@purdue.edu

Outline

Partial derivatives and notation

Specific heats

Modeling liquids and solids

Example

Partial derivatives

- consider a function f of two variables, x and y
- the partial derivative of f with respect to x,

$$
\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x, y)-f(x, y)}{\Delta x}
$$

\diamond is the change in the output variable $z=f(x, y)$
\diamond per unit change in the input variable x
\diamond with y held constant

- in general, the partial derivative is a function of x and y

Notation for functions

- in math classes, we write $z=f(x, y)$
$\diamond z$ denotes the variable (a number)
$\diamond f$ denotes the function (a mapping from \mathbf{R}^{2} to \mathbf{R})
- in this class, we sometimes (sloppily) write

$$
z=z(x, y)
$$

to emphasize that z is a function only of x and y

Notation for partial derivatives

- in math classes, we write partial derivatives as

$$
f_{x}(x, y) \text { or } \frac{\partial f}{\partial x}
$$

- in this class, we write partial derivatives as

$$
\left(\frac{\partial z}{\partial x}\right)_{y}
$$

to emphasize that
$\diamond z$ is a function of x and y only
$\diamond y$ is held constant when taking the derivative

Outline

Partial derivatives and notation

Specific heats

Modeling liquids and solids

Example

Specific heat at constant volume, c_{v}

- consider a simple compressible system in state (T, v)
- how much does its specific internal energy $u(T, v)$ change
\diamond per unit change in T
\diamond with v held constant?
- the answer is the specific heat at constant volume,

$$
c_{v}(T, v)=\left(\frac{\partial u}{\partial T}\right)_{v}
$$

How to measure c_{v} ?

- we can't measure internal energy U directly
- so place system of mass m in rigid tank
\diamond no bulk motion, so $\triangle \mathrm{KE}=\triangle \mathrm{PE}=0$
\diamond constant volume, so $W=0$
\diamond from 1st law for closed systems, $Q=\Delta U$
- add small, measured energy Q via heat transfer
- measure temperature change ΔT; then

$$
\frac{Q}{m \Delta T}=\frac{\Delta U}{m \Delta T}=\frac{\Delta u}{\Delta T} \approx\left(\frac{\partial u}{\partial T}\right)_{v}=c_{v}(T, v)
$$

Specific heat at constant pressure, c_{p}

- consider a simple compressible system in state (T, p)
- how much does its specific enthalpy $h(T, p)$ change
\diamond per unit change in T
\diamond with p held constant?
- the answer is the specific heat at constant pressure,

$$
c_{p}(T, p)=\left(\frac{\partial h}{\partial T}\right)_{p}
$$

How to measure c_{p} ?

- we can't measure enthalpy $H=U+p V$ directly
- so place system of mass m in cylinder with free piston
\diamond no bulk motion, so $\triangle \mathrm{KE}=\triangle \mathrm{PE}=0$
\diamond constant pressure, so $W=p \Delta V$ and $\Delta H=\Delta U+p \Delta V$
\diamond from 1st law for closed systems,

$$
Q=\Delta U+W=\Delta U+p \Delta V=\Delta H
$$

- add small, measured energy Q via heat transfer
- measure temperature change ΔT; then

$$
\frac{Q}{m \Delta T}=\frac{\Delta H}{m \Delta T}=\frac{\Delta h}{\Delta T} \approx\left(\frac{\partial h}{\partial T}\right)_{p}=c_{p}(T, p)
$$

Specific heats and state transformations

- for simple compressible systems,
\diamond any two independent intensive properties define the state
\diamond it doesn't matter which two properties we choose
\diamond for example, sometimes we choose (T, v); other times (T, p)
- equations of state, like $p v=R T$, allow state transformations
- for example, suppose we
\diamond choose state (T, v)
\diamond have equation of state $p=f(T, v)$
- then $c_{p}(T, p)=c_{p}(T, f(T, v))=$ function of (T, v) only
- similarly, we can write $c_{v}(T, v)$ as a function of (T, p) only

Notes on specific heats

- specific heats are intensive properties
- they're only defined in single-phase regions
- $c_{p} \geq c_{v}$ since there's no boundary work when v is constant
- $k=c_{p} / c_{v}$ is called the specific heat ratio

Outline

Partial derivatives and notation

Specific heats

Modeling liquids and solids

Example

Approximating compressed liquids as saturated liquids

- we only have compressed liquid tables for a few substances
- for other compressed liquids, use saturated liquid properties

Moran et al., Fundamentals of Engineering Thermodynamics (2018)

Saturated liquid approximation

- for a compressed liquid in state (T, p),

$$
\begin{aligned}
& v(T, p) \approx v_{\mathrm{liq}}(T) \\
& u(T, p) \approx u_{\mathrm{liq}}(T) \\
& h(T, p) \approx u_{\mathrm{liq}}(T)+p v_{\mathrm{liq}}(T)
\end{aligned}
$$

- but $h_{\text {liq }}(T)=u_{\text {liq }}(T)+p_{\text {sat }}(T) v_{\text {liq }}(T)$, so

$$
\begin{aligned}
h(T, p) & \approx\left[h_{\text {liq }}(T)-p_{\text {sat }}(T) v_{\text {liq }}(T)\right]+p v_{\text {liq }}(T) \\
\Longrightarrow h(T, p) & \approx h_{\text {liq }}(T)+\underbrace{\left(p-p_{\text {sat }}(T)\right) v_{\text {liq }}(T)}_{\text {usually negligible }}
\end{aligned}
$$

- so enthalpy can usually be approximated by

$$
h(T, p) \approx h_{\mathrm{liq}}(T)
$$

The incompressible substance model

- most liquids and solids are ~incompressible:

```
\diamond v ~ i s ~ \sim c o n s t a n t ~
\diamond u ~ \sim d e p e n d s ~ o n ~ T ~ o n l y ~
```

- for incompressible substances, specific heats are equal:

$$
\begin{aligned}
c_{v}(T) & =\left(\frac{\partial}{\partial T} u(T)\right)_{v}=\frac{\mathrm{d} u}{\mathrm{~d} T} \\
c_{p}(T) & =\left(\frac{\partial}{\partial T}(u(T)+p v)\right)_{p}=\frac{\mathrm{d} u}{\mathrm{~d} T}=c_{v}(T)
\end{aligned}
$$

- so we can write the (one and only) specific heat as $c(T)$

Δu and Δh for incompressible substances

- from the fundamental theorem of calculus,

$$
\begin{aligned}
\Delta u & =u_{2}-u_{1}=\int_{T_{1}}^{T_{2}} \frac{\mathrm{~d} u}{\mathrm{~d} T} \mathrm{~d} T \\
& =\int_{T_{1}}^{T_{2}} c(T) \mathrm{d} T
\end{aligned}
$$

- also, $\Delta h=h_{2}-h_{1}=u_{2}+p_{2} v-\left(u_{1}+p_{1} v\right)$, so

$$
\Delta h=\Delta u+v \Delta p
$$

- if c is approximately constant with respect to T, then

$$
\begin{aligned}
& \Delta u \approx c \Delta T \\
& \Delta h \approx c \Delta T+v \Delta p
\end{aligned}
$$

Summary: finding properties of liquids and solids

- 3 ways to find properties of subcooled (compressed) liquids:

1. compressed liquid table
2. saturated liquid approximation
3. incompressible substance model

- for solids, use the incompressible substance model

Outline

Partial derivatives and notation

Specific heats

Modeling liquids and solids

Example

Problem statement

Inside an insulated box, a 20 kg block of steel at $100^{\circ} \mathrm{C}$ comes into contact with a block of copper at $4{ }^{\circ} \mathrm{C}$. The blocks reach thermal equilibrium at $37^{\circ} \mathrm{C}$. What is the mass of the copper block? Use 0.49 and $0.39 \mathrm{~kJ} / \mathrm{kg} / \mathrm{K}$ for the specific heats of steel and copper.

Given and find

- given:

$$
\begin{aligned}
& \diamond m_{s}=20 \mathrm{~kg}, T_{s}=100^{\circ} \mathrm{C}, c_{s}=0.49 \mathrm{~kJ} / \mathrm{kg} / \mathrm{K} \\
& \diamond T_{c}=100^{\circ} \mathrm{C}, c_{c}=0.39 \mathrm{~kJ} / \mathrm{kg} / \mathrm{K} \\
& \diamond T_{2}=37^{\circ} \mathrm{C}
\end{aligned}
$$

- find:
$\diamond m_{c}$

Assumptions and basic equations

- assume:
\diamond closed system
\diamond no bulk motion $\left(\Delta \mathrm{KE}_{s}=\Delta \mathrm{PE}_{s}=\Delta \mathrm{KE}_{c}=\Delta \mathrm{PE} \mathrm{C}_{c}=0\right)$
\diamond adiabatic container (so $Q_{s}=-Q_{c}$)
\diamond incompressible substances, constant specific heats
- $\Delta u_{s}=\left(T_{2}-T_{s}\right) c_{s}$
- $\Delta u_{c}=\left(T_{2}-T_{c}\right) c_{c}$
- $W_{s}=W_{c}=0$
- basic equations:

$$
\begin{aligned}
& \Delta \mathrm{KE}_{s}+\Delta \mathrm{PE}_{s}+\Delta U_{s}=Q_{s}-W_{s} \\
& \Delta \mathrm{KE}_{c}+\Delta \mathrm{PE}_{c}+\Delta U_{c}=Q_{c}-W_{c}
\end{aligned}
$$

System diagrams

Solution

- energy balances simplify to $\Delta U_{s}=Q_{s}$ and $\Delta U_{c}=Q_{c}$
- since $Q_{c}=-Q_{s}$, we have

$$
\Delta U_{c}=-\Delta U_{s}
$$

- from incompressibility/constant specific heat assumptions,

$$
\begin{aligned}
& \Delta U_{s}=m_{s} \Delta u_{s}=m_{s}\left(T_{2}-T_{s}\right) c_{s} \\
& \Delta U_{c}=m_{c} \Delta u_{c}=m_{c}\left(T_{2}-T_{c}\right) c_{c}
\end{aligned}
$$

- therefore,

$$
\begin{aligned}
m_{c} & =-\frac{m_{s}\left(T_{2}-T_{s}\right) c_{s}}{\left(T_{2}-T_{c}\right) c_{c}} \\
& =-\frac{(20 \mathrm{~kg})\left(37^{\circ} \mathrm{C}-100^{\circ} \mathrm{C}\right)(0.49 \mathrm{~kJ} / \mathrm{kg} / \mathrm{K})}{\left(37^{\circ} \mathrm{C}-4^{\circ} \mathrm{C}\right)(0.39 \mathrm{~kJ} / \mathrm{kg} / \mathrm{K})} \\
& =47.97 \mathrm{~kg}
\end{aligned}
$$

