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Partial derivatives

• consider a function f of two variables, x and y

• the partial derivative of f with respect to x ,

lim
∆x→0

f (x + ∆x , y)− f (x , y)

∆x
,

� is the change in the output variable z = f (x , y)
� per unit change in the input variable x
� with y held constant

• in general, the partial derivative is a function of x and y
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Notation for functions

• in math classes, we write z = f (x , y)

� z denotes the variable (a number)
� f denotes the function (a mapping from R2 to R)

• in this class, we sometimes (sloppily) write

z = z(x , y)

to emphasize that z is a function only of x and y
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Notation for partial derivatives

• in math classes, we write partial derivatives as

fx(x , y) or
∂f

∂x

• in this class, we write partial derivatives as(
∂z

∂x

)
y

to emphasize that

� z is a function of x and y only
� y is held constant when taking the derivative
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Specific heat at constant volume, cv

• consider a simple compressible system in state (T , v)

• how much does its specific internal energy u(T , v) change

� per unit change in T
� with v held constant?

• the answer is the specific heat at constant volume,

cv (T , v) =

(
∂u

∂T

)
v
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How to measure cv?

system

Q

• we can’t measure internal energy U directly

• so place system of mass m in rigid tank

� no bulk motion, so ∆KE = ∆PE = 0
� constant volume, so W = 0
� from 1st law for closed systems, Q = ∆U

• add small, measured energy Q via heat transfer

• measure temperature change ∆T ; then

Q

m∆T
=

∆U

m∆T
=

∆u

∆T
≈
(
∂u

∂T

)
v

= cv (T , v)
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Specific heat at constant pressure, cp

• consider a simple compressible system in state (T , p)

• how much does its specific enthalpy h(T , p) change

� per unit change in T
� with p held constant?

• the answer is the specific heat at constant pressure,

cp(T , p) =

(
∂h

∂T

)
p
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How to measure cp?

system

Q
W

• we can’t measure enthalpy H = U + pV directly
• so place system of mass m in cylinder with free piston

� no bulk motion, so ∆KE = ∆PE = 0
� constant pressure, so W = p∆V and ∆H = ∆U + p∆V
� from 1st law for closed systems,

Q = ∆U + W = ∆U + p∆V = ∆H

• add small, measured energy Q via heat transfer

• measure temperature change ∆T ; then
Q

m∆T
=

∆H

m∆T
=

∆h

∆T
≈
(
∂h

∂T

)
p

= cp(T , p)
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Specific heats and state transformations

• for simple compressible systems,

� any two independent intensive properties define the state
� it doesn’t matter which two properties we choose
� for example, sometimes we choose (T , v); other times (T , p)

• equations of state, like pv = RT , allow state transformations

• for example, suppose we

� choose state (T , v)
� have equation of state p = f (T , v)

• then cp(T , p) = cp(T , f (T , v)) = function of (T , v) only

• similarly, we can write cv (T , v) as a function of (T , p) only
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Notes on specific heats

• specific heats are intensive properties

• they’re only defined in single-phase regions

• cp ≥ cv since there’s no boundary work when v is constant

• k = cp/cv is called the specific heat ratio
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Approximating compressed liquids as saturated liquids

• we only have compressed liquid tables for a few substances

• for other compressed liquids, use saturated liquid properties

Moran et al., Fundamentals of Engineering Thermodynamics (2018)

10 / 19



Saturated liquid approximation

• for a compressed liquid in state (T , p),

v(T , p) ≈ vliq(T )

u(T , p) ≈ uliq(T )

h(T , p) ≈ uliq(T ) + pvliq(T )

• but hliq(T ) = uliq(T ) + psat(T )vliq(T ), so

h(T , p) ≈ [hliq(T )− psat(T )vliq(T )] + pvliq(T )

=⇒ h(T , p) ≈ hliq(T )+ (p − psat(T ))vliq(T )︸ ︷︷ ︸
usually negligible

• so enthalpy can usually be approximated by

h(T , p) ≈ hliq(T )
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The incompressible substance model

• most liquids and solids are ∼incompressible:

� v is ∼constant
� u ∼depends on T only

• for incompressible substances, specific heats are equal:

cv (T ) =

(
∂

∂T
u(T )

)
v

=
du

dT

cp(T ) =

(
∂

∂T
(u(T ) + pv)

)
p

=
du

dT
= cv (T )

• so we can write the (one and only) specific heat as c(T )
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∆u and ∆h for incompressible substances

• from the fundamental theorem of calculus,

∆u = u2 − u1 =

∫ T2

T1

du

dT
dT

=

∫ T2

T1

c(T )dT

• also, ∆h = h2 − h1 = u2 + p2v − (u1 + p1v), so

∆h = ∆u + v∆p

• if c is approximately constant with respect to T , then

∆u ≈ c∆T

∆h ≈ c∆T + v∆p
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Summary: finding properties of liquids and solids

• 3 ways to find properties of subcooled (compressed) liquids:

1. compressed liquid table
2. saturated liquid approximation
3. incompressible substance model

• for solids, use the incompressible substance model
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Problem statement

Inside an insulated box, a 20 kg block of steel at 100 ◦C comes into
contact with a block of copper at 4 ◦C. The blocks reach thermal
equilibrium at 37 ◦C. What is the mass of the copper block? Use
0.49 and 0.39 kJ/kg/K for the specific heats of steel and copper.
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Given and find

• given:
� ms = 20 kg, Ts = 100 ◦C, cs = 0.49 kJ/kg/K
� Tc = 100 ◦C, cc = 0.39 kJ/kg/K
� T2 = 37 ◦C

• find:
� mc
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Assumptions and basic equations

• assume:
� closed system
� no bulk motion (∆KEs = ∆PEs = ∆KEc = ∆PEc = 0)
� adiabatic container (so Qs = −Qc)
� incompressible substances, constant specific heats

I ∆us = (T2 − Ts)cs
I ∆uc = (T2 − Tc)cc
I Ws = Wc = 0

• basic equations:

∆KEs + ∆PEs + ∆Us = Qs −Ws

∆KEc + ∆PEc + ∆Uc = Qc −Wc
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System diagrams

steel copper

Qc = −Qs
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Solution
• energy balances simplify to ∆Us = Qs and ∆Uc = Qc

• since Qc = −Qs , we have

∆Uc = −∆Us

• from incompressibility/constant specific heat assumptions,

∆Us = ms∆us = ms(T2 − Ts)cs

∆Uc = mc∆uc = mc(T2 − Tc)cc

• therefore,

mc = −ms(T2 − Ts)cs
(T2 − Tc)cc

= −(20kg)(37◦C− 100◦C)(0.49kJ/kg/K)

(37◦C− 4◦C)(0.39kJ/kg/K)

= 47.97kg
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