Lecture 10 — Modeling liquids and solids
Purdue ME 200, Thermodynamics |
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Outline

Partial derivatives and notation



Partial derivatives

e consider a function f of two variables, x and y

e the partial derivative of f with respect to x,

i [ Axy) —fx,y)
Ax—0 Ax

I

© is the change in the output variable z = f(x, y)
© per unit change in the input variable x
o with y held constant

e in general, the partial derivative is a function of x and y
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Notation for functions

e in math classes, we write z = f(x, y)

© z denotes the variable (a number)
o f denotes the function (a mapping from R? to R)

e in this class, we sometimes (sloppily) write

z=2z(x,y)

to emphasize that z is a function only of x and y
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Notation for partial derivatives

e in math classes, we write partial derivatives as

of

&(Xv)/) or a

e in this class, we write partial derivatives as
ox y

¢ zis a function of x and y only
¢ y is held constant when taking the derivative

to emphasize that
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Outline

Specific heats



Specific heat at constant volume, ¢,

e consider a simple compressible system in state (T, v)
e how much does its specific internal energy u(T,v) change

© per unit change in T
o with v held constant?

e the answer is the specific heat at constant volume,
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How to measure ¢,?

we can't measure internal energy U directly

so place system of mass m in rigid tank
o no bulk motion, so AKE = APE =0
o constant volume, so W =0
o from 1st law for closed systems, Q@ = AU

add small, measured energy @ via heat transfer

measure temperature change AT; then
Q AU _Au _[(Ou) _ (T.v)
mAT ~ mAT AT \oT),~ ™7
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Specific heat at constant pressure, ¢,

e consider a simple compressible system in state (T, p)
e how much does its specific enthalpy h( T, p) change

© per unit change in T
< with p held constant?

e the answer is the specific heat at constant pressure,

(T p) = (52)
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How to measure c,?

we can't measure enthalpy H = U + pV directly

so place system of mass m in cylinder with free piston
¢ no bulk motion, so AKE = APE =0
© constant pressure, so W = pAV and AH = AU + pAV
o from 1st law for closed systems,

Q=AU+W =AU+ pAV =AH

add small, measured energy @ via heat transfer

e measure temperature change AT; then
Q_AH_AhN Oh — (T, p)
mAT ~ mAT AT \aT),” PP
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Specific heats and state transformations

for simple compressible systems,
¢ any two independent intensive properties define the state
¢ it doesn't matter which two properties we choose
o for example, sometimes we choose (T, v); other times (T, p)

equations of state, like pv = RT, allow state transformations

for example, suppose we

o choose state (T, v)
© have equation of state p = (T, v)

then ¢,(T,p) = (T, f(T,v)) = function of (T, v) only

similarly, we can write ¢, (T, v) as a function of (T, p) only
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Notes on specific heats

specific heats are intensive properties

they're only defined in single-phase regions

® ¢, > ¢, since there's no boundary work when v is constant

k = cp/c, is called the specific heat ratio
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Outline

Modeling liquids and solids



Approximating compressed liquids as saturated liquids

e we only have compressed liquid tables for a few substances
e for other compressed liquids, use saturated liquid properties

p = constant

Saturated
liquid

p = constant

T = constant

u(T, p) = vs(T)
| (T, p) = ug(T)
v Uy v

Moran et al., Fundamentals of Engineering Thermodynamics (2018)
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Saturated liquid approximation

e for a compressed liquid in state (T, p),

h(T, p) = [hiq(T) — Psat(T)viiq(T)] + pviig(T)
= h(T,p) = hig(T)+ (P — Psat( T))Viiq(T)

usually negligible

e so enthalpy can usually be approximated by

h(T,p) ~ h|iq(T)
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The incompressible substance model

e most liquids and solids are ~incompressible:

¢ Vv is ~constant
© u ~depends on T only

e for incompressible substances, specific heats are equal:

e (T) = (;Tu(r))v -
du

) = (r() +p)) =57 = alT)

p

e so we can write the (one and only) specific heat as ¢(T)
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Au and Ah for incompressible substances

e from the fundamental theorem of calculus,

T2 du
Au:uz—ulz/ —dT
r, dT

:/Bdrmr

Ty

e also, Ah=hy — hy = up + pov — (u1 + p1v), so
Ah=Au+ vAp
e if c is approximately constant with respect to T, then

Au~cAT
Ah=~cAT + vAp
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Summary: finding properties of liquids and solids

e 3 ways to find properties of subcooled (compressed) liquids:

1. compressed liquid table
2. saturated liquid approximation
3. incompressible substance model

e for solids, use the incompressible substance model
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Outline

Example



Problem statement

Inside an insulated box, a 20 kg block of steel at 100 °C comes into
contact with a block of copper at 4 °C. The blocks reach thermal
equilibrium at 37 °C. What is the mass of the copper block? Use
0.49 and 0.39 kJ/kg/K for the specific heats of steel and copper.
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Given and find

e given:
o ms =20 kg, Ts = 100 °C, ¢, = 0.49 kJ/kg/K
o T =100 °C, c. =0.39 kJ/kg/K
<& T2 =37 °C

o find:

o Mme
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Assumptions and basic equations

e assume:

¢ closed system
¢ no bulk motion (AKEs; = APE; = AKE. = APE. = 0)
¢ adiabatic container (so Qs = —Q.)
¢ incompressible substances, constant specific heats
> AUS = (Tz — Ts)cs
> Auc=(T2— To)ce
> W, =W.=0

e basic equations:

AKEg + APEs + AUs = Qs — W
AKE. + APE. + AU: = Q. — W,
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System diagrams
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Solution

e energy balances simplify to AUs = Qs and AU. = Q.
e since Q- = —Qs, we have

AUc. = -AUs

e from incompressibility /constant specific heat assumptions,

AUs = msAus = mg(Tr — Ts)cs
AU: = mcAuc = me(Tr — Te)ee

o therefore,

_ ms(T2 - Ts)cs

(T2 - Tc)cc
(20kg)(37°C — 100°C)(0.49kJ /kg/K)
(37°C — 4°C)(0.39kJ /kg/K)
= 47.97kg

me =
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