Lecture 16 – More equipment models Purdue ME 200, Thermodynamics I

Kevin J. Kircher, kircher@purdue.edu

Outline

Throttles

Heat exchangers

Throttles

- throttles reduce a fluid's pressure by restricting flow
- often (but not always), throttles also reduce temperature

Typical assumptions for throttles

- steady state
- one-dimensional flow
- no change in PE
- no boundary/shaft/electrical/etc. work
- no heat transfer
- under these assumptions, throttles satisfy

$$\frac{1}{2}(\dot{r}_{\rm in}^2-\dot{r}_{\rm out}^2)=h_{\rm out}-h_{\rm in}$$

- often velocities are $\sim\!\!\text{equal}$ well upstream and downstream, so

$$h_{\rm out} = h_{\rm in}$$

Example

Saturated liquid R-134a enters a throttle at 8 bar and exits at 1.2 bar.

- (a) Find the saturated liquid-vapor mixture quality at the exit.
- (b) Find the temperature change across the device.

Given and find

• given:

- $\diamond~$ saturated liquid at inlet
- $\diamond \ p_{\rm in} = 8 \ {
 m bar}$
- $\diamond \ \textit{p}_{\rm out} = 1.2 \ {\rm bar}$
- find:

(a)
$$x_{out}$$

(b) $T_{out} - T_{in}$

Assumptions and basic equations

• assumptions:

- $\diamond \ \, \text{steady state} \\$
- \diamond no change in PE ($z_{out} = z_{in}$)
- \diamond no change in KE ($\dot{r}_{out} = \dot{r}_{in}$)
- $\diamond\,$ no boundary/shaft/electrical/etc. work ($\dot{W}=0)$
- \diamond well-insulated ($\dot{Q} = 0$)

• basic equations:

 $\diamond~$ steady-state 1st law for open systems with 1 inlet/outlet,

$$\dot{m}\left[\frac{1}{2}(\dot{r}_{\rm in}^2-\dot{r}_{\rm out}^2)+g(z_{\rm in}-z_{\rm out})+h_{\rm in}-h_{\rm out}\right]=\dot{W}-\dot{Q}$$

 $\diamond~$ relationship between specific enthalpy and quality,

$$h_{\rm out} = h_{\rm liq} + x_{\rm out}(h_{\rm vap} - h_{\rm liq})$$

System diagram

Solution to part (a)

• from relationship between specific enthalpy and quality,

$$x_{
m out} = rac{h_{
m out} - h_{
m liq}}{h_{
m vap} - h_{
m liq}}$$

- from 1st law and assumptions, $h_{\rm out} = h_{\rm in}$
- from R-134a saturation table,

$$\diamond~h_{\rm in}=95.5~{\rm kJ/kg}$$
 at $p_{\rm in}=8~{\rm bar}$ $\diamond~h_{\rm liq}=22.5~{\rm kJ/kg}$ and $h_{\rm vap}=237~{\rm kJ/kg}$ at $p_{\rm out}=1.2~{\rm bar}$

SO

$$x_{\rm out} = \frac{95.5 \text{kJ/kg} - 22.5 \text{kJ/kg}}{237 \text{kJ/kg} - 22.5 \text{kJ/kg}} = 0.34$$

Solution to part (b)

• from R-134a saturation table,

$$\diamond$$
 T_{in} = 31.3 °C at $p_{\rm in}$ = 8 bar

- \diamond $T_{\rm out} = -22.3~^\circ{\rm C}$ at $p_{\rm out} = 1.2$ bar
- so temperature change across throttle is

$$T_{out} - T_{in} = -22.3^{\circ}C - 31.3^{\circ}C = -53.6^{\circ}C$$

• refrigerant got much colder just by flowing past a restriction!

Outline

Throttles

Heat exchangers

Heat exchangers

- heat exchangers transfer heat between substances
- typically, the substances are fluids
- there are several common configurations
- all involve multiple inflows and/or outflows
- in mixing chambers, fluids come into direct contact and mix
- in recuperators, a conductive wall separates the fluids

Direct contact heat exchanger (mixing chamber)

• fluids come into contact and mix

Cross-flow heat exchanger (recuperator)

• internally, a conductive wall separates the fluids

Parallel-flow heat exchanger (recuperator)

• internally, a conductive wall separates the fluids

Counterflow heat exchanger (recuperator)

• internally, a conductive wall separates the fluids

Typical assumptions for heat exchangers

- steady state
- one-dimensional flow
- no change in PE
- no change in KE
- no boundary/shaft/electrical/etc. work
- under these assumptions, heat exchangers satisfy

$$\sum_{j=1}^{N^{\text{out}}} \dot{m}_j h_j^{\text{out}} - \sum_{j=i}^{N^{\text{in}}} \dot{m}_i h_i^{\text{in}} = \dot{Q}$$

• if heat transfer across boundary is negligible ($\dot{Q}=0$), then

$$\sum_{j=1}^{N^{\text{out}}} \dot{m}_j h_j^{\text{out}} = \sum_{j=i}^{N^{\text{in}}} \dot{m}_i h_i^{\text{in}}$$

Example

R-134a enters a cross-flow heat exchanger at 0.1 kg/s, 1 MPa and 70 $^\circ\text{C}$ and exits at 35 $^\circ\text{C}.$ Water enters at 300 kPa and 15 $^\circ\text{C}$ and exits at 25 $^\circ\text{C}.$ Assuming constant pressures, find the water mass flow rate.

Given and find

• given:

 $\diamond~$ for R-134a,

▶
$$\dot{m}_1 = 0.1 \text{ kg/s}$$

▶ $p_1^{\text{in}} = 1 \text{ MPa}, T_1^{\text{in}} = 70 \text{ °C}$
▶ $p_1^{\text{out}} = 1 \text{ MPa}, T_1^{\text{out}} = 35 \text{ °C}$

 $\diamond~$ for water,

▶
$$p_2^{\text{in}} = 300 \text{ kPa}, T_2^{\text{in}} = 15 \degree \text{C}$$

▶ $p_2^{\text{out}} = 300 \text{ kPa}, T_2^{\text{out}} = 25 \degree \text{C}$

• find:

◊ m₂

Assumptions and basic equations

• assumptions:

- $\diamond \ \, \text{steady state}$
- \diamond no change in PE ($z_{out} = z_{in}$)
- \diamond no change in KE ($\dot{r}_{out} = \dot{r}_{in}$)
- \diamond no boundary/shaft/electrical/etc. work ($\dot{W} = 0$)
- \diamond heat exchanger is well-insulated ($\dot{Q}=0$)

• basic equations:

 $\diamond~$ steady-state 1st law for open systems,

$$\begin{split} \dot{Q} + \sum_{i=1}^{N^{\text{in}}} \dot{m}_{i}^{\text{in}} \left[\frac{1}{2} (\dot{r}_{i}^{\text{in}})^{2} + gz_{i}^{\text{in}} + h_{i}^{\text{in}} \right] \\ = \dot{W} + \sum_{j=1}^{N^{\text{out}}} \dot{m}_{j}^{\text{out}} \left[\frac{1}{2} (\dot{r}_{j}^{\text{out}})^{2} + gz_{j}^{\text{out}} + h_{j}^{\text{out}} \right] \end{split}$$

System diagram

Solution

• after our simplifying assumptions, 1st law becomes

$$\sum_{j=1}^{N^{\text{out}}} \dot{m}_{j} h_{j}^{\text{out}} = \sum_{j=i}^{N^{\text{in}}} \dot{m}_{i} h_{i}^{\text{in}}$$

$$\iff \dot{m}_{1} h_{1}^{\text{out}} + \dot{m}_{2} h_{2}^{\text{out}} = \dot{m}_{1} h_{1}^{\text{in}} + \dot{m}_{2} h_{2}^{\text{in}}$$

$$\iff \dot{m}_{2} (h_{2}^{\text{out}} - h_{2}^{\text{in}}) = \dot{m}_{1} (h_{1}^{\text{in}} - h_{1}^{\text{out}})$$

$$\iff \dot{m}_{2} = \dot{m}_{1} \frac{h_{1}^{\text{in}} - h_{1}^{\text{out}}}{h_{2}^{\text{out}} - h_{2}^{\text{in}}}$$

Solution (continued)

- for R-134a,
 - $\diamond h_1^{\rm in} =$ 304 kJ/kg (superheated vapor table)
 - \diamond $h_1^{out} = 101$ kJ/kg (compressed liquid \approx saturated liquid)

• for water,

- $\diamond~h_2^{\rm in}$ = 63 kJ/kg (compressed liquid \approx saturated liquid)
- $\diamond~h_2^{\rm out} = 105~{\rm kJ/kg}$ (compressed liquid \approx saturated liquid)

SO

$$\begin{split} \dot{m}_2 &= \dot{m}_1 \frac{h_1^{\text{in}} - h_1^{\text{out}}}{h_2^{\text{out}} - h_2^{\text{in}}} \\ &= (0.1 \text{kg/s}) \frac{304 \text{kJ/kg} - 101 \text{kJ/kg}}{105 \text{kJ/kg} - 63 \text{kJ/kg}} \\ &= 0.48 \text{kg/s} \end{split}$$