Lecture 16 - More equipment models

Purdue ME 200, Thermodynamics I

Kevin J. Kircher, kircher@purdue.edu

Outline

Throttles

Heat exchangers

Throttles

- throttles reduce a fluid's pressure by restricting flow
- often (but not always), throttles also reduce temperature

Typical assumptions for throttles

- steady state
- one-dimensional flow
- no change in PE
- no boundary/shaft/electrical/etc. work
- no heat transfer
- under these assumptions, throttles satisfy

$$
\frac{1}{2}\left(\dot{r}_{\text {in }}^{2}-\dot{r}_{\text {out }}^{2}\right)=h_{\text {out }}-h_{\text {in }}
$$

- often velocities are \sim equal well upstream and downstream, so

$$
h_{\text {out }}=h_{\text {in }}
$$

Example

Saturated liquid R-134a enters a throttle at 8 bar and exits at 1.2 bar.
(a) Find the saturated liquid-vapor mixture quality at the exit.
(b) Find the temperature change across the device.

Given and find

- given:
\diamond saturated liquid at inlet
$\diamond p_{\text {in }}=8$ bar
$\diamond p_{\text {out }}=1.2 \mathrm{bar}$
- find:
(a) $x_{\text {out }}$
(b) $T_{\text {out }}-T_{\text {in }}$

Assumptions and basic equations

- assumptions:
\diamond steady state
\diamond no change in PE $\left(z_{\text {out }}=z_{\text {in }}\right)$
\diamond no change in KE $\left(\dot{r}_{\text {out }}=\dot{r}_{\text {in }}\right)$
\diamond no boundary/shaft/electrical/etc. work $(\dot{W}=0)$
\diamond well-insulated $(\dot{Q}=0)$
- basic equations:
\diamond steady-state 1st law for open systems with 1 inlet/outlet,

$$
\dot{m}\left[\frac{1}{2}\left(\dot{r}_{\text {in }}^{2}-\dot{r}_{\text {out }}^{2}\right)+g\left(z_{\text {in }}-z_{\text {out }}\right)+h_{\text {in }}-h_{\text {out }}\right]=\dot{W}-\dot{Q}
$$

\diamond relationship between specific enthalpy and quality,

$$
h_{\mathrm{out}}=h_{\text {liq }}+x_{\mathrm{out}}\left(h_{\mathrm{vap}}-h_{\text {liq }}\right)
$$

System diagram

Solution to part (a)

- from relationship between specific enthalpy and quality,

$$
x_{\mathrm{out}}=\frac{h_{\mathrm{out}}-h_{\mathrm{liq}}}{h_{\mathrm{vap}}-h_{\mathrm{liq}}}
$$

- from 1st law and assumptions, $h_{\text {out }}=h_{\text {in }}$
- from R-134a saturation table,
$\diamond h_{\text {in }}=95.5 \mathrm{~kJ} / \mathrm{kg}$ at $p_{\text {in }}=8 \mathrm{bar}$
$\diamond h_{\text {liq }}=22.5 \mathrm{~kJ} / \mathrm{kg}$ and $h_{\text {vap }}=237 \mathrm{~kJ} / \mathrm{kg}$ at $p_{\text {out }}=1.2 \mathrm{bar}$
- so

$$
x_{\text {out }}=\frac{95.5 \mathrm{~kJ} / \mathrm{kg}-22.5 \mathrm{~kJ} / \mathrm{kg}}{237 \mathrm{~kJ} / \mathrm{kg}-22.5 \mathrm{~kJ} / \mathrm{kg}}=0.34
$$

Solution to part (b)

- from R-134a saturation table,

$$
\begin{aligned}
& \diamond T_{\text {in }}=31.3^{\circ} \mathrm{C} \text { at } p_{\text {in }}=8 \mathrm{bar} \\
& \diamond T_{\text {out }}=-22.3^{\circ} \mathrm{C} \text { at } p_{\text {out }}=1.2 \mathrm{bar}
\end{aligned}
$$

- so temperature change across throttle is

$$
T_{\text {out }}-T_{\text {in }}=-22.3^{\circ} \mathrm{C}-31.3^{\circ} \mathrm{C}=-53.6^{\circ} \mathrm{C}
$$

- refrigerant got much colder just by flowing past a restriction!

Outline

Throttles

Heat exchangers

Heat exchangers

- heat exchangers transfer heat between substances
- typically, the substances are fluids
- there are several common configurations
- all involve multiple inflows and/or outflows
- in mixing chambers, fluids come into direct contact and mix
- in recuperators, a conductive wall separates the fluids

Direct contact heat exchanger (mixing chamber)

- fluids come into contact and mix

Cross-flow heat exchanger (recuperator)

- internally, a conductive wall separates the fluids

Parallel-flow heat exchanger (recuperator)

- internally, a conductive wall separates the fluids

Counterflow heat exchanger (recuperator)

- internally, a conductive wall separates the fluids

Typical assumptions for heat exchangers

- steady state
- one-dimensional flow
- no change in PE
- no change in KE
- no boundary/shaft/electrical/etc. work
- under these assumptions, heat exchangers satisfy

$$
\sum_{j=1}^{N^{\text {out }}} \dot{m}_{j} h_{j}^{\text {out }}-\sum_{j=i}^{N^{\text {in }}} \dot{m}_{i} h_{i}^{\text {in }}=\dot{Q}
$$

- if heat transfer across boundary is negligible $(\dot{Q}=0)$, then

$$
\sum_{j=1}^{N^{\text {out }}} \dot{m}_{j} h_{j}^{\mathrm{out}}=\sum_{j=i}^{N^{\text {in }}} \dot{m}_{i} h_{i}^{\mathrm{in}}
$$

Example

R-134a enters a cross-flow heat exchanger at $0.1 \mathrm{~kg} / \mathrm{s}, 1 \mathrm{MPa}$ and $70^{\circ} \mathrm{C}$ and exits at $35^{\circ} \mathrm{C}$. Water enters at 300 kPa and $15^{\circ} \mathrm{C}$ and exits at $25^{\circ} \mathrm{C}$. Assuming constant pressures, find the water mass flow rate.

Given and find

- given:
\diamond for R-134a,
- $\dot{m}_{1}=0.1 \mathrm{~kg} / \mathrm{s}$
- $p_{1}^{\text {in }}=1 \mathrm{MPa}, T_{1}^{\text {in }}=70^{\circ} \mathrm{C}$
- $p_{1}^{\text {out }}=1 \mathrm{MPa}, T_{1}^{\text {out }}=35{ }^{\circ} \mathrm{C}$
\diamond for water,
- $p_{2}^{\text {in }}=300 \mathrm{kPa}, T_{2}^{\text {in }}=15{ }^{\circ} \mathrm{C}$
- $p_{2}^{\text {out }}=300 \mathrm{kPa}, T_{2}^{\text {out }}=25^{\circ} \mathrm{C}$
- find:
$\diamond \dot{m}_{2}$

Assumptions and basic equations

- assumptions:
\diamond steady state
\diamond no change in PE $\left(z_{\text {out }}=z_{\text {in }}\right)$
\diamond no change in KE $\left(\dot{r}_{\text {out }}=\dot{r}_{\text {in }}\right)$
\diamond no boundary/shaft/electrical/etc. work $(\dot{W}=0)$
\diamond heat exchanger is well-insulated $(\dot{Q}=0)$
- basic equations:
\diamond steady-state 1st law for open systems,

$$
\begin{aligned}
& \dot{Q}+\sum_{i=1}^{N^{\text {in }}} \dot{m}_{i}^{\text {in }}\left[\frac{1}{2}\left(\dot{r}_{i}^{\text {in }}\right)^{2}+g z_{i}^{\text {in }}+h_{i}^{\text {in }}\right] \\
& =\dot{W}+\sum_{j=1}^{N^{\text {out }}} \dot{m}_{j}^{\text {out }}\left[\frac{1}{2}\left(\dot{r}_{j}^{\text {out }}\right)^{2}+g z_{j}^{\text {out }}+h_{j}^{\text {out }}\right]
\end{aligned}
$$

System diagram

Solution

- after our simplifying assumptions, 1st law becomes

$$
\begin{aligned}
& \sum_{j=1}^{N^{\text {out }}} \dot{m}_{j} h_{j}^{\text {out }}=\sum_{j=i}^{N^{\text {in }}} \dot{m}_{i} h_{i}^{\text {in }} \\
\Longleftrightarrow & \dot{m}_{1} h_{1}^{\text {out }}+\dot{m}_{2} h_{2}^{\text {out }}=\dot{m}_{1} h_{1}^{\text {in }}+\dot{m}_{2} h_{2}^{\text {in }} \\
\Longleftrightarrow & \dot{m}_{2}\left(h_{2}^{\text {out }}-h_{2}^{\text {in }}\right)=\dot{m}_{1}\left(h_{1}^{\text {in }}-h_{1}^{\text {out }}\right) \\
\Longleftrightarrow & \dot{m}_{2}=\dot{m}_{1} \frac{h_{1}^{\text {in }}-h_{1}^{\text {out }}}{h_{2}^{\text {out }}-h_{2}^{\text {in }}}
\end{aligned}
$$

Solution (continued)

- for R-134a,
$\diamond h_{1}^{\text {in }}=304 \mathrm{~kJ} / \mathrm{kg}$ (superheated vapor table)
$\diamond h_{1}^{\text {out }}=101 \mathrm{~kJ} / \mathrm{kg}$ (compressed liquid \approx saturated liquid)
- for water,
$\diamond h_{2}^{\text {in }}=63 \mathrm{~kJ} / \mathrm{kg}$ (compressed liquid \approx saturated liquid)
$\diamond h_{2}^{\text {out }}=105 \mathrm{~kJ} / \mathrm{kg}$ (compressed liquid \approx saturated liquid)
- SO

$$
\begin{aligned}
\dot{m}_{2} & =\dot{m}_{1} \frac{h_{1}^{\text {in }}-h_{1}^{\text {out }}}{h_{2}^{\text {out }}-h_{2}^{\text {in }}} \\
& =(0.1 \mathrm{~kg} / \mathrm{s}) \frac{304 \mathrm{~kJ} / \mathrm{kg}-101 \mathrm{~kJ} / \mathrm{kg}}{105 \mathrm{~kJ} / \mathrm{kg}-63 \mathrm{~kJ} / \mathrm{kg}} \\
& =0.48 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

