Lecture 12 – Polytropic processes Purdue ME 200, Thermodynamics I

Kevin J. Kircher, kircher@purdue.edu

Outline

Polytropic processes

Ideal gas tables

Example

Polytropic processes

• a polytropic process is a quasi-equilibrium process with

$$pV^n = C$$

throughout the process

• the constant can be written as $C = p_1 V_1^n = p_2 V_2^n$, so

$$\frac{p_2}{p_1} = \left(\frac{V_1}{V_2}\right)^n$$

• for closed systems (constant m), pv^n is also constant:

$$pV^n = C \iff p(mv)^n = C \iff pv^n = \frac{C}{m^n}$$

Special cases of polytropic processes

• if n = 0, pressure is constant:

$$pV^0 = C \iff p = C$$

• as $|n| \to \infty$, volume becomes constant: for $n \neq 0$,

$$rac{V_1}{V_2} = \left(rac{p_2}{p_1}
ight)^{1/n} o 1 ext{ as } |n| o \infty$$

 $(\mathit{V}_2/\mathit{V}_1
ightarrow 1$ if and only if $\mathit{V}_2
ightarrow \mathit{V}_1)$

• if n = 1 in a closed ideal gas system, temperature is constant:

$$pV^1 = C \iff mRT = C \iff T = \frac{C}{mR}$$

Polytropic boundary work for closed ideal gas systems

• from lecture 5, polytropic boundary work for any system is

$$\int_{V_1}^{V_2} p \mathrm{d}V = \begin{cases} (p_2 V_2 - p_1 V_1)/(1 - n) & \text{if } n \neq 1 \\ p_1 V_1 \ln(V_2/V_1) & \text{if } n = 1 \end{cases}$$

- for closed ideal gas systems, $p_1V_1 = mRT_1$ and $p_2V_2 = mRT_2$
- so the polytropic boundary work formula simplifies to

$$\int_{V_1}^{V_2} p \mathrm{d}V = \begin{cases} mR(T_2 - T_1)/(1 - n) & \text{if } n \neq 1 \\ mRT \ln(V_2/V_1) & \text{if } n = 1 \end{cases}$$

(n = 1 means constant T for closed ideal gas systems)

Polytropic processes for ideal gases

• for a closed ideal gas system in any process,

$$mR = \frac{p_1V_1}{T_1} = \frac{p_2V_2}{T_2} \implies \frac{p_2}{p_1} = \frac{V_1T_2}{V_2T_1}$$

• but for polytropic processes,

$$\frac{p_2}{p_1} = \left(\frac{V_1}{V_2}\right)^n$$

• so for a closed ideal gas system in a polytropic process,

$$\frac{p_2}{p_1} = \frac{V_1 T_2}{V_2 T_1} = \left(\frac{V_1}{V_2}\right)^n$$

Polytropic processes for ideal gases (continued)

• multiplying the last line by $(V_1/V_2)^{-1}$ gives

$$\frac{p_2}{p_1} \left(\frac{V_1}{V_2}\right)^{-1} = \frac{T_2}{T_1} = \left(\frac{V_1}{V_2}\right)^{n-1}$$

• if $n \neq 0$, then

$$\left(\frac{V_1}{V_2}\right)^{-1} = \left[\left(\frac{V_1}{V_2}\right)^n\right]^{-1/n} = \left(\frac{p_2}{p_1}\right)^{-1/n}$$

SO

$$\frac{p_2}{p_1} \left(\frac{V_1}{V_2}\right)^{-1} = \frac{p_2}{p_1} \left(\frac{p_2}{p_1}\right)^{-1/n} = \left(\frac{p_2}{p_1}\right)^{1-1/n}$$

Polytropic processes for ideal gases (continued)

• in summary, for any closed ideal gas system,

$$\left(\frac{p_2}{p_1}\right)^{1-1/n} = \frac{T_2}{T_1} = \left(\frac{V_1}{V_2}\right)^{n-1}$$

over any polytropic process with $n \neq 0$

- these are 2 equations in 7 variables: $n, p_1, V_1, T_1, p_2, V_2, T_2$
- \implies given any 5 of those variables, we can resolve the other 2

Outline

Polytropic processes

Ideal gas tables

Example

Ideal gas property tables

- Brightspace has a spreadsheet of ideal gas tables
- tabs for air, water, carbon dioxide, oxygen, nitrogen, ammonia
- all tables have \bar{h} and \bar{u} , indexed by T

Temp. [K]	h [kJ/kmol]	u [kJ/kmol]		
285	8875	6506		
290	9058	6648		
295	9242	6791		
300	9428	6935		
305	9615	7080		
310	9802	7226		
315	9991	7373		

- these data are molar (per kmol), not specific (per kg)
- to get u (kJ/kg), divide \bar{u} (kJ/kmol) by M (kg/kmol)

Other ideal gas data

- Brightspace also has a PDF containing
 - \diamond molecular weight *M* (kg/kmol)
 - \diamond individual gas constant R (kJ/(kg K))
 - $\diamond~$ specific heats c_{v} and $c_{p}~(kJ/(kg~K))$ at 300 K
 - $\diamond\,$ critical temperature ${\cal T}_c$ (K) and pressure p_c (MPa)

Substance	Formula	мw	R	с _Р (300 К)	<i>с</i> _v (300 К)	Tcrit	Pcrit
			[kJ/(kgK)]	[kJ/(kgK)]	[kJ/(kgK)]	[K]	[MPa]
Air	-	28.97	0.28700	1.005	0.7177	132.5	3.786
Ammonia	NH₃	17.031	0.48817	2.095	1.607	405.4	11.333
Carbon dioxide	CO ₂	44.010	0.18892	0.8435	0.6546	304.1	7.377
Nitrogen	N ₂	28.013	0.29680	1.038	0.7409	126.2	3.396
Oxygen	O ₂	31.999	0.25983	0.9143	0.6544	154.6	5.043
Propane	C ₃ H ₈	44.094	0.18855	1.666	1.478	369.8	4.247
R134a	CH ₂ F ₄	102.03	0.08149	0.8367	0.7552	374.2	4.059
Water	H ₂ O	18.015	0.46152	1.868	1.407	647.1	22.064

• the same PDF has cp vs. T data for air and water

Outline

Polytropic processes

Ideal gas tables

Example

A piston-cylinder device contains 1 m³ of CO₂ at 12 °C and atmospheric pressure. The CO₂ undergoes a polytropic process with n = 1.25 and ends at 165 kPa.

- (a) Calculate the change in internal energy (i) assuming constant specific heats, and (ii) using the ideal gas table.
- (b) Calculate the heat transfer over the process.
- (c) Plot p vs. v and T vs. v over the process.

Given and find

• given:

- ◇ $T_1 = 12$ °C, $p_1 = 101$ kPa, $V_1 = 1$ m³ ◇ $p_2 = 165$ kPa ◇ n = 1.25
- find:
 - $\begin{array}{c} \diamond \quad \Delta U \\ \diamond \quad Q \end{array}$

Assumptions and basic equations

• assume:

- \diamond closed system (constant *m*)
- \diamond ideal gas (pV = mRT)
- ♦ polytropic process (constant $pV^{1.25}$)
- \diamond stationary ($\Delta KE = \Delta PE = 0$)
- basic equation:

$$\Delta \mathsf{KE} + \Delta \mathsf{PE} + \Delta U = Q - W$$

System diagram

 $12 \, / \, 20$

Solution to part (a), method (i)

- the change internal energy is $\Delta U = m \Delta u$
- if specific heats are constant, then $\Delta u = c_v(T_{\mathsf{av}})\Delta T$
- this is a closed ideal gas system in a polytropic process, so

$$T_2 = T_1 \left(rac{p_2}{p_1}
ight)^{1-1/n} = 285 \mathrm{K} \left(rac{165 \mathrm{kPa}}{101 \mathrm{kPa}}
ight)^{1-1/1.25} = 314.4 \mathrm{K}$$

- average temperature is $T_{av} = (285 \text{ K} + 314.4 \text{ K})/2 = 300 \text{ K}$
- for CO_2 at 300 K, $c_{\rm v}(\,{T_{\rm av}})=0.655$ kJ/(kg K)

Solution to part (a), method (i) (continued)

• since R = 0.189 kJ/(kg K) for CO₂, the ideal gas law gives

$$m = \frac{p_1 V_1}{RT_1} = \frac{(101 \text{kPa})(1 \text{m}^3)}{(0.189 \text{kJ}/(\text{kg K}))(285 \text{K})} = 1.88 \text{kg}$$

• so change in internal energy is

$$\begin{aligned} \Delta U &= m \Delta u = m c_v (T_{av}) (T_2 - T_1) \\ &= (1.88 \text{kg}) (0.655 \text{kJ} / (\text{kg K})) (314.4 \text{K} - 285 \text{K}) \\ &= 36.1 \text{kJ} \end{aligned}$$

Solution to part (a), method (ii)

- from ideal gas table, internal energies per mole are
 - $\diamond ~~ \bar{u}_1 = 6506 ~\text{kJ/kmol at} ~T_1 = 285 ~\text{K}$
 - $\diamond~ar{u}_2=7373~{
 m kJ/kmol}$ at $T_2pprox 315~{
 m K}$
- from molecular weight PDF, $M = 44 \text{ kg/kmol CO}_2$
- since $u = \bar{u}/M$, change in internal energy is

$$\Delta U = m\Delta u = \frac{m(\bar{u}_2 - \bar{u}_1)}{M}$$
$$= \frac{(1.88 \text{kg})[7373 \text{kJ/kmol} - 6506 \text{kJ/kmol}]}{44 \text{kg/kmol}}$$
$$= 37.0 \text{kJ}$$

• so methods (i) and (ii) agree to within 2.5% error

Solution to part (b)

• from the 1st law with $\Delta KE = \Delta PE = 0$,

$$Q = \Delta U + W$$

• for closed ideal gas system in $n \neq 1$ polytropic process,

$$W = \frac{mR(T_2 - T_1)}{1 - n}$$

= $\frac{(1.88 \text{kg})(0.189 \text{kJ}/(\text{kg K}))(314.4 \text{K} - 285 \text{K})}{1 - 1.25}$
= -41.7 kJ

• so heat transfer is

$$Q = \Delta U + W = 37.0$$
kJ $- 41.7$ kJ $= -4.7$ kJ

(c) Pressure vs. specific volume plot

(c) Temperature vs. specific volume plot

Bonus: path along p-v-T surface

What did we learn?

- surroundings squished CO₂ in a polytropic process
- system volume decreased by ${\sim}33\%$
- system (absolute) temperature increased by ${\sim}10\%$
- $\bullet\,$ system (absolute) pressure increased by ${\sim}63\%$
- surroundings gave ${\sim}42~kJ$ to system via work
- system gave back ${\sim}5$ kJ to surroundings via heat transfer
- remaining ~ 37 kJ increased system's internal energy