Lecture 12 - Polytropic processes

Purdue ME 200, Thermodynamics I

Kevin J. Kircher, kircher@purdue.edu

Outline

Polytropic processes

Ideal gas tables

Example

Polytropic processes

- a polytropic process is a quasi-equilibrium process with

$$
p V^{n}=C
$$

throughout the process

- the constant can be written as $C=p_{1} V_{1}^{n}=p_{2} V_{2}^{n}$, so

$$
\frac{p_{2}}{p_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{n}
$$

- for closed systems (constant m), $p v^{n}$ is also constant:

$$
p V^{n}=C \Longleftrightarrow p(m v)^{n}=C \Longleftrightarrow p v^{n}=\frac{C}{m^{n}}
$$

Special cases of polytropic processes

- if $n=0$, pressure is constant:

$$
p V^{0}=C \Longleftrightarrow p=C
$$

- as $|n| \rightarrow \infty$, volume becomes constant: for $n \neq 0$,

$$
\frac{V_{1}}{V_{2}}=\left(\frac{p_{2}}{p_{1}}\right)^{1 / n} \rightarrow 1 \text { as }|n| \rightarrow \infty
$$

$\left(V_{2} / V_{1} \rightarrow 1\right.$ if and only if $\left.V_{2} \rightarrow V_{1}\right)$

- if $n=1$ in a closed ideal gas system, temperature is constant:

$$
p V^{1}=C \Longleftrightarrow m R T=C \Longleftrightarrow T=\frac{C}{m R}
$$

Polytropic boundary work for closed ideal gas systems

- from lecture 5, polytropic boundary work for any system is

$$
\int_{V_{1}}^{V_{2}} p \mathrm{~d} V= \begin{cases}\left(p_{2} V_{2}-p_{1} V_{1}\right) /(1-n) & \text { if } n \neq 1 \\ p_{1} V_{1} \ln \left(V_{2} / V_{1}\right) & \text { if } n=1\end{cases}
$$

- for closed ideal gas systems, $p_{1} V_{1}=m R T_{1}$ and $p_{2} V_{2}=m R T_{2}$
- so the polytropic boundary work formula simplifies to

$$
\int_{V_{1}}^{V_{2}} p \mathrm{~d} V= \begin{cases}m R\left(T_{2}-T_{1}\right) /(1-n) & \text { if } n \neq 1 \\ m R T \ln \left(V_{2} / V_{1}\right) & \text { if } n=1\end{cases}
$$

($n=1$ means constant T for closed ideal gas systems)

Polytropic processes for ideal gases

- for a closed ideal gas system in any process,

$$
m R=\frac{p_{1} V_{1}}{T_{1}}=\frac{p_{2} V_{2}}{T_{2}} \Longrightarrow \frac{p_{2}}{p_{1}}=\frac{V_{1} T_{2}}{V_{2} T_{1}}
$$

- but for polytropic processes,

$$
\frac{p_{2}}{p_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{n}
$$

- so for a closed ideal gas system in a polytropic process,

$$
\frac{p_{2}}{p_{1}}=\frac{V_{1} T_{2}}{V_{2} T_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{n}
$$

Polytropic processes for ideal gases (continued)

- multiplying the last line by $\left(V_{1} / V_{2}\right)^{-1}$ gives

$$
\frac{p_{2}}{p_{1}}\left(\frac{V_{1}}{V_{2}}\right)^{-1}=\frac{T_{2}}{T_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{n-1}
$$

- if $n \neq 0$, then

$$
\left(\frac{V_{1}}{V_{2}}\right)^{-1}=\left[\left(\frac{V_{1}}{V_{2}}\right)^{n}\right]^{-1 / n}=\left(\frac{p_{2}}{p_{1}}\right)^{-1 / n}
$$

- SO

$$
\frac{p_{2}}{p_{1}}\left(\frac{V_{1}}{V_{2}}\right)^{-1}=\frac{p_{2}}{p_{1}}\left(\frac{p_{2}}{p_{1}}\right)^{-1 / n}=\left(\frac{p_{2}}{p_{1}}\right)^{1-1 / n}
$$

Polytropic processes for ideal gases (continued)

- in summary, for any closed ideal gas system,

$$
\left(\frac{p_{2}}{p_{1}}\right)^{1-1 / n}=\frac{T_{2}}{T_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{n-1}
$$

over any polytropic process with $n \neq 0$

- these are 2 equations in 7 variables: $n, p_{1}, V_{1}, T_{1}, p_{2}, V_{2}, T_{2}$
\Longrightarrow given any 5 of those variables, we can resolve the other 2

Outline

Polytropic processes

Ideal gas tables

Example

Ideal gas property tables

- Brightspace has a spreadsheet of ideal gas tables
- tabs for air, water, carbon dioxide, oxygen, nitrogen, ammonia
- all tables have \bar{h} and \bar{u}, indexed by T

Temp. [K]	$\mathrm{h}[\mathrm{kJ} / \mathrm{kmol}]$	$\mathrm{u}[\mathrm{kJ} / \mathrm{kmol}]$
285	8875	6506
290	9058	6648
295	9242	6791
300	9428	6935
305	9615	7080
310	9802	7226
315	9991	7373

- these data are molar (per kmol), not specific (per kg)
- to get $u(\mathrm{~kJ} / \mathrm{kg})$, divide $\bar{u}(\mathrm{~kJ} / \mathrm{kmol})$ by $M(\mathrm{~kg} / \mathrm{kmol})$

Other ideal gas data

- Brightspace also has a PDF containing
\diamond molecular weight $M(\mathrm{~kg} / \mathrm{kmol})$
\diamond individual gas constant $R(\mathrm{~kJ} /(\mathrm{kg} \mathrm{K}))$
\diamond specific heats c_{v} and $c_{p}(\mathrm{~kJ} /(\mathrm{kg} \mathrm{K}))$ at 300 K
\diamond critical temperature $T_{c}(\mathrm{~K})$ and pressure $p_{c}(\mathrm{MPa})$

Substance	Formula	MW	\boldsymbol{R} $[\mathbf{k J} /(\mathbf{k g K})]$	$\boldsymbol{c}_{P}(\mathbf{3 0 0} \mathbf{K})$ $[\mathbf{k J} /(\mathbf{k g K})]$	$\boldsymbol{c}_{\boldsymbol{v}}(\mathbf{3 0 0} \mathbf{K})$ $[\mathbf{k J} /(\mathbf{k g K})]$	$\boldsymbol{T}_{\text {crit }}$ $[\mathbf{K}]$	$\boldsymbol{P}_{\text {crit }}$ $[\mathbf{M P a]}$
Air	-	28.97	0.28700	1.005	0.7177	132.5	3.786
Ammonia	NH_{3}	17.031	0.48817	2.095	1.607	405.4	11.333
Carbon dioxide	CO_{2}	44.010	0.18892	0.8435	0.6546	304.1	7.377
Nitrogen	N_{2}	28.013	0.29680	1.038	0.7409	126.2	3.396
Oxygen	O_{2}	31.999	0.25983	0.9143	0.6544	154.6	5.043
Propane	$\mathrm{C}_{3} \mathrm{H}_{8}$	44.094	0.18855	1.666	1.478	369.8	4.247
R134a	$\mathrm{CH}_{2} \mathrm{~F}_{4}$	102.03	0.08149	0.8367	0.7552	374.2	4.059
Water	$\mathrm{H}_{2} \mathrm{O}$	18.015	0.46152	1.868	1.407	647.1	22.064

- the same PDF has c_{p} vs. T data for air and water

Outline

Polytropic processes

Ideal gas tables

Example

Problem statement

A piston-cylinder device contains $1 \mathrm{~m}^{3}$ of CO_{2} at $12{ }^{\circ} \mathrm{C}$ and atmospheric pressure. The CO_{2} undergoes a polytropic process with $n=1.25$ and ends at 165 kPa .
(a) Calculate the change in internal energy (i) assuming constant specific heats, and (ii) using the ideal gas table.
(b) Calculate the heat transfer over the process.
(c) Plot p vs. v and T vs. v over the process.

Given and find

- given:

$$
\begin{aligned}
& \diamond T_{1}=12{ }^{\circ} \mathrm{C}, p_{1}=101 \mathrm{kPa}, V_{1}=1 \mathrm{~m}^{3} \\
& \diamond p_{2}=165 \mathrm{kPa} \\
& \diamond n=1.25
\end{aligned}
$$

- find:

$$
\begin{aligned}
& \diamond \Delta U \\
& \diamond Q
\end{aligned}
$$

Assumptions and basic equations

- assume:
\diamond closed system (constant m)
\diamond ideal gas $(p V=m R T)$
\diamond polytropic process (constant $p V^{1.25}$)
\diamond stationary $(\triangle K E=\triangle P E=0)$
- basic equation:

$$
\Delta \mathrm{KE}+\Delta \mathrm{PE}+\Delta U=Q-W
$$

System diagram

Solution to part (a), method (i)

- the change internal energy is $\Delta U=m \Delta u$
- if specific heats are constant, then $\Delta u=c_{v}\left(T_{\mathrm{av}}\right) \Delta T$
- this is a closed ideal gas system in a polytropic process, so

$$
T_{2}=T_{1}\left(\frac{p_{2}}{p_{1}}\right)^{1-1 / n}=285 \mathrm{~K}\left(\frac{165 \mathrm{kPa}}{101 \mathrm{kPa}}\right)^{1-1 / 1.25}=314.4 \mathrm{~K}
$$

- average temperature is $T_{\mathrm{av}}=(285 \mathrm{~K}+314.4 \mathrm{~K}) / 2=300 \mathrm{~K}$
- for CO_{2} at $300 \mathrm{~K}, c_{v}\left(T_{\mathrm{av}}\right)=0.655 \mathrm{~kJ} /(\mathrm{kg} \mathrm{K})$

Solution to part (a), method (i) (continued)

- since $R=0.189 \mathrm{~kJ} /(\mathrm{kg} \mathrm{K})$ for CO_{2}, the ideal gas law gives

$$
m=\frac{p_{1} V_{1}}{R T_{1}}=\frac{(101 \mathrm{kPa})\left(1 \mathrm{~m}^{3}\right)}{(0.189 \mathrm{~kJ} /(\mathrm{kg} \mathrm{~K}))(285 \mathrm{~K})}=1.88 \mathrm{~kg}
$$

- so change in internal energy is

$$
\begin{aligned}
\Delta U & =m \Delta u=m c_{v}\left(T_{\mathrm{av}}\right)\left(T_{2}-T_{1}\right) \\
& =(1.88 \mathrm{~kg})(0.655 \mathrm{~kJ} /(\mathrm{kg} \mathrm{~K}))(314.4 \mathrm{~K}-285 \mathrm{~K}) \\
& =36.1 \mathrm{~kJ}
\end{aligned}
$$

Solution to part (a), method (ii)

- from ideal gas table, internal energies per mole are

$$
\begin{aligned}
& \diamond \bar{u}_{1}=6506 \mathrm{~kJ} / \mathrm{kmol} \text { at } T_{1}=285 \mathrm{~K} \\
& \diamond \bar{u}_{2}=7373 \mathrm{~kJ} / \mathrm{kmol} \text { at } T_{2} \approx 315 \mathrm{~K}
\end{aligned}
$$

- from molecular weight PDF, $M=44 \mathrm{~kg} / \mathrm{kmol} \mathrm{CO}_{2}$
- since $u=\bar{u} / M$, change in internal energy is

$$
\begin{aligned}
\Delta U & =m \Delta u=\frac{m\left(\bar{u}_{2}-\bar{u}_{1}\right)}{M} \\
& =\frac{(1.88 \mathrm{~kg})[7373 \mathrm{~kJ} / \mathrm{kmol}-6506 \mathrm{~kJ} / \mathrm{kmol}]}{44 \mathrm{~kg} / \mathrm{kmol}} \\
& =37.0 \mathrm{~kJ}
\end{aligned}
$$

- so methods (i) and (ii) agree to within 2.5% error

Solution to part (b)

- from the 1st law with $\triangle K E=\triangle P E=0$,

$$
Q=\Delta U+W
$$

- for closed ideal gas system in $n \neq 1$ polytropic process,

$$
\begin{aligned}
W & =\frac{m R\left(T_{2}-T_{1}\right)}{1-n} \\
& =\frac{(1.88 \mathrm{~kg})(0.189 \mathrm{~kJ} /(\mathrm{kg} \mathrm{~K}))(314.4 \mathrm{~K}-285 \mathrm{~K})}{1-1.25} \\
& =-41.7 \mathrm{~kJ}
\end{aligned}
$$

- so heat transfer is

$$
Q=\Delta U+W=37.0 \mathrm{~kJ}-41.7 \mathrm{~kJ}=-4.7 \mathrm{~kJ}
$$

(c) Pressure vs. specific volume plot

(c) Temperature vs. specific volume plot

Bonus: path along $p-v-T$ surface

What did we learn?

- surroundings squished CO_{2} in a polytropic process
- system volume decreased by $\sim 33 \%$
- system (absolute) temperature increased by $\sim 10 \%$
- system (absolute) pressure increased by $\sim 63 \%$
- surroundings gave $\sim 42 \mathrm{~kJ}$ to system via work
- system gave back $\sim 5 \mathrm{~kJ}$ to surroundings via heat transfer
- remaining $\sim 37 \mathrm{~kJ}$ increased system's internal energy

