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Polytropic processes

• a polytropic process is a quasi-equilibrium process with

pV n = C

throughout the process

• the constant can be written as C = p1V
n
1 = p2V

n
2 , so

p2
p1

=

(
V1

V2

)n

• for closed systems (constant m), pvn is also constant:

pV n = C ⇐⇒ p(mv)n = C ⇐⇒ pvn =
C

mn
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Special cases of polytropic processes

• if n = 0, pressure is constant:

pV 0 = C ⇐⇒ p = C

• as |n| → ∞, volume becomes constant: for n 6= 0,

V1

V2
=

(
p2
p1

)1/n

→ 1 as |n| → ∞

(V2/V1 → 1 if and only if V2 → V1)

• if n = 1 in a closed ideal gas system, temperature is constant:

pV 1 = C ⇐⇒ mRT = C ⇐⇒ T =
C

mR
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Polytropic boundary work for closed ideal gas systems

• from lecture 5, polytropic boundary work for any system is∫ V2

V1

pdV =

{
(p2V2 − p1V1)/(1− n) if n 6= 1

p1V1 ln(V2/V1) if n = 1

• for closed ideal gas systems, p1V1 = mRT1 and p2V2 = mRT2

• so the polytropic boundary work formula simplifies to∫ V2

V1

pdV =

{
mR(T2 − T1)/(1− n) if n 6= 1

mRT ln(V2/V1) if n = 1

(n = 1 means constant T for closed ideal gas systems)

3 / 20



Polytropic processes for ideal gases

• for a closed ideal gas system in any process,

mR =
p1V1

T1
=

p2V2

T2
=⇒ p2

p1
=

V1T2

V2T1

• but for polytropic processes,

p2
p1

=

(
V1

V2

)n

• so for a closed ideal gas system in a polytropic process,

p2
p1

=
V1T2

V2T1
=

(
V1

V2

)n
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Polytropic processes for ideal gases (continued)

• multiplying the last line by (V1/V2)−1 gives

p2
p1

(
V1

V2

)−1

=
T2

T1
=

(
V1

V2

)n−1

• if n 6= 0, then(
V1

V2

)−1

=

[(
V1

V2

)n]−1/n

=

(
p2
p1

)−1/n

• so
p2
p1

(
V1

V2

)−1

=
p2
p1

(
p2
p1

)−1/n

=

(
p2
p1

)1−1/n
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Polytropic processes for ideal gases (continued)

• in summary, for any closed ideal gas system,(
p2
p1

)1−1/n

=
T2

T1
=

(
V1

V2

)n−1

over any polytropic process with n 6= 0

• these are 2 equations in 7 variables: n, p1, V1, T1, p2, V2, T2

=⇒ given any 5 of those variables, we can resolve the other 2
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Ideal gas property tables

• Brightspace has a spreadsheet of ideal gas tables

• tabs for air, water, carbon dioxide, oxygen, nitrogen, ammonia

• all tables have h̄ and ū, indexed by T

• these data are molar (per kmol), not specific (per kg)

• to get u (kJ/kg), divide ū (kJ/kmol) by M (kg/kmol)
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Other ideal gas data

• Brightspace also has a PDF containing

� molecular weight M (kg/kmol)
� individual gas constant R (kJ/(kg K))
� specific heats cv and cp (kJ/(kg K)) at 300 K
� critical temperature Tc (K) and pressure pc (MPa)

• the same PDF has cp vs. T data for air and water
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Problem statement

A piston-cylinder device contains 1 m3 of CO2 at 12 ◦C and
atmospheric pressure. The CO2 undergoes a polytropic process
with n = 1.25 and ends at 165 kPa.

(a) Calculate the change in internal energy (i) assuming constant
specific heats, and (ii) using the ideal gas table.

(b) Calculate the heat transfer over the process.

(c) Plot p vs. v and T vs. v over the process.
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Given and find

• given:
� T1 = 12 ◦C, p1 = 101 kPa, V1 = 1 m3

� p2 = 165 kPa
� n = 1.25

• find:
� ∆U
� Q
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Assumptions and basic equations

• assume:
� closed system (constant m)
� ideal gas (pV = mRT )
� polytropic process (constant pV 1.25)
� stationary (∆KE = ∆PE = 0)

• basic equation:

∆KE + ∆PE + ∆U = Q −W
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System diagram

system

Q

W
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Solution to part (a), method (i)

• the change internal energy is ∆U = m∆u

• if specific heats are constant, then ∆u = cv (Tav)∆T

• this is a closed ideal gas system in a polytropic process, so

T2 = T1

(
p2
p1

)1−1/n

= 285K

(
165kPa

101kPa

)1−1/1.25

= 314.4K

• average temperature is Tav = (285 K + 314.4 K)/2 = 300 K

• for CO2 at 300 K, cv (Tav) = 0.655 kJ/(kg K)
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Solution to part (a), method (i) (continued)

• since R = 0.189 kJ/(kg K) for CO2, the ideal gas law gives

m =
p1V1

RT1
=

(101kPa)(1m3)

(0.189kJ/(kg K))(285K)
= 1.88kg

• so change in internal energy is

∆U = m∆u = mcv (Tav)(T2 − T1)

= (1.88kg)(0.655kJ/(kg K))(314.4K− 285K)

= 36.1kJ
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Solution to part (a), method (ii)

• from ideal gas table, internal energies per mole are

� ū1 = 6506 kJ/kmol at T1 = 285 K
� ū2 = 7373 kJ/kmol at T2 ≈ 315 K

• from molecular weight PDF, M = 44 kg/kmol CO2

• since u = ū/M, change in internal energy is

∆U = m∆u =
m(ū2 − ū1)

M

=
(1.88kg)[7373kJ/kmol − 6506kJ/kmol]

44kg/kmol

= 37.0kJ

• so methods (i) and (ii) agree to within 2.5% error
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Solution to part (b)

• from the 1st law with ∆KE = ∆PE = 0,

Q = ∆U + W

• for closed ideal gas system in n 6= 1 polytropic process,

W =
mR(T2 − T1)

1− n

=
(1.88kg)(0.189kJ/(kg K))(314.4K− 285K)

1− 1.25

= −41.7kJ

• so heat transfer is

Q = ∆U + W = 37.0kJ− 41.7kJ = −4.7kJ
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(c) Pressure vs. specific volume plot
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(c) Temperature vs. specific volume plot
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Bonus: path along p-v -T surface
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What did we learn?

• surroundings squished CO2 in a polytropic process

• system volume decreased by ∼33%

• system (absolute) temperature increased by ∼10%

• system (absolute) pressure increased by ∼63%

• surroundings gave ∼42 kJ to system via work

• system gave back ∼5 kJ to surroundings via heat transfer

• remaining ∼37 kJ increased system’s internal energy
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