Lecture 3 - How to solve thermo problems

Purdue ME 200, Thermodynamics I

Kevin J. Kircher, kircher@purdue.edu

Outline

Problem-solving approach

Example

In your head. . .

- carefully read the problem statement
- given: list stuff you know
- find: list stuff you don't know, but want to

On paper/tablet. ..

- system diagram: draw the system, boundary, inputs, outputs
- assumptions:
\diamond write down assumptions in the problem statement
\diamond e.g. 'closed', 'rigid', 'adiabatic', 'polytropic', ...
\diamond add any further (reasonable) assumptions that you make
\diamond write down the implication(s) of each assumption
- basic equations:
\diamond pull up the class equation sheet
\diamond write down equations relating knowns and unknowns
\diamond need at least as many equations as unknowns
- solution:
\diamond solve equations for unknowns and simplify
\diamond find numbers in problem statement or class property sheets
\diamond plug in numbers and calculate unknowns
\diamond don't forget units!

Outline

Problem-solving approach

Example

Problem statement

A rigid tank contains an ideal gas with a molecular weight of 30 $\mathrm{g} / \mathrm{mol}$. The gas is heated from an initial temperature of $20^{\circ} \mathrm{C}$ and atmospheric pressure to a final temperature of $50^{\circ} \mathrm{C}$.
(a) Find the initial specific volume of the gas.
(b) Find the final pressure of the gas.

Given and find

- given:
\diamond molecular weight $M=30 \mathrm{~g} / \mathrm{mol}=30 \mathrm{~kg} / \mathrm{kmol}$
\diamond initial temperature $T_{1}=20^{\circ} \mathrm{C}=293 \mathrm{~K}$
\diamond initial pressure $p_{1}=p_{\text {atm }}=101 \mathrm{kPa}$
\diamond final temperature $T_{2}=50^{\circ} \mathrm{C}=323 \mathrm{~K}$
- find:
\diamond initial specific volume v_{1}
\diamond final pressure p_{2}

System diagram

Assumptions and basic equations

- assumptions:
\diamond 'rigid' means constant volume
\diamond let's also assume the tank is sealed, so mass is constant
\diamond since m and V are constant, specific volume $v=V / m$ is too
\diamond 'ideal gas' means we can use the ideal gas law
- basic equations: none
- but we'll use a model and some definitions:
$\diamond p V=m R T$ (ideal gas law, a model)
$\diamond R=\bar{R} / M$ (definition of gas constant R)
$\diamond v=V / m$ (definition of specific volume v)

Solution to part (a)

- $p V=m R T$ and $v=V / m$, so $p v=R T$
- $\bar{R}=8.31 \mathrm{~kJ} / \mathrm{K} / \mathrm{kmol}$ and $M=30 \mathrm{~kg} / \mathrm{kmol}$, so

$$
R=\frac{\bar{R}}{M}=\frac{8.31 \mathrm{~kJ} / \mathrm{K} / \mathrm{kmol}}{30 \mathrm{~kg} / \mathrm{kmol}}=0.277 \frac{\mathrm{~kJ}}{\mathrm{~kg} \mathrm{~K}}
$$

- so the initial specific volume is

$$
v_{1}=\frac{R T_{1}}{p_{1}}=\frac{(0.277 \mathrm{~kJ} / \mathrm{kg} / \mathrm{K})(293 \mathrm{~K})}{101 \mathrm{kPa}}=0.802 \frac{\mathrm{~kJ}}{\mathrm{~kg} \mathrm{kPa}}
$$

- units check: $\mathrm{kJ} /(\mathrm{kg} \mathrm{kPa})=(\mathrm{kN} \mathrm{m}) /\left(\mathrm{kg} \mathrm{kN} / \mathrm{m}^{2}\right)=\mathrm{m}^{3} / \mathrm{kg}$

Solution to part (b)

- from the assumptions, $v_{2}=v_{1}=0.802 \mathrm{~m}^{3} / \mathrm{kg}$, so

$$
\begin{aligned}
p_{2} & =\frac{R T_{2}}{v_{2}}=\frac{(0.277 \mathrm{~kJ} / \mathrm{kg} / \mathrm{K})(323 \mathrm{~K})}{0.802 \mathrm{~m}^{3} / \mathrm{kg}} \\
& =111.7 \mathrm{kPa}
\end{aligned}
$$

