Lecture 7 – Property charts

Purdue ME 200, Thermodynamics I

Kevin J. Kircher, kircher@purdue.edu

Outline

The state principle

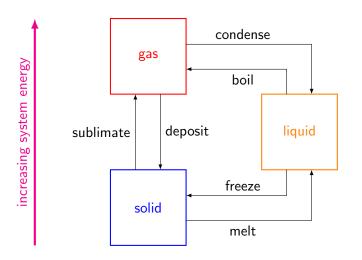
Visualizing a surface
$$z = f(x, y)$$

Property charts for pure simple compressible systems

Solids, liquids and gases

• in solids, particles (molecules/atoms) vibrate in fixed positions

• in **liquids**, particles flow around each other


• in gases (aka vapors), particles zoom around, far apart

Phases

- a phase is
 - ♦ a quantity of matter
 - with homogeneous structure (all solid, all liquid, or all gas)
 - and homogeneous composition (same compounds throughout)
- a system can contain multiple phases
- two substances that mix can form a single phase (nitrogen gas + oxygen gas = 1 phase)
- substances that don't mix form multiple phases (liquid water + liquid oil = 2 phases)

Phase changes

Pure substances

- a pure substance has fixed, uniform composition
- a pure substance can have multiple phases (liquid water + water vapor = pure)
- a pure substance can have multiple compounds (air ≈ nitrogen gas + oxygen gas = pure)
- but its composition can't change over time (humid air stops being pure when its water vapor condenses)

Simple compressible systems

- simple systems have only one type of work interaction
- for **simple compressible** systems, that's boundary work,

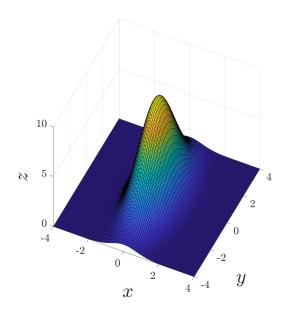
$$W = \int_{V_1}^{V_2} p \mathrm{d}V$$

The state principle

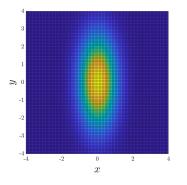
- why do we care about simple compressible systems?
 - they include a bunch of practically interesting systems
 - it only takes two properties to define their equilibrium states (specifically, any two independent, intensive properties)
- \nearrow this is the **state principle** for simple compressible systems \nwarrow
 - it makes it easier to specify input data for thermo problems
 - ★ the state principle assumes no center-of-mass motion
 - \diamond no Δ KE (otherwise we'd need to specify CoM velocity)
 - \diamond no ΔPE (otherwise we'd need to specify CoM elevation)

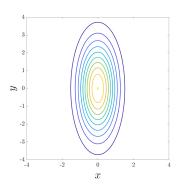
Implications of the state principle

- in equilibrium, all properties can be inferred from the state
- so for simple compressible systems in equilibrium,
 - any two independent, intensive properties known
 - ⇒ all properties known
- e.g. for an ideal gas, any two of (p, v, T) determine the third

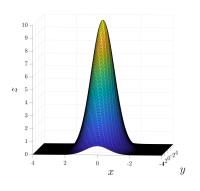

Outline

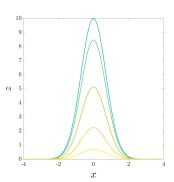
The state principle

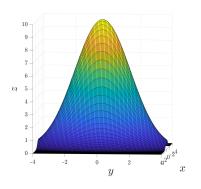

Visualizing a surface z = f(x, y)

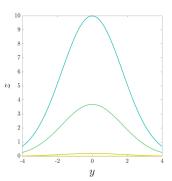

Property charts for pure simple compressible systems

Three-dimensional surface plot




Projection onto x-y plane

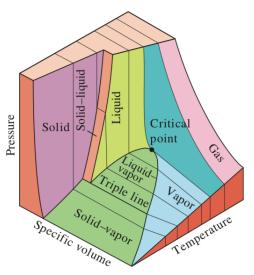



Projection onto x-z plane

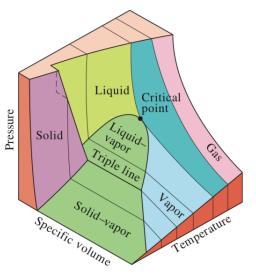
Projection onto y-z plane

Outline

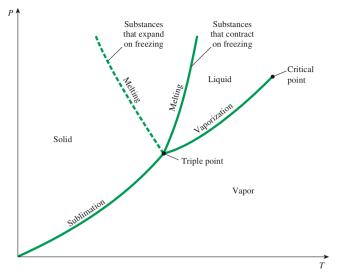
The state principle


Visualizing a surface z = f(x, y)

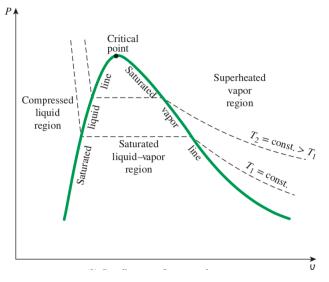
Property charts for pure simple compressible systems


The p-v-T surface

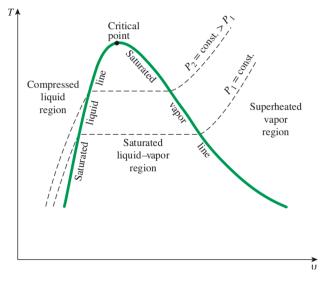
- for pure simple compressible systems, we can treat
 - \diamond v and T as independent variables (like x and y)
 - \diamond p as a function of v and T (like z = f(x, y))
- the p-v-T surface displays all equilibrium states
- a substance in equilibrium can't leave its *p-v-T* surface
- *p-v-T* surfaces look different for different substances


The p-v-T surface in three dimensions

The p-v-T surface in three dimensions (continued)



Projection onto the p-T plane (phase diagram)



Cengel and Boles, Thermodynamics: An Engineering Approach (2019)

Projection onto the p-v plane (p-v diagram)

Projection onto the T-v plane (T-v diagram)

