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When and where is exam #2?

• 6:30-7:30 PM in Wetherill 200 this Thursday, March 9

• no class Friday, March 11

• homework 22–24 due 11:59 PM Monday, March 20
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What does exam #2 cover?

• technically, lectures 1-19 and homework 1-21

• but mostly lectures 13-19 and homework 14-21

• 1 conceptual problem, 2 homework-style problems

• closed book, closed notes

• we’ll provide equation sheet and any necessary tables

• don’t interpolate tables; just use closet data point
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Other exam #2 logistics

• practice problems and exam are on Brightspace

• Pi Tau Sigma review session: Wednesday at 6 in WALC B058

• arrive ∼15 minutes early

• bring pencils, eraser, approved calculator

� Texas Instruments: TI-30X or TI-36X
� Casio: fx-115 or fx-991

• exams 1, 2 and 3 are each 20% of course grade

• final exam is 25%
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Motivations

• early temperature scale definitions were a bit arbitrary

� 0 ◦C at patm water freeze, 100 ◦C at patm water boil
� ∼0 ◦F for cold winter air, ∼100 ◦F for bodies

• Kelvin and others found this unsatisfying

• how to define a temperature scale that’s “universal”?
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Connections to reversible cycles

• for all reversible cycles between reservoirs at Th and Tc ,

power: η = 1 − Qc

Qh
= 1 − Tc

Th

refrigeration: β =
Qc/Qh

1 − Qc/Qh
=

Tc/Th

1 − Tc/Th

heat pump: γ =
1

1 − Qc/Qh
=

1

1 − Tc/Th

• not all temperature scales work in these formulas

• ones that do are called thermodynamic temperature scales

• for all reversible cycles between Th and Tc , these scales have

Tc

Th
=

Qc

Qh
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The thermodynamic thermometer

• pick a temperature T0 at some fixed, reproducible conditions

• to measure the temperature T of any arbitrary reservoir,

� run a reversible cycle between it and a reservoir at T0

� measure Q and Q0

� report T = T0Q/Q0

T

rever-
sible
cycle

T0

Q

Q0

W
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The thermodynamic thermometer (continued)

• this thermometer requires three things

1. a reservoir at T0

2. a device that can run reversible cycles
3. a device that can measure heat transfer

• it works regardless of the device configurations, materials, . . .

• so it’s in some sense “universal”

• it’s also consistent with the 2nd law performance limits
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Consistency with 2nd law performance limits

T0

Tc = T0Qc/Q0

Th = T0Qh/Q0

Qh

Qc

Whc

Qc

Q0

Wc0

Qh

Q0

Wh0

Tc

Th
=

Tc

T0

T0

Th
=

Qc

Q0

Q0

Qh
=

Qc

Qh

8 / 18



Consistency with 2nd law performance limits

T0

Tc = T0Qc/Q0

Th = T0Qh/Q0

Qh

Qc

Whc

Qc

Q0

Wc0

Qh

Q0

Wh0

Tc

Th
=

Tc

T0

T0

Th
=

Qc

Q0

Q0

Qh
=

Qc

Qh

8 / 18



Defining the base temperature T0

• thermodynamic temperature scales must specify T0

• Kelvin scale uses T0 = 273.16 K at the triple point of water

absolute temperature

ab
so

lu
te

pr
es

su
re

solid

gas

liquid

(so maybe the Kelvin scale is not quite “universal”)
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Reminder: Entropy statement of 2nd law

• there is an extensive property called entropy, S (kJ/K)

• heat transfer δQ into system at boundary temperature Tb

• and entropy generation δσ (always ≥ 0) within system

• cause change in system entropy

dS =
δQ

Tb
+ δσ

• for any isolated system,

� dS = 0 in reversible processes
� dS > 0 in irreversible processes
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Reminder: The Clausius inequality

• consider any cycle where the system

� absorbs Qin from a reservoir whose temperature is Tin

� emits Qout to a reservoir whose temperature is Tout

• the entropy statement of the 2nd law implies that

Qin

Tin
≤ Qout

Tout

• this is called the Clausius inequality

• it holds with equality if and only if the cycle is reversible

11 / 18



Notation: cyclic integral
∮

• a cyclic integral is a path integral over a closed path

• for example, the net work in a piston-cylinder Carnot cycle is∮
δW = W12 + W23 + W34 + W41

v

p
1

2

3

4

T = Th

T = Tc

12 / 18



Proof of Clausius inequality

• system entropy change over cycle is∮
dS =

∮
δQin

Tb
−
∮
δQout

Tb
+

∮
δσ

•
∮
δσ ≥ 0 since δσ ≥ 0

• Tb ≤ Tin during heat transfer with input reservoir, so∮
δQin

Tb
≥

∮
δQin

Tin

• Tb ≥ Tout during heat transfer with output reservoir, so∮
δQout

Tb
≤

∮
δQout

Tout
or equivalently −

∮
δQout

Tb
≥ −

∮
δQout

Tout
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Proof of Clausius inequality (continued)

• if x ≥ a, y ≥ b and z ≥ c, then x + y + z ≥ a + b + c , so∮
dS =

∮
δQin

Tb
−
∮
δQout

Tb
+

∮
δσ ≥

∮
δQin

Tin
−
∮
δQout

Tout
+ 0

• but S is a property (
∮

dS = 0), so 0 ≥
∮

δQin
Tin

−
∮

δQout
Tout

• reservoir temperatures Tin and Tout are constant, so∮
δQin

Tin
−
∮
δQout

Tout
=

1

Tin

∮
δQin −

1

Tout

∮
δQout

•
∮
δQin = Qin and

∮
δQout = Qout, so

0 ≥ Qin

Tin
− Qout

Tout
or equivalently

Qin

Tin
≤ Qout

Tout
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Proof of reversibility condition

• if and only if cycle is reversible, we can run it in reverse:

� absorb Qout from reservoir at Tout

� emit Qin to reservoir at Tin

• for the reverse cycle, the Clausius inequality gives

Qin

Tin
≥ Qout

Tout

• but we’ve already shown from the forward cycle that

Qin

Tin
≤ Qout

Tout

• x ≥ y and x ≤ y if and only if x = y

• so Qin/Tin = Qout/Tout if and only if the cycle is reversible
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Generalization to n reservoirs

• if system interacts with reservoirs at T1, . . . , Tn over a cycle

• and exchanges heat Qi (possibly < 0) with reservoir at Ti

• then similar arguments show that

n∑
i=1

Qi

Ti
≤ 0

• equality holds if and only if the cycle is reversible

16 / 18



Alternative proof from Kelvin-Planck statement

system W

T1

Q1

. . . Tn

Qn

R1

Q1

W̃1
. . . Rn

Qn

W̃n

T̃

Q̃1 Q̃n

combined system
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Alternative proof from Kelvin-Plank statement (continued)
• because cycles R1, . . . , Rn are reversible,

Ti

T̃
=

Qi

Q̃i

or equivalently Q̃i = T̃
Qi

Ti

• total heat transfer into the combined system is

Q̃ =
n∑

i=1

Q̃i = T̃
n∑

i=1

Qi

Ti

• combined system undergoes a cycle (∆U = 0), so 1st law:

Wnet = Q̃

• but Wnet ≤ 0 by the KP statement of the 2nd law, so

Q̃ = T̃
n∑

i=1

Qi

Ti
≤ 0 or equivalently

n∑
i=1

Qi

Ti
≤ 0
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