Lecture 23 – 2nd law implications Purdue ME 200, Thermodynamics I

Kevin J. Kircher, kircher@purdue.edu

Outline

Exam 2 reminders

Thermodynamic temperature scales

Proof of the Clausius inequality

When and where is exam #2?

• 6:30-7:30 PM in Wetherill 200 this Thursday, March 9

When and where is exam #2?

• 6:30-7:30 PM in Wetherill 200 this Thursday, March 9

- no class Friday, March 11
- homework 22-24 due 11:59 PM Monday, March 20

What does exam #2 cover?

- technically, lectures 1-19 and homework 1-21
- but mostly lectures 13-19 and homework 14-21

What does exam #2 cover?

- technically, lectures 1-19 and homework 1-21
- but mostly lectures 13-19 and homework 14-21
- 1 conceptual problem, 2 homework-style problems
- closed book, closed notes

What does exam #2 cover?

- technically, lectures 1-19 and homework 1-21
- but mostly lectures 13-19 and homework 14-21
- 1 conceptual problem, 2 homework-style problems
- closed book, closed notes
- we'll provide equation sheet and any necessary tables
- don't interpolate tables; just use closet data point

Other exam #2 logistics

- practice problems and exam are on Brightspace
- Pi Tau Sigma review session: Wednesday at 6 in WALC B058

Other exam #2 logistics

- practice problems and exam are on Brightspace
- Pi Tau Sigma review session: Wednesday at 6 in WALC B058
- arrive $\sim \! 15$ minutes early
- bring pencils, eraser, approved calculator
 - ◊ Texas Instruments: TI-30X or TI-36X
 - ◊ Casio: fx-115 or fx-991

Other exam #2 logistics

- practice problems and exam are on Brightspace
- Pi Tau Sigma review session: Wednesday at 6 in WALC B058
- arrive $\sim \! 15$ minutes early
- bring pencils, eraser, approved calculator
 - ◊ Texas Instruments: TI-30X or TI-36X
 - \diamond Casio: fx-115 or fx-991
- exams 1, 2 and 3 are each 20% of course grade
- final exam is 25%

Outline

Exam 2 reminders

Thermodynamic temperature scales

Proof of the Clausius inequality

Motivations

- early temperature scale definitions were a bit arbitrary
 - $\diamond~0~^\circ\text{C}$ at $p_{\rm atm}$ water freeze, 100 $^\circ\text{C}$ at $p_{\rm atm}$ water boil
 - $\diamond~\sim\!\!0~^\circ\text{F}$ for cold winter air, $\sim\!\!100~^\circ\text{F}$ for bodies

Motivations

- early temperature scale definitions were a bit arbitrary
 0 °C at p_{atm} water freeze, 100 °C at p_{atm} water boil
 - $\diamond \sim 0$ °F for cold winter air, ~ 100 °F for bodies
- Kelvin and others found this unsatisfying
- how to define a temperature scale that's "universal"?

Connections to reversible cycles

• for all reversible cycles between reservoirs at T_h and T_c ,

power:
$$\eta = 1 - \frac{Q_c}{Q_h} = 1 - \frac{T_c}{T_h}$$

refrigeration: $\beta = \frac{Q_c/Q_h}{1 - Q_c/Q_h} = \frac{T_c/T_h}{1 - T_c/T_h}$
heat pump: $\gamma = \frac{1}{1 - Q_c/Q_h} = \frac{1}{1 - T_c/T_h}$

Connections to reversible cycles

• for all reversible cycles between reservoirs at T_h and T_c ,

power:
$$\eta = 1 - \frac{Q_c}{Q_h} = 1 - \frac{T_c}{T_h}$$

refrigeration: $\beta = \frac{Q_c/Q_h}{1 - Q_c/Q_h} = \frac{T_c/T_h}{1 - T_c/T_h}$
heat pump: $\gamma = \frac{1}{1 - Q_c/Q_h} = \frac{1}{1 - T_c/T_h}$

- not all temperature scales work in these formulas
- ones that do are called thermodynamic temperature scales
- for all reversible cycles between T_h and T_c , these scales have

$$\frac{T_c}{T_h} = \frac{Q_c}{Q_h}$$

The thermodynamic thermometer

- pick a temperature T_0 at some fixed, reproducible conditions
- to measure the temperature T of any arbitrary reservoir,
 - $\diamond\,$ run a reversible cycle between it and a reservoir at $\,{\cal T}_0$
 - \diamond measure Q and Q_0
 - \diamond report $T = T_0 Q/Q_0$

The thermodynamic thermometer

- pick a temperature T_0 at some fixed, reproducible conditions
- to measure the temperature T of any arbitrary reservoir,
 - $\diamond~$ run a reversible cycle between it and a reservoir at ${\cal T}_0$
 - \diamond measure Q and Q_0
 - \diamond report $T = T_0 Q/Q_0$

The thermodynamic thermometer (continued)

- this thermometer requires three things
 - 1. a reservoir at T_0
 - 2. a device that can run reversible cycles
 - 3. a device that can measure heat transfer

The thermodynamic thermometer (continued)

- this thermometer requires three things
 - 1. a reservoir at T_0
 - 2. a device that can run reversible cycles
 - 3. a device that can measure heat transfer
- it works regardless of the device configurations, materials, ...
- so it's in some sense "universal"

The thermodynamic thermometer (continued)

- this thermometer requires three things
 - 1. a reservoir at T_0
 - 2. a device that can run reversible cycles
 - 3. a device that can measure heat transfer
- it works regardless of the device configurations, materials, ...
- so it's in some sense "universal"
- it's also consistent with the 2nd law performance limits

Consistency with 2nd law performance limits $T_h = T_0 Q_h / Q_0$ Q_h W_{hc} - Q_h Q_c $T_c = T_0 Q_c / Q_0$ → W_{h0} Q_c W_{c0} Q_0 Q_0 T_0

8 / 18

Consistency with 2nd law performance limits $T_h = T_0 Q_h / Q_0$ Q_h W_{hc} + Q_h Q_c $T_c = T_0 Q_c / Q_0$ $\rightarrow W_{h0}$ Q_c W_{c0} + Q_0 Q_0 T_0 $\frac{T_c}{T_h} = \frac{T_c}{T_0} \frac{T_0}{T_h} = \frac{Q_c}{Q_0} \frac{Q_0}{Q_h} = \frac{Q_c}{Q_h}$

Defining the base temperature T_0

- thermodynamic temperature scales must specify T_0
- Kelvin scale uses $T_0 = 273.16$ K at the triple point of water

Defining the base temperature T_0

- thermodynamic temperature scales must specify T_0
- Kelvin scale uses $T_0 = 273.16$ K at the triple point of water

(so maybe the Kelvin scale is not quite "universal")

Outline

Exam 2 reminders

Thermodynamic temperature scales

Proof of the Clausius inequality

Reminder: Entropy statement of 2nd law

- there is an extensive property called **entropy**, S (kJ/K)
- heat transfer δQ into system at boundary temperature T_b
- and entropy generation $\delta\sigma$ (always \geq 0) within system
- cause change in system entropy

$$\mathsf{d}S = \frac{\delta Q}{T_b} + \delta\sigma$$

Reminder: Entropy statement of 2nd law

- there is an extensive property called entropy, S (kJ/K)
- heat transfer δQ into system at boundary temperature T_b
- and entropy generation $\delta\sigma$ (always \geq 0) within system
- cause change in system entropy

$$\mathsf{d}S = \frac{\delta Q}{T_b} + \delta\sigma$$

- for any isolated system,
 - $\diamond dS = 0$ in reversible processes
 - $\diamond \ dS > 0$ in irreversible processes

Reminder: The Clausius inequality

• consider any cycle where the system

- \diamond absorbs $Q_{\rm in}$ from a reservoir whose temperature is $T_{\rm in}$
- $\diamond~$ emits ${\it Q}_{\rm out}$ to a reservoir whose temperature is ${\it T}_{\rm out}$
- the entropy statement of the 2nd law implies that

$$\frac{Q_{\text{in}}}{T_{\text{in}}} \leq \frac{Q_{\text{out}}}{T_{\text{out}}}$$

- this is called the Clausius inequality
- it holds with equality if and only if the cycle is reversible

Notation: cyclic integral \oint

- a cyclic integral is a path integral over a closed path
- for example, the net work in a piston-cylinder Carnot cycle is

Proof of Clausius inequality

• system entropy change over cycle is

$$\oint \mathrm{d}S = \oint \frac{\delta Q_{\mathrm{in}}}{T_b} - \oint \frac{\delta Q_{\mathrm{out}}}{T_b} + \oint \delta\sigma$$

Proof of Clausius inequality

• system entropy change over cycle is

$$\oint \mathrm{d}S = \oint \frac{\delta Q_{\mathrm{in}}}{T_b} - \oint \frac{\delta Q_{\mathrm{out}}}{T_b} + \oint \delta\sigma$$

•
$$\oint \delta \sigma \ge 0$$
 since $\delta \sigma \ge 0$

Proof of Clausius inequality

• system entropy change over cycle is

$$\oint \mathrm{d}S = \oint \frac{\delta Q_{\mathrm{in}}}{T_b} - \oint \frac{\delta Q_{\mathrm{out}}}{T_b} + \oint \delta\sigma$$

- $\oint \delta \sigma \ge 0$ since $\delta \sigma \ge 0$
- $T_b \leq T_{in}$ during heat transfer with input reservoir, so

$$\oint \frac{\delta Q_{\rm in}}{T_b} \ge \oint \frac{\delta Q_{\rm in}}{T_{\rm in}}$$

• $T_b \ge T_{out}$ during heat transfer with output reservoir, so

$$\oint \frac{\delta Q_{\mathsf{out}}}{\mathcal{T}_b} \leq \oint \frac{\delta Q_{\mathsf{out}}}{\mathcal{T}_{\mathsf{out}}} \quad \text{or equivalently} \quad -\oint \frac{\delta Q_{\mathsf{out}}}{\mathcal{T}_b} \geq -\oint \frac{\delta Q_{\mathsf{out}}}{\mathcal{T}_{\mathsf{out}}}$$

13 / 18

Proof of Clausius inequality (continued)

• if $x \ge a$, $y \ge b$ and $z \ge c$, then $x + y + z \ge a + b + c$, so

$$\oint \mathrm{d}S = \oint \frac{\delta Q_{\mathrm{in}}}{T_b} - \oint \frac{\delta Q_{\mathrm{out}}}{T_b} + \oint \delta\sigma \ge \oint \frac{\delta Q_{\mathrm{in}}}{T_{\mathrm{in}}} - \oint \frac{\delta Q_{\mathrm{out}}}{T_{\mathrm{out}}} + 0$$

Proof of Clausius inequality (continued)

• if $x \ge a$, $y \ge b$ and $z \ge c$, then $x + y + z \ge a + b + c$, so

$$\oint \mathrm{d}S = \oint \frac{\delta Q_{\mathrm{in}}}{T_b} - \oint \frac{\delta Q_{\mathrm{out}}}{T_b} + \oint \delta\sigma \ge \oint \frac{\delta Q_{\mathrm{in}}}{T_{\mathrm{in}}} - \oint \frac{\delta Q_{\mathrm{out}}}{T_{\mathrm{out}}} + 0$$

- but S is a property ($\oint dS = 0$), so $0 \ge \oint \frac{\delta Q_{\text{in}}}{T_{\text{in}}} \oint \frac{\delta Q_{\text{out}}}{T_{\text{out}}}$
- \bullet reservoir temperatures \mathcal{T}_{in} and \mathcal{T}_{out} are constant, so

$$\oint \frac{\delta Q_{\text{in}}}{T_{\text{in}}} - \oint \frac{\delta Q_{\text{out}}}{T_{\text{out}}} = \frac{1}{T_{\text{in}}} \oint \delta Q_{\text{in}} - \frac{1}{T_{\text{out}}} \oint \delta Q_{\text{out}}$$

Proof of Clausius inequality (continued)

• if $x \ge a$, $y \ge b$ and $z \ge c$, then $x + y + z \ge a + b + c$, so

$$\oint \mathrm{d}S = \oint \frac{\delta Q_{\mathrm{in}}}{T_b} - \oint \frac{\delta Q_{\mathrm{out}}}{T_b} + \oint \delta\sigma \ge \oint \frac{\delta Q_{\mathrm{in}}}{T_{\mathrm{in}}} - \oint \frac{\delta Q_{\mathrm{out}}}{T_{\mathrm{out}}} + 0$$

- but S is a property ($\oint dS = 0$), so $0 \ge \oint \frac{\delta Q_{\text{in}}}{T_{\text{in}}} \oint \frac{\delta Q_{\text{out}}}{T_{\text{out}}}$
- \bullet reservoir temperatures \mathcal{T}_{in} and \mathcal{T}_{out} are constant, so

$$\oint \frac{\delta Q_{\text{in}}}{T_{\text{in}}} - \oint \frac{\delta Q_{\text{out}}}{T_{\text{out}}} = \frac{1}{T_{\text{in}}} \oint \delta Q_{\text{in}} - \frac{1}{T_{\text{out}}} \oint \delta Q_{\text{out}}$$

$$Q_{\text{in}} = Q_{\text{in}} \text{ and } \oint \delta Q_{\text{out}} = Q_{\text{out}} \text{ so}$$

•
$$\oint \delta Q_{in} = Q_{in}$$
 and $\oint \delta Q_{out} = Q_{out}$, so

$$0 \geq \frac{Q_{\text{in}}}{T_{\text{in}}} - \frac{Q_{\text{out}}}{T_{\text{out}}} \quad \text{or equivalently} \quad \frac{Q_{\text{in}}}{T_{\text{in}}} \leq \frac{Q_{\text{out}}}{T_{\text{out}}}$$

14/18

- if and only if cycle is reversible, we can run it in reverse:
 - $\diamond~$ absorb Q_{out} from reservoir at ${\it T}_{out}$
 - $\diamond~$ emit Q_{in} to reservoir at T_{in}

- if and only if cycle is reversible, we can run it in reverse:
 - \diamond absorb Q_{out} from reservoir at T_{out}
 - $\diamond~$ emit ${\it Q}_{in}$ to reservoir at ${\it T}_{in}$
- for the reverse cycle, the Clausius inequality gives

$$\frac{Q_{\text{in}}}{T_{\text{in}}} \geq \frac{Q_{\text{out}}}{T_{\text{out}}}$$

- if and only if cycle is reversible, we can run it in reverse:
 - \diamond absorb Q_{out} from reservoir at T_{out}
 - $\diamond~$ emit ${\it Q}_{in}$ to reservoir at ${\it T}_{in}$
- for the reverse cycle, the Clausius inequality gives

$$\frac{Q_{\text{in}}}{T_{\text{in}}} \geq \frac{Q_{\text{out}}}{T_{\text{out}}}$$

• but we've already shown from the forward cycle that

$$\frac{Q_{\text{in}}}{T_{\text{in}}} \leq \frac{Q_{\text{out}}}{T_{\text{out}}}$$

- if and only if cycle is reversible, we can run it in reverse:
 - $\diamond~$ absorb Q_{out} from reservoir at \mathcal{T}_{out}
 - \diamond emit $Q_{\rm in}$ to reservoir at ${\cal T}_{\rm in}$
- for the reverse cycle, the Clausius inequality gives

$$\frac{Q_{\text{in}}}{T_{\text{in}}} \geq \frac{Q_{\text{out}}}{T_{\text{out}}}$$

• but we've already shown from the forward cycle that

$$\frac{Q_{\text{in}}}{T_{\text{in}}} \leq \frac{Q_{\text{out}}}{T_{\text{out}}}$$

- $x \ge y$ and $x \le y$ if and only if x = y
- so $Q_{\rm in}/T_{\rm in}=Q_{\rm out}/T_{\rm out}$ if and only if the cycle is reversible

Generalization to n reservoirs

- if system interacts with reservoirs at T_1, \ldots, T_n over a cycle
- and exchanges heat Q_i (possibly < 0) with reservoir at T_i
- then similar arguments show that

$$\sum_{i=1}^n \frac{Q_i}{T_i} \le 0$$

• equality holds if and only if the cycle is reversible

Alternative proof from Kelvin-Planck statement

Alternative proof from Kelvin-Planck statement

Alternative proof from Kelvin-Planck statement

17 / 18

• because cycles R_1, \ldots, R_n are reversible,

$$rac{{\mathcal{T}}_i}{{ ilde{\mathcal{T}}}} = rac{{\mathcal{Q}}_i}{{ ilde{\mathcal{Q}}}_i} \quad {
m or \ equivalently} \quad { ilde{\mathcal{Q}}}_i = { ilde{\mathcal{T}}} rac{{\mathcal{Q}}_i}{{\mathcal{T}}_i}$$

• because cycles R_1, \ldots, R_n are reversible,

$$rac{{\mathcal{T}}_i}{{ ilde{\mathcal{T}}}} = rac{{\mathcal{Q}}_i}{{ ilde{\mathcal{Q}}}_i} \quad ext{or equivalently} \quad { ilde{\mathcal{Q}}}_i = { ilde{\mathcal{T}}} rac{{\mathcal{Q}}_i}{{\mathcal{T}}_i}$$

• total heat transfer into the combined system is

$$\tilde{Q} = \sum_{i=1}^{n} \tilde{Q}_i = \tilde{T} \sum_{i=1}^{n} \frac{Q_i}{T_i}$$

• because cycles R_1, \ldots, R_n are reversible,

$$rac{{\mathcal{T}}_i}{{ ilde{\mathcal{T}}}} = rac{{Q}_i}{{ ilde{\mathcal{Q}}}_i} \quad {
m or \ equivalently} \quad { ilde{\mathcal{Q}}}_i = { ilde{\mathcal{T}}} rac{{Q}_i}{{\mathcal{T}}_i}$$

• total heat transfer into the combined system is

$$ilde{Q} = \sum_{i=1}^n ilde{Q}_i = ilde{T} \sum_{i=1}^n rac{Q_i}{T_i}$$

• combined system undergoes a cycle ($\Delta U = 0$), so 1st law:

$$W_{\mathsf{net}} = ilde{Q}$$

• because cycles R_1, \ldots, R_n are reversible,

$$rac{{\mathcal{T}}_i}{{ ilde{\mathcal{T}}}} = rac{{\mathcal{Q}}_i}{{ ilde{\mathcal{Q}}}_i} \quad {
m or \ equivalently} \quad { ilde{\mathcal{Q}}}_i = { ilde{\mathcal{T}}} rac{{\mathcal{Q}}_i}{{\mathcal{T}}_i}$$

• total heat transfer into the combined system is

$$ilde{Q} = \sum_{i=1}^n ilde{Q}_i = ilde{T} \sum_{i=1}^n rac{Q_i}{T_i}$$

• combined system undergoes a cycle ($\Delta U = 0$), so 1st law:

$$W_{\rm net} = ilde{Q}$$

- but $W_{\rm net} \leq$ 0 by the KP statement of the 2nd law, so

$$ilde{Q} = ilde{T} \sum_{i=1}^{n} rac{Q_i}{T_i} \leq 0$$
 or equivalently $\sum_{i=1}^{n} rac{Q_i}{T_i} \leq 0$

18/18