Lecture 23 - 2nd law implications

Purdue ME 200, Thermodynamics I

Kevin J. Kircher, kircher@purdue.edu

Outline

Exam 2 reminders

Thermodynamic temperature scales

Proof of the Clausius inequality

When and where is exam \#2?

- 6:30-7:30 PM in Wetherill 200 this Thursday, March 9

When and where is exam \#2?

- 6:30-7:30 PM in Wetherill 200 this Thursday, March 9

- no class Friday, March 11
- homework 22-24 due 11:59 PM Monday, March 20

What does exam \#2 cover?

- technically, lectures 1-19 and homework 1-21
- but mostly lectures 13-19 and homework 14-21

What does exam \#2 cover?

- technically, lectures 1-19 and homework 1-21
- but mostly lectures 13-19 and homework 14-21
- 1 conceptual problem, 2 homework-style problems
- closed book, closed notes

What does exam \#2 cover?

- technically, lectures 1-19 and homework 1-21
- but mostly lectures 13-19 and homework 14-21
- 1 conceptual problem, 2 homework-style problems
- closed book, closed notes
- we'll provide equation sheet and any necessary tables
- don't interpolate tables; just use closet data point

Other exam \#2 logistics

- practice problems and exam are on Brightspace
- Pi Tau Sigma review session: Wednesday at 6 in WALC B058

Other exam \#2 logistics

- practice problems and exam are on Brightspace
- Pi Tau Sigma review session: Wednesday at 6 in WALC B058
- arrive ~ 15 minutes early
- bring pencils, eraser, approved calculator
\diamond Texas Instruments: TI-30X or TI-36X
\diamond Casio: fx -115 or fx -991

Other exam \#2 logistics

- practice problems and exam are on Brightspace
- Pi Tau Sigma review session: Wednesday at 6 in WALC B058
- arrive ~ 15 minutes early
- bring pencils, eraser, approved calculator
\diamond Texas Instruments: TI-30X or TI-36X
\diamond Casio: fx -115 or fx -991
- exams 1, 2 and 3 are each 20% of course grade
- final exam is 25%

Outline

Exam 2 reminders

Thermodynamic temperature scales

Proof of the Clausius inequality

Motivations

- early temperature scale definitions were a bit arbitrary
$\diamond 0^{\circ} \mathrm{C}$ at $p_{\text {atm }}$ water freeze, $100^{\circ} \mathrm{C}$ at $p_{\text {atm }}$ water boil $\diamond \sim 0^{\circ} \mathrm{F}$ for cold winter air, $\sim 100^{\circ} \mathrm{F}$ for bodies

Motivations

- early temperature scale definitions were a bit arbitrary
$\diamond 0^{\circ} \mathrm{C}$ at $p_{\text {atm }}$ water freeze, $100^{\circ} \mathrm{C}$ at $p_{\text {atm }}$ water boil
$\diamond \sim 0^{\circ} \mathrm{F}$ for cold winter air, $\sim 100^{\circ} \mathrm{F}$ for bodies
- Kelvin and others found this unsatisfying
- how to define a temperature scale that's "universal"?

Connections to reversible cycles

- for all reversible cycles between reservoirs at T_{h} and T_{c},

$$
\begin{aligned}
\text { power: } \eta & =1-\frac{Q_{c}}{Q_{h}}=1-\frac{T_{c}}{T_{h}} \\
\text { refrigeration: } \beta & =\frac{Q_{c} / Q_{h}}{1-Q_{c} / Q_{h}}=\frac{T_{c} / T_{h}}{1-T_{c} / T_{h}} \\
\text { heat pump: } \gamma & =\frac{1}{1-Q_{c} / Q_{h}}=\frac{1}{1-T_{c} / T_{h}}
\end{aligned}
$$

Connections to reversible cycles

- for all reversible cycles between reservoirs at T_{h} and T_{c},

$$
\begin{aligned}
\text { power: } \eta & =1-\frac{Q_{c}}{Q_{h}}=1-\frac{T_{c}}{T_{h}} \\
\text { refrigeration: } \beta & =\frac{Q_{c} / Q_{h}}{1-Q_{c} / Q_{h}}=\frac{T_{c} / T_{h}}{1-T_{c} / T_{h}} \\
\text { heat pump: } \gamma & =\frac{1}{1-Q_{c} / Q_{h}}=\frac{1}{1-T_{c} / T_{h}}
\end{aligned}
$$

- not all temperature scales work in these formulas
- ones that do are called thermodynamic temperature scales
- for all reversible cycles between T_{h} and T_{c}, these scales have

$$
\frac{T_{c}}{T_{h}}=\frac{Q_{c}}{Q_{h}}
$$

The thermodynamic thermometer

- pick a temperature T_{0} at some fixed, reproducible conditions
- to measure the temperature T of any arbitrary reservoir,
\diamond run a reversible cycle between it and a reservoir at T_{0}
\diamond measure Q and Q_{0}
\diamond report $T=T_{0} Q / Q_{0}$

The thermodynamic thermometer

- pick a temperature T_{0} at some fixed, reproducible conditions
- to measure the temperature T of any arbitrary reservoir,
\diamond run a reversible cycle between it and a reservoir at T_{0}
\diamond measure Q and Q_{0}
\diamond report $T=T_{0} Q / Q_{0}$

The thermodynamic thermometer (continued)

- this thermometer requires three things

1. a reservoir at T_{0}
2. a device that can run reversible cycles
3. a device that can measure heat transfer

The thermodynamic thermometer (continued)

- this thermometer requires three things

1. a reservoir at T_{0}
2. a device that can run reversible cycles
3. a device that can measure heat transfer

- it works regardless of the device configurations, materials, ...
- so it's in some sense "universal"

The thermodynamic thermometer (continued)

- this thermometer requires three things

1. a reservoir at T_{0}
2. a device that can run reversible cycles
3. a device that can measure heat transfer

- it works regardless of the device configurations, materials, ...
- so it's in some sense "universal"
- it's also consistent with the 2nd law performance limits

Consistency with 2nd law performance limits

Consistency with 2nd law performance limits

Defining the base temperature T_{0}

- thermodynamic temperature scales must specify T_{0}
- Kelvin scale uses $T_{0}=273.16 \mathrm{~K}$ at the triple point of water

Defining the base temperature T_{0}

- thermodynamic temperature scales must specify T_{0}
- Kelvin scale uses $T_{0}=273.16 \mathrm{~K}$ at the triple point of water

(so maybe the Kelvin scale is not quite "universal")

Outline

Exam 2 reminders

Thermodynamic temperature scales

Proof of the Clausius inequality

Reminder: Entropy statement of 2nd law

- there is an extensive property called entropy, $S(\mathrm{~kJ} / \mathrm{K})$
- heat transfer δQ into system at boundary temperature T_{b}
- and entropy generation $\delta \sigma$ (always ≥ 0) within system
- cause change in system entropy

$$
\mathrm{d} S=\frac{\delta Q}{T_{b}}+\delta \sigma
$$

Reminder: Entropy statement of 2nd law

- there is an extensive property called entropy, $S(\mathrm{~kJ} / \mathrm{K})$
- heat transfer δQ into system at boundary temperature T_{b}
- and entropy generation $\delta \sigma$ (always ≥ 0) within system
- cause change in system entropy

$$
\mathrm{d} S=\frac{\delta Q}{T_{b}}+\delta \sigma
$$

- for any isolated system,
$\diamond \mathrm{d} S=0$ in reversible processes
$\diamond \mathrm{d} S>0$ in irreversible processes

Reminder: The Clausius inequality

- consider any cycle where the system
\diamond absorbs $Q_{\text {in }}$ from a reservoir whose temperature is $T_{\text {in }}$
\diamond emits $Q_{\text {out }}$ to a reservoir whose temperature is $T_{\text {out }}$
- the entropy statement of the 2nd law implies that

$$
\frac{Q_{\text {in }}}{T_{\text {in }}} \leq \frac{Q_{\text {out }}}{T_{\text {out }}}
$$

- this is called the Clausius inequality
- it holds with equality if and only if the cycle is reversible

Notation: cyclic integral \oint

- a cyclic integral is a path integral over a closed path
- for example, the net work in a piston-cylinder Carnot cycle is

$$
\oint \delta W=W_{12}+W_{23}+W_{34}+W_{41}
$$

Proof of Clausius inequality

- system entropy change over cycle is

$$
\oint \mathrm{d} S=\oint \frac{\delta Q_{\mathrm{in}}}{T_{b}}-\oint \frac{\delta Q_{\mathrm{out}}}{T_{b}}+\oint \delta \sigma
$$

Proof of Clausius inequality

- system entropy change over cycle is

$$
\oint \mathrm{d} S=\oint \frac{\delta Q_{\mathrm{in}}}{T_{b}}-\oint \frac{\delta Q_{\mathrm{out}}}{T_{b}}+\oint \delta \sigma
$$

- $\oint \delta \sigma \geq 0$ since $\delta \sigma \geq 0$

Proof of Clausius inequality

- system entropy change over cycle is

$$
\oint \mathrm{d} S=\oint \frac{\delta Q_{\mathrm{in}}}{T_{b}}-\oint \frac{\delta Q_{\mathrm{out}}}{T_{b}}+\oint \delta \sigma
$$

- $\oint \delta \sigma \geq 0$ since $\delta \sigma \geq 0$
- $T_{b} \leq T_{\text {in }}$ during heat transfer with input reservoir, so

$$
\oint \frac{\delta Q_{\mathrm{in}}}{T_{b}} \geq \oint \frac{\delta Q_{\mathrm{in}}}{T_{\mathrm{in}}}
$$

- $T_{b} \geq T_{\text {out }}$ during heat transfer with output reservoir, so
$\oint \frac{\delta Q_{\text {out }}}{T_{b}} \leq \oint \frac{\delta Q_{\text {out }}}{T_{\text {out }}}$ or equivalently $-\oint \frac{\delta Q_{\text {out }}}{T_{b}} \geq-\oint \frac{\delta Q_{\text {out }}}{T_{\text {out }}}$

Proof of Clausius inequality (continued)

- if $x \geq a, y \geq b$ and $z \geq c$, then $x+y+z \geq a+b+c$, so

$$
\oint \mathrm{d} S=\oint \frac{\delta Q_{\mathrm{in}}}{T_{b}}-\oint \frac{\delta Q_{\mathrm{out}}}{T_{b}}+\oint \delta \sigma \geq \oint \frac{\delta Q_{\mathrm{in}}}{T_{\text {in }}}-\oint \frac{\delta Q_{\mathrm{out}}}{T_{\mathrm{out}}}+0
$$

Proof of Clausius inequality (continued)

- if $x \geq a, y \geq b$ and $z \geq c$, then $x+y+z \geq a+b+c$, so

$$
\oint \mathrm{d} S=\oint \frac{\delta Q_{\mathrm{in}}}{T_{b}}-\oint \frac{\delta Q_{\mathrm{out}}}{T_{b}}+\oint \delta \sigma \geq \oint \frac{\delta Q_{\mathrm{in}}}{T_{\mathrm{in}}}-\oint \frac{\delta Q_{\mathrm{out}}}{T_{\mathrm{out}}}+0
$$

- but S is a property $(\oint \mathrm{d} S=0)$, so $0 \geq \oint \frac{\delta Q_{\text {in }}}{T_{\text {in }}}-\oint \frac{\delta Q_{\text {out }}}{T_{\text {out }}}$
- reservoir temperatures $T_{\text {in }}$ and $T_{\text {out }}$ are constant, so

$$
\oint \frac{\delta Q_{\text {in }}}{T_{\text {in }}}-\oint \frac{\delta Q_{\text {out }}}{T_{\text {out }}}=\frac{1}{T_{\text {in }}} \oint \delta Q_{\text {in }}-\frac{1}{T_{\text {out }}} \oint \delta Q_{\text {out }}
$$

Proof of Clausius inequality (continued)

- if $x \geq a, y \geq b$ and $z \geq c$, then $x+y+z \geq a+b+c$, so

$$
\oint \mathrm{d} S=\oint \frac{\delta Q_{\text {in }}}{T_{b}}-\oint \frac{\delta Q_{\mathrm{out}}}{T_{b}}+\oint \delta \sigma \geq \oint \frac{\delta Q_{\text {in }}}{T_{\text {in }}}-\oint \frac{\delta Q_{\text {out }}}{T_{\text {out }}}+0
$$

- but S is a property $(\oint \mathrm{d} S=0)$, so $0 \geq \oint \frac{\delta Q_{\text {in }}}{T_{\text {in }}}-\oint \frac{\delta Q_{\text {out }}}{T_{\text {out }}}$
- reservoir temperatures $T_{\text {in }}$ and $T_{\text {out }}$ are constant, so

$$
\oint \frac{\delta Q_{\text {in }}}{T_{\text {in }}}-\oint \frac{\delta Q_{\text {out }}}{T_{\text {out }}}=\frac{1}{T_{\text {in }}} \oint \delta Q_{\text {in }}-\frac{1}{T_{\text {out }}} \oint \delta Q_{\text {out }}
$$

- $\oint \delta Q_{\mathrm{in}}=Q_{\mathrm{in}}$ and $\oint \delta Q_{\mathrm{out}}=Q_{\mathrm{out}}$, so

$$
0 \geq \frac{Q_{\text {in }}}{T_{\text {in }}}-\frac{Q_{\text {out }}}{T_{\text {out }}} \quad \text { or equivalently } \quad \frac{Q_{\text {in }}}{T_{\text {in }}} \leq \frac{Q_{\text {out }}}{T_{\text {out }}}
$$

Proof of reversibility condition

- if and only if cycle is reversible, we can run it in reverse:
\diamond absorb $Q_{\text {out }}$ from reservoir at $T_{\text {out }}$
\diamond emit $Q_{\text {in }}$ to reservoir at $T_{\text {in }}$

Proof of reversibility condition

- if and only if cycle is reversible, we can run it in reverse:
\diamond absorb $Q_{\text {out }}$ from reservoir at $T_{\text {out }}$
\diamond emit $Q_{\text {in }}$ to reservoir at $T_{\text {in }}$
- for the reverse cycle, the Clausius inequality gives

$$
\frac{Q_{\text {in }}}{T_{\text {in }}} \geq \frac{Q_{\text {out }}}{T_{\text {out }}}
$$

Proof of reversibility condition

- if and only if cycle is reversible, we can run it in reverse:
\diamond absorb $Q_{\text {out }}$ from reservoir at $T_{\text {out }}$
\diamond emit $Q_{\text {in }}$ to reservoir at $T_{\text {in }}$
- for the reverse cycle, the Clausius inequality gives

$$
\frac{Q_{\text {in }}}{T_{\text {in }}} \geq \frac{Q_{\text {out }}}{T_{\text {out }}}
$$

- but we've already shown from the forward cycle that

$$
\frac{Q_{\text {in }}}{T_{\text {in }}} \leq \frac{Q_{\text {out }}}{T_{\text {out }}}
$$

Proof of reversibility condition

- if and only if cycle is reversible, we can run it in reverse:
\diamond absorb $Q_{\text {out }}$ from reservoir at $T_{\text {out }}$
\diamond emit $Q_{\text {in }}$ to reservoir at $T_{\text {in }}$
- for the reverse cycle, the Clausius inequality gives

$$
\frac{Q_{\text {in }}}{T_{\text {in }}} \geq \frac{Q_{\text {out }}}{T_{\text {out }}}
$$

- but we've already shown from the forward cycle that

$$
\frac{Q_{\text {in }}}{T_{\text {in }}} \leq \frac{Q_{\text {out }}}{T_{\text {out }}}
$$

- $x \geq y$ and $x \leq y$ if and only if $x=y$
- so $Q_{\text {in }} / T_{\text {in }}=Q_{\text {out }} / T_{\text {out }}$ if and only if the cycle is reversible

Generalization to n reservoirs

- if system interacts with reservoirs at T_{1}, \ldots, T_{n} over a cycle
- and exchanges heat Q_{i} (possibly <0) with reservoir at T_{i}
- then similar arguments show that

$$
\sum_{i=1}^{n} \frac{Q_{i}}{T_{i}} \leq 0
$$

- equality holds if and only if the cycle is reversible

Alternative proof from Kelvin-Planck statement

Alternative proof from Kelvin-Planck statement

Alternative proof from Kelvin-Planck statement

Alternative proof from Kelvin-Plank statement (continued)

- because cycles R_{1}, \ldots, R_{n} are reversible,

$$
\frac{T_{i}}{\tilde{T}}=\frac{Q_{i}}{\tilde{Q}_{i}} \text { or equivalently } \tilde{Q}_{i}=\tilde{T} \frac{Q_{i}}{T_{i}}
$$

Alternative proof from Kelvin-Plank statement (continued)

- because cycles R_{1}, \ldots, R_{n} are reversible,

$$
\frac{T_{i}}{\tilde{T}}=\frac{Q_{i}}{\tilde{Q}_{i}} \text { or equivalently } \tilde{Q}_{i}=\tilde{T} \frac{Q_{i}}{T_{i}}
$$

- total heat transfer into the combined system is

$$
\tilde{Q}=\sum_{i=1}^{n} \tilde{Q}_{i}=\tilde{T} \sum_{i=1}^{n} \frac{Q_{i}}{T_{i}}
$$

Alternative proof from Kelvin-Plank statement (continued)

- because cycles R_{1}, \ldots, R_{n} are reversible,

$$
\frac{T_{i}}{\tilde{T}}=\frac{Q_{i}}{\tilde{Q}_{i}} \text { or equivalently } \tilde{Q}_{i}=\tilde{T} \frac{Q_{i}}{T_{i}}
$$

- total heat transfer into the combined system is

$$
\tilde{Q}=\sum_{i=1}^{n} \tilde{Q}_{i}=\tilde{T} \sum_{i=1}^{n} \frac{Q_{i}}{T_{i}}
$$

- combined system undergoes a cycle $(\Delta U=0)$, so 1st law:

$$
W_{\text {net }}=\tilde{Q}
$$

Alternative proof from Kelvin-Plank statement (continued)

- because cycles R_{1}, \ldots, R_{n} are reversible,

$$
\frac{T_{i}}{\tilde{T}}=\frac{Q_{i}}{\tilde{Q}_{i}} \text { or equivalently } \tilde{Q}_{i}=\tilde{T} \frac{Q_{i}}{T_{i}}
$$

- total heat transfer into the combined system is

$$
\tilde{Q}=\sum_{i=1}^{n} \tilde{Q}_{i}=\tilde{T} \sum_{i=1}^{n} \frac{Q_{i}}{T_{i}}
$$

- combined system undergoes a cycle $(\Delta U=0)$, so 1st law:

$$
W_{\text {net }}=\tilde{Q}
$$

- but $W_{\text {net }} \leq 0$ by the KP statement of the 2 nd law, so

$$
\tilde{Q}=\tilde{T} \sum_{i=1}^{n} \frac{Q_{i}}{T_{i}} \leq 0 \quad \text { or equivalently } \quad \sum_{i=1}^{n} \frac{Q_{i}}{T_{i}} \leq 0
$$

