Lecture 20 – 2nd law introduction Purdue ME 200, Thermodynamics I

Kevin J. Kircher, kircher@purdue.edu

Outline

Motivations

Clausius and Kelvin-Planck statements

Entropy statement

Completely optional: Proof of the Clausius inequality

Example

Identical incompressible blocks, initially at $T_1^a = 20$ °C and $T_1^b = 100$ °C, come into contact inside a closed rigid insulated stationary box. Some time later, $T_2^a = 10$ °C and $T_2^b = 110$ °C. Show that this process violates conservation of mass, the 1st law, or both.

<i>m</i>	<i>т</i>	 т	<i>т</i>
20 °C	100 °С	10 °С	110 °С

Solution

- conservation of mass holds since there are no mass flows
- $\bullet\,$ we can look for 1st law violations in energy balances on
 - ◊ block a
 - ◊ block b
 - $\diamond~$ combined system

Solution (continued)

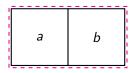
$$a \rightarrow Q \qquad Q \rightarrow b$$

• block *a* and *b* energy balances: $\Delta U_a = -Q$ and $\Delta U_b = Q$

• blocks are identical and incompressible, so

$$\diamond \Delta U_a = mc\Delta T_a = mc(10^{\circ}\text{C} - 20^{\circ}\text{C}) = mc(-10^{\circ}\text{C}) \diamond \Delta U_b = mc\Delta T_b = mc(110^{\circ}\text{C} - 100^{\circ}\text{C}) = mc(10^{\circ}\text{C}) \Rightarrow \Delta U_a = -\Delta U_b, \text{ as block energy balances require}$$

Solution (continued)



- combined system energy balance: $\Delta U = 0$
- but $\Delta U = \Delta U_a + \Delta U_b$ and $\Delta U_a = -\Delta U_b$
- $\implies \Delta U = 0$, as combined system energy balance requires

Something is missing...

- spontaneous heat flow from cold to hot is unphysical
- but it satisfies conservation of mass and the 1st law
- many other spontaneous processes tell similar stories
 - $\diamond~$ cold drinks in warm rooms don't spontaneously get colder
 - ◊ balloons in atmosphere don't spontaneously inflate
 - ◊ heating up a resistor doesn't make current flow
 - $\diamond\,$ but the 'wrong' directions all satisfy CoM and the 1st law

What the 2nd law of thermodynamics does

- the 2nd law provides a way to rule out unphysical processes
- it also provides
 - ◊ fundamental limits on cycle efficiencies and COPs
 - $\diamond~$ ways to identify and quantify inefficiencies
 - $\diamond\,$ a logical foundation for absolute temperature scales
 - $\diamond\,$ a bunch of other cool ideas and tools

Outline

Motivations

Clausius and Kelvin-Planck statements

Entropy statement

Completely optional: Proof of the Clausius inequality

Thermal reservoirs

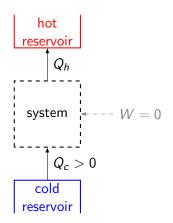
- a reservoir is a system with constant \mathcal{T} despite heat transfer
- examples:
 - $\diamond~$ saturated liquid-vapor mixtures with 0 < x < 1
 - ◊ really big things (lakes, the atmosphere, huge hunks of metal)

Clausius statement

No cycle can have the sole effect of heat transfer from a colder reservoir to a warmer one.

Clausius statement (loosely rephrased)

- refrigeration cycles require work
- so this cycle (with W = 0) is impossible:

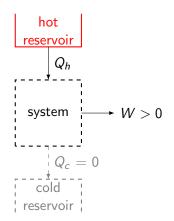


Kelvin-Planck statement

No cycle can receive energy via heat transfer from a single reservoir and produce net work.

Kelvin-Planck statement (loosely rephrased)

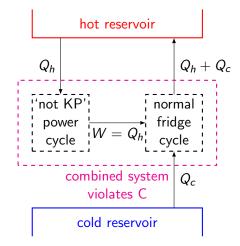
- power cycles must produce waste heat
- so this cycle (with $Q_c = 0$) is impossible:



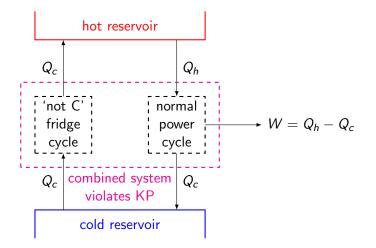
Equivalence of Clausius and Kelvin-Planck statements

- they sound different, but C and KP are equivalent
- \bullet to show that C \iff KP, we'll show
 - $\diamond \ \mathsf{C} \implies \mathsf{KP}$
 - $\diamond \ \mathsf{KP} \implies \mathsf{C}$
- both arguments use the contrapositive:
 - $\diamond\,$ the logical proposition A $\implies\,$ B
 - $\diamond~$ is equivalent to 'not B' $\implies~$ 'not A'

Clausius implies Kelvin-Planck ('not KP' \implies 'not C')



Kelvin-Planck implies Clausius ('not C' \implies 'not KP')



14/27

Outline

Motivations

Clausius and Kelvin-Planck statements

Entropy statement

Completely optional: Proof of the Clausius inequality

Reversibility

• a reversible process

- $\diamond~$ lets system and surroundings return to their exact initial states
- $\diamond\,$ is an idealization, like a frictionless plane or point mass
- $\diamond\,$ is a limit that real processes can approach but never attain
- all real processes have irreversibilities such as
 - \diamond friction
 - ◊ electric resistance
 - $\diamond\,$ unrestrained expansion of a fluid to lower pressure
 - $\diamond~$ substances with different states or compositions mixing
 - $\diamond~$ heat transfer driven by nonzero temperature differences

Reminder: 1st law for closed stationary systems

- there is an extensive property called internal energy, U(kJ)
- heat transfer δQ into system
- and work δW done by system
- change system internal energy by

$$\mathsf{d} U = \delta Q - \delta W$$

Entropy statement of 2nd law for closed systems

- there is an extensive property called entropy, S (kJ/K)
- heat transfer δQ across boundary at temperature T_b
- and entropy generation $\delta\sigma$ (always \geq 0) within system
- change system entropy by

$$\mathsf{d}S = \frac{\delta Q}{T_b} + \delta\sigma$$

- for any <u>isolated</u> system undergoing any process,
 - $\diamond \ \mathsf{d}S \geq \mathsf{0}$ always
 - $\diamond dS = 0$ only if the process is reversible

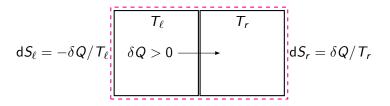
Internal entropy generation is always nonnegative

- suppose entropy is generated within system over some process
- isolate the system and rerun the same internal activities
- then by the 2nd law,

$$\diamond \ \mathsf{d}S = \delta \mathcal{Q} / T_b + \delta \sigma = \delta \sigma$$

- $\diamond \ \delta \sigma \geq {\rm 0} \ {\rm always}$
- $\diamond~\delta\sigma=$ 0 only if the process is reversible
- we call a process or system with $\delta\sigma=0$ internally reversible
- standing assumption: reservoirs are internally reversible

Entropy changes in heat transfer



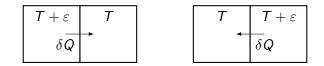
- consider two reservoirs at temperatures T_{ℓ} and T_r
- combined system entropy change is

$$\mathsf{d}S = \mathsf{d}S_{\ell} + \mathsf{d}S_{r} = \delta Q \left(\frac{1}{T_{r}} - \frac{1}{T_{\ell}}\right)$$

- combined system is isolated, so $dS \ge 0$ (2nd law)
- since $\delta Q > 0$, we get $T_{\ell} \ge T_r$ (heat flows from hot to cold)
- heat transfer is reversible only if dS = 0, meaning $T_{\ell} = T_r$

(Approximately) reversible heat transfer

- real (irreversible) heat transfer is always driven by a nonzero ΔT
- but heat transfer approaches reversibility as $\Delta \mathcal{T} \rightarrow 0$
- systems at T_ℓ and T_r exchange heat ~reversibly if $T_\ell \approx T_r$



Clausius inequality

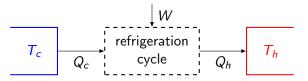
• consider any cycle where the system

- $\diamond\,$ absorbs ${\it Q}_{in}$ from a reservoir whose temperature is ${\it T}_{in}$
- $\diamond~$ emits \textit{Q}_{out} to a reservoir whose temperature is \textit{T}_{out}
- the entropy statement of the 2nd law implies that

$$\frac{Q_{\text{in}}}{T_{\text{in}}} \leq \frac{Q_{\text{out}}}{T_{\text{out}}}$$

- this is one form of the Clausius inequality
- it holds with equality if and only if the cycle is reversible

Entropy statement of 2nd law implies Clausius statement



- Clausius statement: W > 0 in any refrigeration cycle
- 1st law for cycles: $W + Q_c = Q_h$, so W > 0 if $Q_h/Q_c > 1$
- Clausius inequality (a consequence of the entropy statement):

$$rac{Q_{\mathsf{c}}}{T_{\mathsf{c}}} \leq rac{Q_{\mathsf{h}}}{T_{\mathsf{h}}} \hspace{0.1 in} ext{or equivalently} \hspace{0.1 in} rac{Q_{\mathsf{h}}}{Q_{\mathsf{c}}} \geq rac{T_{\mathsf{h}}}{T_{\mathsf{c}}}$$

- but $T_h > T_c$, so $T_h/T_c > 1$
- therefore $Q_h/Q_c>1$, and W>0

Summary

- the C, KP and E statements of 2nd law all sound different
- $\bullet\,$ but we've shown that E $\,\Longrightarrow\,$ C and C $\,\Longleftrightarrow\,$ KP
- it's also possible to show that KP \implies E (or C \implies E)
- this closes the circle: all 3 statements are equivalent
- C and KP are more intuitive, but E is more useful

Outline

Motivations

Clausius and Kelvin-Planck statements

Entropy statement

Completely optional: Proof of the Clausius inequality

Individual inequalities

• system entropy change over cycle is

$$\oint \mathsf{d}S = \oint \frac{\delta Q_{\mathsf{in}}}{T} - \oint \frac{\delta Q_{\mathsf{out}}}{T} + \oint \delta\sigma$$

- $\oint \delta \sigma \ge 0$ since $\delta \sigma \ge 0$
- $T \leq T_{in}$ during heat transfer with input reservoir, so

$$\oint \frac{\delta Q_{\rm in}}{T} \ge \oint \frac{\delta Q_{\rm in}}{T_{\rm in}}$$

• $T \ge T_{out}$ during heat transfer with output reservoir, so

$$\oint \frac{\delta Q_{\mathsf{out}}}{T} \leq \oint \frac{\delta Q_{\mathsf{out}}}{T_{\mathsf{out}}} \quad \text{or equivalently} \quad -\oint \frac{\delta Q_{\mathsf{out}}}{T} \geq -\oint \frac{\delta Q_{\mathsf{out}}}{T_{\mathsf{out}}}$$

24 / 27

Combined inequality

- if $x \ge a$, $y \ge b$ and $z \ge c$, then $x + y + z \ge a + b + c$, so $\oint dS = \oint \frac{\delta Q_{\text{in}}}{T} - \oint \frac{\delta Q_{\text{out}}}{T} + \oint \delta\sigma \ge \oint \frac{\delta Q_{\text{in}}}{T_{\text{in}}} - \oint \frac{\delta Q_{\text{out}}}{T_{\text{out}}} + 0$
- but S is a property ($\oint dS = 0$), so $0 \ge \oint \frac{\delta Q_{\text{in}}}{T_{\text{in}}} \oint \frac{\delta Q_{\text{out}}}{T_{\text{out}}}$
- reservoir temperatures T_{in} and T_{out} are constant, so

$$\oint \frac{\delta Q_{\text{in}}}{T_{\text{in}}} - \oint \frac{\delta Q_{\text{out}}}{T_{\text{out}}} = \frac{1}{T_{\text{in}}} \oint \delta Q_{\text{in}} - \frac{1}{T_{\text{out}}} \oint \delta Q_{\text{out}}$$

•
$$\oint \delta Q_{\sf in} = Q_{\sf in}$$
 and $\oint \delta Q_{\sf out} = Q_{\sf out}$, so

$$0 \geq \frac{Q_{\text{in}}}{T_{\text{in}}} - \frac{Q_{\text{out}}}{T_{\text{out}}} \quad \text{or equivalently} \quad \frac{Q_{\text{in}}}{T_{\text{in}}} \leq \frac{Q_{\text{out}}}{T_{\text{out}}}$$

25 / 27

Reversibility condition (continued)

• if cycle is reversible, then

- $\diamond~\delta\sigma=$ 0 throughout the cycle
- $\diamond \ T = T_{in} \text{ during input heat transfer}$
- $\diamond \ \ T = T_{\rm out} \ {\rm during \ output \ heat \ transfer}$

• in this case,

$$\oint \mathrm{d}S = \frac{1}{T_{\mathrm{in}}} \oint \delta Q_{\mathrm{in}} - \frac{1}{T_{\mathrm{out}}} \oint \delta Q_{\mathrm{out}} = \frac{Q_{\mathrm{in}}}{T_{\mathrm{in}}} - \frac{Q_{\mathrm{out}}}{T_{\mathrm{out}}}$$

• but
$$\oint \mathrm{d}S = 0$$
, so $Q_{\mathrm{in}}/T_{\mathrm{in}} = Q_{\mathrm{out}}/T_{\mathrm{out}}$

 \implies Clausius inequality holds with equality for reversible cycles

Reversibility condition (continued)

- if cycle is irreversible, then one of the following must be true:
 - $\diamond~\delta\sigma>$ 0 at some point in the cycle
 - $\diamond~T < T_{in}$ at some point during input heat transfer
 - $\diamond~T>T_{out}$ at some point during output heat transfer
- any of these imply that the Clausius inequality is strict (<)
- so it holds with equality only if cycle is reversible