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Outline

Motivations

Clausius and Kelvin-Planck statements

Entropy statement

Completely optional: Proof of the Clausius inequality



Example

Identical incompressible blocks, initially at T a
1 = 20 ◦C and T b

1 =
100 ◦C, come into contact inside a closed rigid insulated stationary
box. Some time later, T a

2 = 10 ◦C and T b
2 = 110 ◦C. Show that

this process violates conservation of mass, the 1st law, or both.

m
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Solution

• conservation of mass holds since there are no mass flows

• we can look for 1st law violations in energy balances on

� block a
� block b
� combined system
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Solution (continued)

Qa bQ

• block a and b energy balances: ∆Ua = −Q and ∆Ub = Q

• blocks are identical and incompressible, so

� ∆Ua = mc∆Ta = mc(10◦C− 20◦C) = mc(−10◦C)
� ∆Ub = mc∆Tb = mc(110◦C− 100◦C) = mc(10◦C)

=⇒ ∆Ua = −∆Ub, as block energy balances require
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Solution (continued)

a b

• combined system energy balance: ∆U = 0

• but ∆U = ∆Ua + ∆Ub and ∆Ua = −∆Ub

=⇒ ∆U = 0, as combined system energy balance requires
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Something is missing. . .

• spontaneous heat flow from cold to hot is unphysical

• but it satisfies conservation of mass and the 1st law

• many other spontaneous processes tell similar stories

� cold drinks in warm rooms don’t spontaneously get colder
� balloons in atmosphere don’t spontaneously inflate
� heating up a resistor doesn’t make current flow
� but the ‘wrong’ directions all satisfy CoM and the 1st law
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What the 2nd law of thermodynamics does

• the 2nd law provides a way to rule out unphysical processes

• it also provides

� fundamental limits on cycle efficiencies and COPs
� ways to identify and quantify inefficiencies
� a logical foundation for absolute temperature scales
� a bunch of other cool ideas and tools
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Thermal reservoirs

• a reservoir is a system with constant T despite heat transfer

• examples:

� saturated liquid-vapor mixtures with 0 < x < 1
� really big things (lakes, the atmosphere, huge hunks of metal)
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Clausius statement

No cycle can have the sole effect of heat transfer from a colder
reservoir to a warmer one.
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Clausius statement (loosely rephrased)

• refrigeration cycles require work

• so this cycle (with W = 0) is impossible:

hot
reservoir

system

cold
reservoir

Qh

Qc > 0

W = 0
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Kelvin-Planck statement

No cycle can receive energy via heat transfer from a single
reservoir and produce net work.
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Kelvin-Planck statement (loosely rephrased)

• power cycles must produce waste heat

• so this cycle (with Qc = 0) is impossible:

hot
reservoir

system

cold
reservoir

Qh

Qc = 0

W > 0
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Equivalence of Clausius and Kelvin-Planck statements

• they sound different, but C and KP are equivalent

• to show that C ⇐⇒ KP, we’ll show

� C =⇒ KP
� KP =⇒ C

• both arguments use the contrapositive:

� the logical proposition A =⇒ B
� is equivalent to ‘not B’ =⇒ ‘not A’
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Clausius implies Kelvin-Planck (‘not KP’ =⇒ ‘not C’)

hot reservoir

cold reservoir

‘not KP’
power
cycle

Qh

W = Qh

normal
fridge
cycle

Qh + Qc

Qccombined system
violates C
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Kelvin-Planck implies Clausius (‘not C’ =⇒ ‘not KP’)

hot reservoir

cold reservoir

‘not C’
fridge
cycle

Qc

Qc

normal
power
cycle

Qh

Qc

W = Qh − Qc

combined system
violates KP
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Reversibility

• a reversible process

� lets system and surroundings return to their exact initial states
� is an idealization, like a frictionless plane or point mass
� is a limit that real processes can approach but never attain

• all real processes have irreversibilities such as

� friction
� electric resistance
� unrestrained expansion of a fluid to lower pressure
� substances with different states or compositions mixing
� heat transfer driven by nonzero temperature differences
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Reminder: 1st law for closed stationary systems

• there is an extensive property called internal energy, U (kJ)

• heat transfer δQ into system

• and work δW done by system

• change system internal energy by

dU = δQ − δW
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Entropy statement of 2nd law for closed systems

• there is an extensive property called entropy, S (kJ/K)

• heat transfer δQ across boundary at temperature Tb

• and entropy generation δσ (always ≥ 0) within system

• change system entropy by

dS =
δQ

Tb
+ δσ

• for any isolated system undergoing any process,

� dS ≥ 0 always
� dS = 0 only if the process is reversible
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Internal entropy generation is always nonnegative

• suppose entropy is generated within system over some process

• isolate the system and rerun the same internal activities

• then by the 2nd law,

� dS =��δQ/Tb + δσ = δσ
� δσ ≥ 0 always
� δσ = 0 only if the process is reversible

• we call a process or system with δσ = 0 internally reversible

• standing assumption: reservoirs are internally reversible
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Entropy changes in heat transfer

T`

dS` = −δQ/T`

Tr

δQ > 0 dSr = δQ/Tr

• consider two reservoirs at temperatures T` and Tr

• combined system entropy change is

dS = dS` + dSr = δQ

(
1

Tr
− 1

T`

)
• combined system is isolated, so dS ≥ 0 (2nd law)

• since δQ > 0, we get T` ≥ Tr (heat flows from hot to cold)

• heat transfer is reversible only if dS = 0, meaning T` = Tr
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(Approximately) reversible heat transfer

• real (irreversible) heat transfer is always driven by a nonzero
∆T

• but heat transfer approaches reversibility as ∆T → 0

• systems at T` and Tr exchange heat ∼reversibly if T` ≈ Tr

T + ε T

δQ

T T + ε

δQ
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Clausius inequality

• consider any cycle where the system

� absorbs Qin from a reservoir whose temperature is Tin

� emits Qout to a reservoir whose temperature is Tout

• the entropy statement of the 2nd law implies that

Qin

Tin
≤ Qout

Tout

• this is one form of the Clausius inequality

• it holds with equality if and only if the cycle is reversible
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Entropy statement of 2nd law implies Clausius statement

Tc
refrigeration

cycle
Th

QhQc

W

• Clausius statement: W > 0 in any refrigeration cycle

• 1st law for cycles: W + Qc = Qh, so W > 0 if Qh/Qc > 1

• Clausius inequality (a consequence of the entropy statement):

Qc

Tc
≤ Qh

Th
or equivalently

Qh

Qc
≥ Th

Tc

• but Th > Tc , so Th/Tc > 1

• therefore Qh/Qc > 1, and W > 0
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Summary

• the C, KP and E statements of 2nd law all sound different

• but we’ve shown that E =⇒ C and C ⇐⇒ KP

• it’s also possible to show that KP =⇒ E (or C =⇒ E)

• this closes the circle: all 3 statements are equivalent

• C and KP are more intuitive, but E is more useful
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Individual inequalities

• system entropy change over cycle is∮
dS =

∮
δQin

T
−
∮
δQout

T
+

∮
δσ

•
∮
δσ ≥ 0 since δσ ≥ 0

• T ≤ Tin during heat transfer with input reservoir, so∮
δQin

T
≥
∮
δQin

Tin

• T ≥ Tout during heat transfer with output reservoir, so∮
δQout

T
≤
∮
δQout

Tout
or equivalently −

∮
δQout

T
≥ −

∮
δQout

Tout
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Combined inequality

• if x ≥ a, y ≥ b and z ≥ c, then x + y + z ≥ a + b + c , so∮
dS =

∮
δQin

T
−
∮
δQout

T
+

∮
δσ ≥

∮
δQin

Tin
−
∮
δQout

Tout
+ 0

• but S is a property (
∮

dS = 0), so 0 ≥
∮
δQin
Tin
−
∮
δQout
Tout

• reservoir temperatures Tin and Tout are constant, so∮
δQin

Tin
−
∮
δQout

Tout
=

1

Tin

∮
δQin −

1

Tout

∮
δQout

•
∮
δQin = Qin and

∮
δQout = Qout, so

0 ≥ Qin

Tin
− Qout

Tout
or equivalently

Qin

Tin
≤ Qout

Tout
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Reversibility condition (continued)

• if cycle is reversible, then

� δσ = 0 throughout the cycle
� T = Tin during input heat transfer
� T = Tout during output heat transfer

• in this case,∮
dS =

1

Tin

∮
δQin −

1

Tout

∮
δQout =

Qin

Tin
− Qout

Tout

• but
∮

dS = 0, so Qin/Tin = Qout/Tout

=⇒ Clausius inequality holds with equality for reversible cycles
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Reversibility condition (continued)

• if cycle is irreversible, then one of the following must be true:

� δσ > 0 at some point in the cycle
� T < Tin at some point during input heat transfer
� T > Tout at some point during output heat transfer

• any of these imply that the Clausius inequality is strict (<)

• so it holds with equality only if cycle is reversible
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