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Reminder: the Brayton model of gas power cycles

Cengel and Boles, Thermodynamics: An Engineering Approach (2019)
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Reminder: ideal Brayton cycle T -s diagram

Cengel and Boles, Thermodynamics: An Engineering Approach (2019)
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Real Brayton cycle T -s diagram

Cengel and Boles, Thermodynamics: An Engineering Approach (2019) 3 / 18



Isentropic efficiencies

• pressure drops matter less than isentropic (in)efficiencies

• turbine isentropic efficiency:

ηt =
Ẇ34

Ẇ ?
34

=
h3 − h4
h3 − h?4

• compressor isentropic efficiency:

ηc =
Ẇ ?

12

Ẇ12

=
h?2 − h1
h2 − h1

• after decades of R&D, ηt and ηc can now reach 85–90%

• but ‘vanilla’ Brayton cycle efficiencies may still be low
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How to improve Brayton cycle efficiency?

• reminder: the Brayton cycle efficiency is

η =
useful output

costly input

=
net work output

heat transfer input

=
work output − work input

heat transfer input

• to increase efficiency,

� decrease (combustion) heat transfer input
� increase (turbine) work output
� decrease (compressor) work input
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Decreasing heat transfer input with regeneration

Cengel and Boles, Thermodynamics: An Engineering Approach (2019)
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Ideal Brayton cycle T -s diagram with regeneration

Cengel and Boles, Thermodynamics: An Engineering Approach (2019)
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Increasing turbine work output with reheat

Moran et al., Fundamentals of Engineering Thermodynamics (2018)
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Ideal Brayton cycle T -s diagram with reheat

Moran et al., Fundamentals of Engineering Thermodynamics (2018)
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Decreasing compressor work input with intercooling

Moran et al., Fundamentals of Engineering Thermodynamics (2018)
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Cooling during compression decreases input work

Moran et al., Fundamentals of Engineering Thermodynamics (2018)
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Compression p-v diagram with intercooling

Cengel and Boles, Thermodynamics: An Engineering Approach (2019)
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Combining regeneration, reheat and intercooling

Cengel and Boles, Thermodynamics: An Engineering Approach (2019)
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T -s diagram with regeneration, reheat and intercooling

Cengel and Boles, Thermodynamics: An Engineering Approach (2019)
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The combined (gas [Brayton] + vapor [Rankine]) cycle

Moran et al., Fundamentals of Engineering Thermodynamics (2018)
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Rough efficiency comparisons

• ‘vanilla’ Brayton cycle with non-ideal components: ∼15–20%

• add regeneration (no reheat or intercooling): ∼25–30%

• add reheat and intercooling (no regeneration): ∼25–30%

• add regeneration, reheat and intercooling: ∼30–40%

• today’s simple-cycle record: 46%

• typical combined-cycle: ∼45–50%

• today’s combined-cycle record: 63%
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Expanding the notion of ‘useful output’ with cogeneration

Moran et al., Fundamentals of Engineering Thermodynamics (2018)
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American Public Power Association, America’s Electricity Generation Capacity: 2022 Update
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