Lecture 39 — The Brayton cycle
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Outline

Gas power cycles



Why study gas power cycles?

e compared to vapor power cycles, gas power cycles can

© generate more power for a given machine weight
¢ adjust their power output much faster

® so gas power cycles run most airplanes and many ships

e they also generate a lot of electricity
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Gas power cycles generate 38% of US electricity
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Gas power cycles generate 23% of world electricity
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Most gas power plants are open systems
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But they're easier to model as closed systems
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Outline

The ideal air-standard Brayton cycle



Simplifying assumptions

e no KE or PE effects

e no stray heat transfer

e no pressure drops due to friction

e steady mass flow, steady cyclic operation

e air-standard assumptions:

o all processes are internally reversible

¢ the working fluid is air, behaving as an ideal gas

© combustion is heat transfer from an external reservoir

o gas exhaust/air intake is heat transfer to an external reservoir
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The ideal air-standard Brayton cycle has four processes

e constant-entropy compression in a compressor (1—2)
e constant-pressure input heat transfer (2—3)
e constant-entropy expansion in a turbine (3—4)

e constant-pressure output heat transfer (4—1)
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|deal air-standard Brayton cycle T-s diagram
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|deal air-standard Brayton cycle p-v diagram
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|deal air-standard Brayton cycle energy balances

e adiabatic compression: Wy, = m(hy — hy)
e input heat transfer: Qo3 = rm(hz — hy)

e adiabatic expansion: Wsq = m(hs — hy)

e output heat transfer: Q41 = m(hg — hy)

o full cycle: Wis 4+ Qo3 = Was + Qar
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|deal air-standard Brayton cycle back-work ratio

e the Brayton cycle's back work ratio is

compressor work Wio hy — hy

BWR = e
turbine work W34 h3 — hy

e Brayton cycles have much higher BWRs than Rankine cycles

¢ 40-80% for most Brayton cycles
¢ 1-3% for most Rankine cycles

e most jet engine turbines generate just enough work to

© run the compressor
< power on-board electronics, HVAC equipment, etc.

(exhaust gases push the plane)
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|deal air-standard Brayton cycle efficiency

e the Brayton cycle efficiency is

net work output Wiaq — Wi
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~ heat transfer input Q23
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Ideal cold air-standard Brayton cycle efficiency

e if specific heats are constant, then
h3 — h2 = Cp(T3 — Tg), h4 — h1 = Cp(T4 — Tl)

e so the Brayton cycle efficiency becomes

o= _, Ta-Th

—1_ —1_
! h3 — hy Ts—T>
L, T (TTi-1
T T \T3/T2—-1
e but T,/ Ty = T3/ T, (see next slide), so
T
n—=1-— —
n T
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Cold air-standard Brayton cycle efficiency (continued)

e 12 and 3—4 are isentropic, p3 = p2, and ps = p1, SO

7§_<W>MUM

T1 p1

T _ <p4>(k—1)/k: <pl>(k—1)/k: Ty
T3 p3 P2 T

e rearranging gives T4/ Ty = T3/ T>
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Efficiency and the pressure ratio

e define the pressure ratio r, = p»/p1
e then the cold air-standard Brayton cycle efficiency is
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Efficiency increases with the pressure ratio
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But there's a ‘sweet spot’ pressure ratio for work output
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Balancing efficiency and work output
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Example



Problem statement

An ideal air-standard Brayton cycle with a pressure ratio of 10 has
an inlet pressure and temperature of 100 kPa and 300 K.

(a) Find the efficiency using cold air-standard analysis.

(b) Find the efficiency and back-work ratio using the specific
enthalpy data below.

state | specific enthalpy (kJ/kg)

1 300.19
2 579.9
3 1515.4
4 808.5
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Solution to part (a)

e in cold air-standard analysis, k = c,(T1)/c,(T1) = 1.4

e the pressure ratio r, = 10 is given, so

1

rl(3 100-4/1.4
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Solution to part (b)

e given the specific enthalpy data, the efficiency is

hy — hy (808.5 — 300.19)kJ /kg
— =1- = 0.457
h3 - h2 (].515.4- - 579.9)kJ/kg

n=1
e so assuming constant specific heats introduces error
0.482 — 0.457 = 0.025

e this is 6% error, relative to the true efficiency 0.457
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Solution to part (b) (continued)

e given the specific enthalpy data, the BWR is

hy —hy  (579.9 —300.19)kJ/kg
h3 — hy  (1515.4 — 808.5)kJ/kg

=0.396

e 50 39.6% of the turbine work goes to the compressor
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