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Outline
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Motivation

• many ideas around the 2nd law involve reversible cycles

• a reversible cycle must

� have no internal irreversibilities (friction, etc.)
� have only reversible heat transfer with the surroundings

• can we create a reversible cycle?
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Reminder: (approximately) reversible heat transfer

• real (irreversible) heat transfer is always driven by a finite ∆T

• but heat transfer approaches reversibility as ∆T → 0

• systems at Ta and Tb exchange heat ∼reversibly if Ta ≈ Tb

T + ε T

δQ

T T + ε

δQ
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Carnot power cycle process 1-2: Isothermal expansion

system
T = Th

Th

state 1

. . . system
T = Th

Th

state 2

• constant system temperature T = Th

• reversible heat transfer Qh from hot reservoir to system

• no other heat transfer (cylinder walls are well-insulated)
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Carnot power cycle process 2-3: Adiabatic expansion

system
T = Th

. . .

state 2

system
T = Tc

state 3

• no heat transfer

• system temperature drops from Th to Tc
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Carnot power cycle process 3-4: Isothermal compression

system
T = Tc

Tc

state 3

. . . system
T = Tc

Tc

state 4

• constant system temperature T = Tc

• reversible heat transfer Qc from system to hot reservoir

• no other heat transfer
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Carnot power cycle process 4-1: Adiabatic compression

system
T = Tc

state 4

. . . system
T = Th

state 1

• no heat transfer

• system temperature rises from Tc to Th
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Carnot power cycle p-v diagram
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T = Th

T = Tc

• the area under each curve is the work done over that process

• the total work done is the area enclosed by the cycle

7 / 19



Carnot cycle notes

• this piston-cylinder Carnot cycle is one implementation

• others are possible, such as a phase-change cycle using

� 1-2: isothermal evaporation in a boiler
� 2-3: adiabatic expansion in a turbine
� 3-4: isothermal condensation in a condenser
� 4-1: adiabatic compression in a pump

• all Carnot cycle implementations

� use two isothermal processes
� use two adiabatic processes
� have no internal irreversibilities

• backwards Carnot power cycle = Carnot refrigeration cycle
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Problem statement

Calculate the efficiency of a Carnot power cycle implemented in a
piston-cylinder device containing an ideal gas. The cycle runs
between reservoirs at temperatures Th and Tc .
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Short solution

• all implementations of the Carnot cycle are reversible

• all reversible power cycles have efficiency η = 1− Tc/Th
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Long solution: Assumptions and basic equations

• assume:
� ideal gas
� closed system (∆m = 0)
� stationary system (∆KE = ∆PE = 0)
� processes 1-2 and 3-4 are isothermal at Th and Tc

� processes 2-3 and 4-1 are adiabatic (Q23 = Q41 = 0)

• basic equations:
� 1st law for closed stationary systems: ∆U = Q −W
� ideal gas law: pV = mRT

� boundary work: W =
∫ V2

V1
pdV

� power cycle efficiency: η = W /Qh
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Long solution

• efficiency is η = W /Qh, where Qh = Q12

• net work is

W = W12 + W23 + W34 + W41

• in isothermal ideal gas expansion 1-2 with T = Th,

W12 =

∫ V2

V1

pdV = mRTh

∫ V2

V1

dV

V
= mRTh ln

(
V2

V1

)
• 3-4 is similar except T = Tc , so

W34 = mRTc ln

(
V4

V3

)
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Long solution (continued)

• 2-3 is adiabatic (Q23 = 0), so from 1st law,

W23 = U3 − U2 = m(u3 − u2)

• but u = u(T ) for an ideal gas, T3 = Tc , and T2 = Th, so

W23 = m(u(Tc)− u(Th))

• similarly, for adiabatic process 4-1,

W41 = m(u(Th)− u(Tc)) = −W23
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Long solution (continued)

• since W41 = −W23, net work is

W = W12 +�
��W23 + W34 +�

��W41 = W12 + W34

• efficiency W /Qh also requires input heat transfer Qh = Q12

• but 1-2 is isothermal and u = u(T ) for ideal gas, so U2 = U1

• 1st law therefore gives

Q12 = W12

14 / 19



Long solution (continued)

• from net work and input heat transfer formulas,

η =
W

Qh
=

W12 + W34

W12
= 1 +

W34

W12

= 1 +
��mRTc ln (V4/V3)

��mRTh ln (V2/V1)

• this looks almost like our reversible efficiency, 1− Tc/Th

• it’s exactly right if ln(V4/V3) = − ln(V2/V1)

• but − ln(x) = ln(1/x), so it’s exactly right if V4/V3 = V1/V2
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Long solution (continued)

• fact: adiabatic ideal gas expansion/compression is polytropic

• so for adiabatic processes 2-3 and 4-1 (see lecture 12 slide 5),(
V3

V2

)n−1

=
T2

T3
and

(
V1

V4

)n−1

=
T4

T1

• but T1 = T2 = Th and T3 = T4 = Tc , so

Tc

Th
=

(
V1

V4

)n−1

=

(
V2

V3

)n−1

• taking the n − 1 roots and rearranging gives V4/V3 = V1/V2

• so the ideal gas Carnot power cycle efficiency is

η = 1− Tc

Th
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Addendum: Adiabatic ideal gas expansion is polytropic

• for an ideal gas, dU = mcvdT

• closed stationary adiabatic 1st law: dU = ��δQ − δW = −pdV

• so mcvdT = −pdV , or equivalently, mdT = −(p/cv )dV

• for an ideal gas, pV = mRT

• taking total differential of both sides,

V dp + pdV = mRdT
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Adiabatic ideal gas expansion is polytropic (continued)

• combining the last equation with mdT = −(p/cv )dV ,

V dp + pdV = −(Rp/cv )dV

⇐⇒ V dp + p(1 + R/cv )dV = 0

• dividing through by pV ,

dp

p
+

(1 + R/cv )dV

V
= 0
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Adiabatic ideal gas expansion is polytropic (continued)

• the left-hand side is the total differential of

f (p,V ) = ln(p) + (1 + R/cv ) ln(V )

• since df = 0, f must equal some constant (call it α):

ln(p) + (1 + R/cv ) ln(V ) = α

⇐⇒ ln(p) + ln
(
V 1+R/cv

)
= α

⇐⇒ ln
(
pV 1+R/cv

)
= α

⇐⇒ pV 1+R/cv = eα

• so the process is polytropic with coefficient n = 1 + R/cv

• for ideal gases, R/cv = k − 1 (where k = cp/cv ), so n = k
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