Lecture 22 — The Carnot cycle
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Outline

The Carnot cycle



Motivation

e many ideas around the 2nd law involve reversible cycles
e a reversible cycle must

o have no internal irreversibilities (friction, etc.)
¢ have only reversible heat transfer with the surroundings

e can we create a reversible cycle?
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Reminder: (approximately) reversible heat transfer

e real (irreversible) heat transfer is always driven by a finite AT
e but heat transfer approaches reversibility as AT — 0

e systems at T, and T; exchange heat ~reversibly if T, ~ T}

T+e T T T +e¢

Q 0Q
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Carnot power cycle process 1-2: Isothermal expansion

system
T=Ty

Th

state 1

e constant system temperature T = Tp
e reversible heat transfer Qp from hot reservoir to system

e no other heat transfer (cylinder walls are well-insulated)

system
T=T,

Th

state 2
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Carnot power cycle process 2-3: Adiabatic expansion

system system
T=T, C T=T,
state 2 state 3

e no heat transfer

e system temperature drops from Tj to T,
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Carnot power cycle process 3-4: Isothermal compression

system system

T=T. T=T.
Tc T

state 3 state 4

e constant system temperature T = T,

e reversible heat transfer Q. from system to hot reservoir

e no other heat transfer
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Carnot power cycle process 4-1: Adiabatic compression

system system
T=T. T=T,
state 4 state 1

e no heat transfer

e system temperature rises from T, to T
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Carnot power cycle p-v diagram

p

e the area under each curve is the work done over that process

e the total work done is the area enclosed by the cycle
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Carnot cycle notes

this piston-cylinder Carnot cycle is one implementation
others are possible, such as a phase-change cycle using

<

<
&
<&

1-2:
2-3:
3-4:
4-1:

isothermal evaporation in a boiler
adiabatic expansion in a turbine
isothermal condensation in a condenser
adiabatic compression in a pump

all Carnot cycle implementations
o use two isothermal processes
¢ use two adiabatic processes
© have no internal irreversibilities

backwards Carnot power cycle = Carnot refrigeration cycle
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Outline

Example



Problem statement

Calculate the efficiency of a Carnot power cycle implemented in a
piston-cylinder device containing an ideal gas. The cycle runs
between reservoirs at temperatures T, and T..
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Short solution

e all implementations of the Carnot cycle are reversible

e all reversible power cycles have efficiency n =1 — T,/ Ty
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Long solution: Assumptions and basic equations

e assume:
¢ ideal gas
o closed system (Am = 0)
© stationary system (AKE = APE = 0)
¢ processes 1-2 and 3-4 are isothermal at T, and T,
o processes 2-3 and 4-1 are adiabatic (Qx3 = Q41 = 0)
e basic equations:
¢ 1st law for closed stationary systems: AU = Q — W
o ideal gas law: pV = mRT
¢ boundary work: W = f\f pdV
o power cycle efficiency: n = W/Qy
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Long solution

o efficiency is n = W/Qp, where Q = Q12
e net work is

W = Wis + Waz + Wag + Wiy

e in isothermal ideal gas expansion 1-2 with T = T,
v V2dv Z
Wi, = / pdV = mRT,,/ 4V RTyIn <2>
Vi Vi 4 Vl

e 3-4 is similar except T = T, so

V.
Was = mRT,In <V‘3‘>
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Long solution (continued)

e 2-3 is adiabatic (@23 = 0), so from 1st law,
Was = Us — Uz = m(us3 — up)
e but u=u(T) for an ideal gas, T3 = T, and Ty = Ty, so
Was = m(u(Te) — u(Th))
e similarly, for adiabatic process 4-1,

War = m(u(Th) — u(Te)) = —Was
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Long solution (continued)

e since W41 = —Wh3, net work is

W = Wiy + Ws3 + Was + Wa1 = Wio + Was

efficiency W /Qp, also requires input heat transfer Q = Q12

but 1-2 is isothermal and u = u(T) for ideal gas, so U, = U;

1st law therefore gives

Qi2 = Wi
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Long solution (continued)

from net work and input heat transfer formulas,

W W+ Wsy W3y

n= = 2T B gy T

Qn W12 Wi
mﬁTcln(V4/V3)

mRTyIn(Va/Vh)

=1+

this looks almost like our reversible efficiency, 1 — T/ Tj,
it's exactly right if In(Va/V3) = —In(V2/V4)
but —In(x) = In(1/x), so it's exactly right if V4/V5 = V1/V>
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Long solution (continued)

e fact: adiabatic ideal gas expansion/compression is polytropic

e so for adiabatic processes 2-3 and 4-1 (see lecture 12 slide 5),

Va\"t T VI\"t T
— =—and | — = —
Vo T3 Vs T1

e but i =T, =Tpand T3=T4 =T, so

Tc_ Vl n—l_ \/2 n—1
T, V4 S\

e taking the n — 1 roots and rearranging gives V4 /V3 = V4 /V,

e so the ideal gas Carnot power cycle efficiency is

]C
_1_7
n Th
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Addendum: Adiabatic ideal gas expansion is polytropic

for an ideal gas, dU = mc,dT
closed stationary adiabatic 1st law: dU = 0& — W = —pdV
so mc,dT = —pdV, or equivalently, mdT = —(p/c,)dV

for an ideal gas, pV = mRT
taking total differential of both sides,

Vdp + pdV = mRdT
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Adiabatic ideal gas expansion is polytropic (continued)

e combining the last equation with mdT = —(p/c,)dV,

Vdp + pdV = —(Rp/c,)dV
<= Vdp+p(1+ R/c,)dV =0
e dividing through by pV,

dp , (1+R/c)dV

p v =0
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Adiabatic ideal gas expansion is polytropic (continued)

o the left-hand side is the total differential of
f(p, V) =1In(p) +(1+ R/c,)In(V)
e since df = 0, f must equal some constant (call it «):
In(p) + (1 + R/c,)In(V) =«
<= In(p) +In (V1+R/Cv> =«
<~ In <pV1+R/CV> =«
s pVIHR/a _ o

e so the process is polytropic with coefficient n =1+ R/c,

e for ideal gases, R/c, = k — 1 (where k = ¢,/c,), so n =k
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