Lecture 21 – Cycle performance limits Purdue ME 200, Thermodynamics I

Kevin J. Kircher, kircher@purdue.edu

Outline

Cycle performance limits

Example

Reminder: Clausius inequality

• consider any cycle where a system

 \diamond absorbs Q_{in} from a reservoir whose temperature is T_{in} \diamond emits Q_{out} to a reservoir whose temperature is T_{out}

• the 2nd law implies the Clausius inequality,

$$\frac{Q_{\text{in}}}{T_{\text{in}}} \le \frac{Q_{\text{out}}}{T_{\text{out}}}$$

• it holds with equality if and only if the cycle is reversible

Power cycle

2/15

Power cycle efficiency limit

• Clausius inequality:

$$\frac{Q_h}{T_h} \leq \frac{Q_c}{T_c} \quad \text{or equivalently} \quad \frac{Q_c}{Q_h} \geq \frac{T_c}{T_h}$$

• so $\eta \leq 1 - T_c/T_h$

Refrigeration cycle

4 / 15

Refrigeration cycle COP limit

• Clausius inequality:

$$rac{Q_c}{T_c} \leq rac{Q_h}{T_h} \quad ext{or equivalently} \quad rac{Q_c}{Q_h} \leq rac{T_c}{T_h}$$

• so $\beta \leq (T_c/T_h)/(1-T_c/T_h)$

Heat pump cycle

6/15

Heat pump cycle COP limit

• Clausius inequality:

$$rac{Q_c}{T_c} \leq rac{Q_h}{T_h} ~~ ext{or equivalently} ~~ rac{Q_c}{Q_h} \leq rac{T_c}{T_h}$$

• so $\gamma \leq 1/(1-T_c/T_h)$

Summary

cycle	metric	limit
power	efficiency η	$\leq 1 - T_c/T_h$
refrigeration	COP β	$\leq (T_c/T_h)/(1-T_c/T_h)$
heat pump	COP γ	$\leq 1/(1-T_c/T_h)$

- limits hold with equality (=) if and only if cycles are reversible (so all reversible cycles have the same efficiencies/COPs)
- for real (irreversible) cycles, limits are strict inequalities (<)
- always use absolute temperatures (K, $^{\circ}R$) in these limits

Scaling of performance limits with T_c/T_h

- all limits depend only on absolute temperature ratio T_c/T_h
- $T_c > 0$, $T_h > 0$ and $T_h > T_c$, so $0 < T_c/T_h < 1$

Outline

Cycle performance limits

Example

An air-source heat pump delivers 12 kW via heat transfer to 20 $^\circ\text{C}$ air inside a house and receives 4 kW of electric power. Find

- (a) the rate of heat transfer from the 0 $^\circ\text{C}$ outdoor air,
- (b) the heat pump COP, and
- (c) the maximum possible heat pump COP.

System diagram and assumptions

$$20^{\circ}C$$

$$\dot{Q}_{h} = 12 \text{ kW}$$
system
$$\dot{W} = 4 \text{ kW}$$

$$\dot{Q}_{c}$$

$$0^{\circ}C$$

• assumptions:

- $\diamond~$ closed stationary system
- $\diamond~$ heat pump operates in steady cycles
- $\diamond\,$ indoor and outdoor air temperatures are constant

Solution to parts (a) and (b)

(a) from 1st law, $\dot{Q}_c = \dot{Q}_h - \dot{W} = 12$ kW - 4 kW = 8 kW (b) heat pump COP is

$$\gamma = \frac{\dot{Q}_h}{\dot{W}} = \frac{12\text{kW}}{4\text{kW}} = 3$$

Solution to part (c)

• maximum possible COP is

$$\gamma^{\star} = \frac{1}{1 - T_c/T_h} = \frac{1}{1 - (0^{\circ}C)/(20^{\circ}C)} = 1$$

• nope! always use absolute temperatures in performance limits

$$\gamma^{\star} = \frac{1}{1 - (273 \text{K})/(293 \text{K})} = 14.65$$

 \implies real heat pump only hits 20.5% of maximum possible COP

Bonus: Verifying the Clausius inequality

• in rate form, the Clausius inequality for heat pumps is

$$\frac{\dot{Q}_c}{T_c} \le \frac{\dot{Q}_h}{T_h}$$

• in this problem,

$$\frac{\dot{Q}_c}{T_c} = \frac{8\text{kW}}{273\text{K}} = 0.029\text{kW/K}$$

and

$$\frac{\dot{Q}_h}{T_h} = \frac{12 \text{kW}}{293 \text{K}} = 0.041 \text{kW/K}$$

• so the Clausius inequality holds

Double bonus: Reversible ground-source heat pump COP

suppose that

- $\diamond~$ instead of the outdoor air at 0 $^\circ\text{C}$
- $\diamond\,$ the input heat transfer comes from the 13 $^\circ C$ ground
- then the maximum possible COP is

$$\gamma^{\star} = rac{1}{1 - T_c/T_h} = rac{1}{1 - (286 \text{K})/(293 \text{K})} = 41.86$$

• so a reversible ground-source heat pump's COP is

$$\frac{41.86}{14.65} = 285\%$$

higher than a reversible air-source heat pump