Lecture 18 - Cycles
 Purdue ME 200, Thermodynamics I

Kevin J. Kircher, kircher@purdue.edu

Outline

Cycles

Example \#1

Example \#2

Vocabulary reminders

- the state of a system determines all its properties
- a process is a transition between two equilibrium states
- a cycle is a sequence of processes that ends in the initial state
\Longrightarrow at the end of a cycle, all properties return to their initial values

1st law for cycles

- for any closed system undergoing any process, $\Delta E=Q-W$
$\diamond E$ is the system's total energy
$\diamond Q$ is the net heat transfer into the system
$\diamond W$ is the net work done by the system
- since E is a property, $\Delta E=0$ over any cycle
- so for cycles, 1st law reduces to $Q=W$

Sign conventions, revisited

- so far, we've defined
\diamond heat transfer into the system as positive
\diamond work done by the system as positive
- we scrap that convention for cycles (sorry)
- new convention:
arrows point in the direction of positive energy flow
- with this convention, 1st law for cycles becomes

$$
\sum \text { energy inflows }=\sum \text { energy outflows }
$$

- to distinguish inflows from outflows, check the picture

Power cycles

- 1st law: $Q_{\text {in }}=W+Q_{\text {out }}$

Refrigeration and heat pump cycles

- 1st law: $Q_{\text {in }}+W=Q_{\text {out }}$

Efficiencies and coefficients of performance (COPs)

- we quantify cycle performance through benefit-to-cost ratios:

$$
\text { performance metric }=\frac{\text { beneficial thing }}{\text { costly thing }}
$$

- the metric, benefit and cost definitions vary between cycles

cycle	metric	benefit	cost
power	efficiency η	W	$Q_{\text {in }}$
refrigeration	$\operatorname{COP} \beta$	$Q_{\text {in }}$	W
heat pump	$\operatorname{COP} \gamma$	$Q_{\text {out }}$	W

Efficiencies and COPs (continued)

- for power cycles,

$$
\eta=\frac{W}{Q_{\mathrm{in}}}=\frac{Q_{\mathrm{in}}-Q_{\mathrm{out}}}{Q_{\mathrm{in}}}=1-\frac{Q_{\mathrm{out}}}{Q_{\mathrm{in}}}
$$

- for refrigeration cycles,

$$
\beta=\frac{Q_{\mathrm{in}}}{W}=\frac{Q_{\mathrm{in}}}{Q_{\mathrm{out}}-Q_{\mathrm{in}}}
$$

- for heat pump cycles,

$$
\gamma=\frac{Q_{\mathrm{out}}}{W}=\frac{Q_{\mathrm{out}}}{Q_{\mathrm{out}}-Q_{\mathrm{in}}}
$$

Outline

Cycles

Example \#1

Example \#2

Problem statement

A refrigerator steadily draws 200 W of electric power and rejects energy by heat transfer to the kitchen air at a rate of 800 W . Determine the rate of heat transfer from the refrigerated space and the refrigerator's COP.

System diagram

Given and find

- given:
$\diamond \dot{W}=200 \mathrm{~W}$
$\diamond \dot{Q}_{\text {out }}=800 \mathrm{~W}$
- find:
$\diamond \dot{Q}_{\text {in }}$
$\diamond \beta$

Assumptions and basic equations

- assume:
\diamond steady, cyclic operation
- basic equations:
$\diamond 1$ st law for refrigeration cycles: $Q_{\text {in }}+W=Q_{\text {out }}$
\diamond refrigerator COP: $\beta=Q_{\text {in }} / W$

Solution

- call the time to complete one cycle Δt
- then the rate of heat transfer from the refrigerated space is

$$
\dot{Q}_{\text {in }}=\frac{Q_{\text {in }}}{\Delta t}=\frac{Q_{\mathrm{out}}-W}{\Delta t}
$$

- but $Q_{\text {out }}=\dot{Q}_{\text {out }} \Delta t$ and $W=\dot{W} \Delta t$, so

$$
\begin{aligned}
\dot{Q}_{\text {in }} & =\frac{\dot{Q}_{\mathrm{out}} \Delta t-\dot{W} \Delta t}{\Delta t}=\dot{Q}_{\mathrm{out}}-\dot{W} \\
& =800 \mathrm{~W}-200 \mathrm{~W}=600 \mathrm{~W}
\end{aligned}
$$

Solution (continued)

- similarly, the refrigerator's COP is

$$
\begin{aligned}
\beta & =\frac{Q_{\text {in }}}{W}=\frac{\dot{Q}_{\text {in }} \Delta t}{\dot{W} \Delta t}=\frac{\dot{Q}_{\text {in }}}{\dot{W}} \\
& =\frac{600 \mathrm{~W}}{200 \mathrm{~W}}=3
\end{aligned}
$$

Outline

Cycles

Example \#1

Example \#2

Problem statement

Viewing the steady vapor-compression cycle pictured below as (a) a refrigerator and (b) a heat pump, express the COPs in terms of the specific enthalpies h_{1}, h_{2} and h_{3}.

Given and find

- given:
$\diamond h_{1}, h_{2}, h_{3}$
- find:

$$
\begin{aligned}
& \diamond \beta=\dot{Q}_{\text {in }} / \dot{W} \\
& \diamond \gamma=\dot{Q}_{\text {out }} / \dot{W}
\end{aligned}
$$

Assumptions and basic equations

- assume:
\diamond steady cyclic operation
\diamond no changes in KE or PE
\diamond no heat transfer across the compressor boundary
- basic equations: 1st law in rate form for the
\diamond compressor: $\dot{m} h_{1}+\dot{W}=\dot{m} h_{2}$
\diamond condenser: $\dot{m} h_{2}=\dot{Q}_{\text {out }}+\dot{m} h_{3}$
\diamond expansion valve: $\dot{m} h_{3}=\dot{m} h_{4}$
\diamond evaporator: $\dot{m} h_{4}+\dot{Q}_{\text {in }}=\dot{m} h_{1}$
\star sign convention: energy flow is + in direction of \rightarrow

Solution to part (a)

- from the compressor energy balance,

$$
\dot{W}=\dot{m}\left(h_{2}-h_{1}\right)
$$

- from the evaporator energy balance,

$$
\dot{Q}_{\mathrm{in}}=\dot{m}\left(h_{1}-h_{4}\right)
$$

- from the expansion valve energy balance, $h_{4}=h_{3}$, so

$$
\beta=\frac{\dot{Q}_{\text {in }}}{\dot{W}}=\frac{\dot{m}\left(h_{1}-h_{4}\right)}{\dot{m}\left(h_{2}-h_{1}\right)}=\frac{h_{1}-h_{4}}{h_{2}-h_{1}}=\frac{h_{1}-h_{3}}{h_{2}-h_{1}}
$$

Solution to part (b)

- from the compressor energy balance,

$$
\dot{W}=\dot{m}\left(h_{2}-h_{1}\right)
$$

- from the condenser energy balance,

$$
\dot{Q}_{\text {out }}=\dot{m}\left(h_{2}-h_{3}\right)
$$

- so

$$
\gamma=\frac{\dot{Q}_{\text {out }}}{\dot{W}}=\frac{\dot{m}\left(h_{2}-h_{3}\right)}{\dot{m}\left(h_{2}-h_{1}\right)}=\frac{h_{2}-h_{3}}{h_{2}-h_{1}}
$$

