Lecture 38 – Diesel and dual cycles Purdue ME 200, Thermodynamics I

Kevin J. Kircher, kircher@purdue.edu

Outline

The air-standard Diesel cycle

The air-standard dual cycle

Example

Gasoline and Diesel engines

- two types of reciprocating internal combustion engine:
 - ◊ spark-ignition (a.k.a. gasoline engines)
 - ◊ compression-ignition (a.k.a. Diesel engines)

- Diesel engines aren't susceptible to knocking, so they can
 - $\diamond~$ reach higher compression ratios and efficiencies
 - $\diamond\,$ use less refined (cheaper) fuels

The air-standard Diesel cycle

- the Otto cycle models an ideal spark-ignition engine
- the Diesel cycle models an ideal compression-ignition engine
- the Diesel cycle is almost identical to the Otto cycle
- but input heat transfer is at constant p rather than V

p-v diagram of the air-standard Diesel cycle

Cengel and Boles, Thermodynamics: An Engineering Approach (2019)

T-s diagram of the air-standard Diesel cycle

Cengel and Boles, Thermodynamics: An Engineering Approach (2019)

Energy balances in the air-standard Diesel cycle

- 3 Diesel energy balances look just like Otto:
 - \diamond input (compression) work: $W_{12} = m(u_2 u_1)$
 - \diamond output (expansion) work: $W_{34} = m(u_3 u_4)$
 - \diamond output (exhaust) heat transfer: $Q_{41} = m(u_4 u_1)$
- but input (combustion) heat transfer is at constant p, so

$$W_{23} = \int_{V_2}^{V_3} p dV = p_2(V_3 - V_2) = m(p_3v_3 - p_2v_2)$$

• and, from $\Delta U = m\Delta u = Q - W$,

$$Q_{23} = m(u_3 - u_2) + W_{23}$$

= $m(u_3 + p_3v_3 - [u_2 + p_2v_2])$
= $m(h_3 - h_2)$

Air-standard Diesel cycle efficiency

• 1st law on the full system over a cycle ($\Delta U = 0$):

$$W_{12} + Q_{23} = W_{23} + W_{34} + Q_{41}$$

• so the air-standard Diesel cycle efficiency is

$$\eta = \frac{\text{net work output}}{\text{heat transfer input}} = \frac{W_{23} + W_{34} - W_{12}}{Q_{23}}$$
$$= \frac{Q_{23} - Q_{41}}{Q_{23}} = 1 - \frac{Q_{41}}{Q_{23}}$$
$$\implies \eta = 1 - \frac{u_4 - u_1}{h_3 - h_2}$$

Cold air-standard Diesel cycle efficiency

• in cold air-standard analysis, Diesel cycle efficiency is

$$\eta = 1 - \frac{1}{r^{k-1}} \left[\frac{r_c^k - 1}{k(r_c - 1)} \right]$$

(this comes from the polytropic ideal gas equations)

• in this formula,

$$◊ k = c_p/c_v$$
 is the (constant) specific heat ratio
 $◊ r = V_1/V_2$ is the compression ratio
 $◊ r_c = V_3/V_2$ is the **cutoff ratio**

Comparing Diesel and Otto cycle efficiencies

- consider cold air-standard Diesel and Otto cycles
- if both cycles have the same compression ratio, then

$$\eta_{\text{Diesel}} = 1 - \frac{1}{r^{k-1}} \underbrace{\left[\frac{r_c^k - 1}{k(r_c - 1)}\right]}_{\geq 1} \leq 1 - \frac{1}{r^{k-1}} = \eta_{\text{otto}}$$

Cengel and Boles, Thermodynamics: An Engineering Approach (2019)

Diesel and Otto cycle efficiencies (continued)

- for fixed compression ratio, Otto is more efficient than Diesel
- but Diesel engines aren't susceptible to knocking
- so they can reach higher compression ratios and efficiencies
- typical gasoline engine efficiency: 20-30%
- typical Diesel engine efficiency: 35-40%
- typical electric vehicle motor efficiency: 80-90%

Outline

The air-standard Diesel cycle

The air-standard dual cycle

Example

Otto and Diesel cycle reminders

- the Otto and Diesel cycles both involve four processes:
 - ◊ constant-entropy compression
 - ◊ input heat transfer
 - ◊ constant-entropy expansion
 - ◊ constant-volume output heat transfer
- input heat transfer is at constant V in Otto, p in Diesel

The air-standard dual cycle

- the dual cycle is almost the same as Otto and Diesel
- but it breaks input heat transfer into two processes:
 - 1. input heat transfer at constant volume
 - 2. input heat transfer at constant pressure
- the dual cycle can model either gasoline or Diesel engines
- the added flexibility tends to improve model accuracy

Air-standard dual cycle p-v diagram

Moran et al., Fundamentals of Engineering Thermodynamics (2018)

Air-standard dual cycle T-s diagram

Moran et al., Fundamentals of Engineering Thermodynamics (2018)

Air-standard dual cycle energy balances

• constant-entropy compression:

$$Q_{12} = 0, W_{12} = m(u_2 - u_1)$$

• constant-volume input heat transfer:

$$Q_{23} = m(u_3 - u_2), \ W_{23} = 0$$

• constant-pressure input heat transfer:

$$Q_{34} = m(h_4 - h_3), \ W_{34} = p_3(v_4 - v_3)$$

$$Q_{45} = 0, W_{45} = m(u_4 - u_5)$$

• constant-volume output heat transfer:

$$Q_{51} = m(u_5 - u_1), \ W_{51} = 0$$

Air-standard dual cycle efficiency

• full-cycle energy balance:

$$W_{12} + Q_{23} + Q_{34} = W_{34} + W_{45} + Q_{51}$$

• so the air-standard dual cycle efficiency is

$$\eta = \frac{\text{net work output}}{\text{heat transfer input}} = \frac{W_{34} + W_{45} - W_{12}}{Q_{23} + Q_{34}}$$
$$= \frac{Q_{23} + Q_{34} - Q_{51}}{Q_{23} + Q_{34}}$$
$$= 1 - \frac{Q_{51}}{Q_{23} + Q_{34}}$$
$$\implies \eta = 1 - \frac{u_5 - u_1}{u_3 - u_2 + h_4 - h_3}$$

Outline

The air-standard Diesel cycle

The air-standard dual cycle

Example

Problem statement

An air-standard Diesel cycle has the following property data:

state	T (K)	p (kPa)
1	300	100
2	898	5390
3	1797	5390
4	888	300

- (a) Find the efficiency assuming varying specific heats.
- (b) Find the compression ratio and cutoff ratio.
- (c) Find the efficiency assuming constant specific heats.

Solution to part (a)

• with varying specific heats, the Diesel cycle efficiency is

$$\eta = 1 - \frac{u_4 - u_1}{h_3 - h_2}$$

• ideal gas table:

• plugging in numbers,

$$\eta = \cdots = 0.577$$

Solution to part (b)

• the compression ratio r and cutoff ratio r_c are

$$r=\frac{v_1}{v_2}, \ r_c=\frac{v_3}{v_2}$$

• we know p and T in all states, so the ideal gas law gives

$$v_{1} = \frac{RT_{1}}{p_{1}} = \dots = 0.861 \text{m}^{3}/\text{kg}$$
$$v_{2} = \frac{RT_{2}}{p_{3}} = \dots = 0.048 \text{m}^{3}/\text{kg}$$
$$v_{3} = \frac{RT_{3}}{p_{3}} = \dots = 0.096 \text{m}^{3}/\text{kg}$$

• so r = 18 and $r_c = 2$

Solution to part (c)

• with constant specific heats, the Diesel cycle efficiency is

$$\eta = 1 - \frac{1}{r^{k-1}} \left[\frac{r_c^k - 1}{k(r_c - 1)} \right] = \dots = 0.631$$

• with constant specific heats, we overestimate efficiency by

$$0.631 - 0.577 = 0.054$$

• this is ~10% error relative to the true $\eta = 0.577$ (not great)