Lecture 27 - Entropy balance for closed systems
 Purdue ME 200, Thermodynamics I

Kevin J. Kircher, kircher@purdue.edu

Outline

Visualizing internally reversible heat transfer

Rate form of entropy balance

What temperatures to use in entropy balances?

Example

Reminder: internally reversible processes

- for a closed system in an internally reversible process ($\delta \sigma=0$),

$$
\mathrm{d} S=\frac{\delta Q}{T} \quad \text { or equivalently } \quad \delta Q=T \mathrm{~d} S
$$

- so the total heat transfer is

$$
Q=\int \delta Q=\int T \mathrm{~d} S
$$

Visualizing differential heat transfer

Visualizing total heat transfer

Outline

Visualizing internally reversible heat transfer

Rate form of entropy balance

What temperatures to use in entropy balances?

Example

Delta form of entropy balance with multiple reservoirs

- suppose system exchanges heat with reservoirs R_{1}, \ldots, R_{n}
- then the change in system entropy over a process is

$$
\Delta S=\sum_{j=1}^{n} \int \frac{\delta Q_{j}}{T_{j}}+\sigma
$$

- T_{j} is system temperature at boundary with reservoir j
- δQ_{j} is infinitesimal heat transfer from reservoir j to system
- $\sigma \geq 0$ is entropy generated within system

Rate form of entropy balance with multiple reservoirs

- in rate form, the instantaneous change in system entropy is

$$
\frac{\mathrm{d} S}{\mathrm{~d} t}=\sum_{j=1}^{n} \frac{\dot{Q}_{j}}{T_{j}}+\dot{\sigma}
$$

Outline

Visualizing internally reversible heat transfer

Rate form of entropy balance

What temperatures to use in entropy balances?

Example

What temperatures to use in entropy balances?

- temperature is a continuous function of spatial coordinates
\Longrightarrow temperature changes smoothly between reservoir and system
- this temperature change happens in a boundary layer
- should the system or surroundings contain the boundary layer?
- the answer determines the T_{j} values used in entropy balances

Standing assumption

- reservoirs are internally reversible
- in other words, $\delta \sigma_{r}=0$ within reservoirs

Consider a reservoir and an internally reversible device

$$
\begin{aligned}
\mathrm{d} S_{r} & =-\frac{\delta Q}{T_{r}} \\
\mathrm{~d} S_{b} & =\frac{\delta Q}{T_{r}}-\frac{\delta Q}{T_{d}}+\delta \sigma_{b} \\
\mathrm{~d} S_{d} & =\frac{\delta Q}{T_{d}}
\end{aligned}
$$

Option 1: Include boundary layer in surroundings

Entropy changes for option 1

- system: $\mathrm{d} S=\mathrm{d} S_{d}=\delta Q / T_{d}$
- surroundings (boundary layer + reservoir):

$$
\mathrm{d} \tilde{S}=\mathrm{d} S_{b}+\mathrm{d} S_{r}=\frac{\delta Q}{\not T_{r}}-\frac{\delta Q}{T_{d}}+\delta \sigma_{b}-\frac{\delta Q}{\not T_{r}}=-\frac{\delta Q}{T_{d}}+\delta \sigma_{b}
$$

- universe (system + surroundings):

$$
\mathrm{d} S+\mathrm{d} \tilde{S}=\frac{\delta Q}{\pi_{d}}-\frac{\delta Q}{\pi_{d}}+\delta \sigma_{b}=\delta \sigma_{b}
$$

Option 2: Include boundary layer in system

$11 / 21$

Entropy changes for option 2

- system (device + boundary layer):

$$
\mathrm{d} S=\mathrm{d} S_{d}+\mathrm{d} S_{b}=\frac{\delta Q}{T_{d}}+\frac{\delta Q}{T_{r}}-\frac{\delta Q}{T_{d}}+\delta \sigma_{b}=\frac{\delta Q}{T_{r}}+\delta \sigma_{b}
$$

- surroundings (reservoir): $\mathrm{d} \tilde{S}=\mathrm{d} S_{r}=-\delta Q / T_{r}$
- universe (system + surroundings):

$$
\mathrm{d} S+\mathrm{d} \tilde{S}=\frac{\delta Q}{\not T_{r}}+\delta \sigma_{b}-\frac{\delta Q}{T_{r}}=\delta \sigma_{b}
$$

Comparing options 1 and 2

- in both options, the entropy change of the universe is $\delta \sigma_{b}$
- but the entropy change of the system differs between options
- so does the entropy change of the surroundings
- in option 2, temperature varies with position inside the system
\Longrightarrow the system cannot be in equilibrium
- but it can be close if the boundary layer is very thin

Outline

Visualizing internally reversible heat transfer

Rate form of entropy balance

What temperatures to use in entropy balances?

Example

Problem statement

A closed stationary piston-cylinder device containing 1 kg of saturated liquid water at $100^{\circ} \mathrm{C}$ comes into contact with a reservoir at 500 K . The water ends as saturated vapor. Including the boundary layer in the system, find the entropy changes of the (a) system, (b) surroundings, and (c) universe.

System diagram

$15 / 21$

Given and find

- given:

$$
\begin{aligned}
& \diamond m=1 \mathrm{~kg} \\
& \diamond \text { constant } T=373 \mathrm{~K} \\
& \diamond T_{r}=500 \mathrm{~K} \\
& \diamond \text { state } 1 \text { is saturated liquid } \\
& \diamond \text { state } 2 \text { is saturated vapor }
\end{aligned}
$$

- find: entropy changes of the
(a) system, ΔS
(b) surroundings (the reservoir), ΔS_{r}
(c) universe (system + surroundings), $\Delta S+\Delta S_{r}$

Assumptions and basic equations

- assume:
\diamond closed (constant mass)
\diamond stationary (constant PE and KE)
\diamond phase change (constant temperature and pressure)
- basic equations:
\diamond 1st law for closed stationary systems: $\Delta U=Q-W$
\diamond boundary work at constant pressure: $W=p \Delta V$
\diamond 2nd law for closed systems: $\Delta S=\int \delta Q / T+\sigma$

Solution to part (a)

- from the saturation table, the system entropy change is

$$
\begin{aligned}
\Delta S & =m\left(s_{g}-s_{\ell}\right)=(1 \mathrm{~kg})(7.3541-1.3072) \mathrm{kJ} / \mathrm{kg} / \mathrm{K} \\
& =6.0469 \mathrm{~kJ} / \mathrm{K}
\end{aligned}
$$

Solution to part (b)

- the boundary layer is included in the system
- so the temperature at the boundary is T_{r} (constant)
- and the entropy change of the surroundings (the reservoir) is

$$
\Delta S_{r}=-\int \frac{\delta Q}{T_{r}}=-\frac{1}{T_{r}} \int \delta Q=-\frac{Q}{T_{r}}
$$

- Q is heat transfer from reservoir to system

Solution to part (b) (continued)

- 1st law for system: $\Delta U=Q-W$
- constant pressure: $W=p \Delta V$
- so $Q=\Delta U+W=\Delta U+p \Delta V=\Delta H$
- and the entropy change of the surroundings is

$$
\begin{aligned}
\Delta S_{r} & =-\frac{Q}{T_{r}}=-\frac{\Delta H}{T_{r}}=-\frac{m\left(h_{g}-h_{\ell}\right)}{T_{r}} \\
& =-\frac{(1 \mathrm{~kg})(2675.6-419.17) \mathrm{kJ} / \mathrm{kg}}{500 \mathrm{~K}} \\
& =-4.5129 \mathrm{~kJ} / \mathrm{K}
\end{aligned}
$$

Solution to part (c)

- the entropy change of the universe (system + surroundings) is

$$
\Delta S+\Delta S_{r}=(6.0469-4.5129) \mathrm{kJ} / \mathrm{K}=1.5340 \mathrm{~kJ} / \mathrm{K}
$$

- this is also the internal entropy generation σ

