Lecture 27 – Entropy balance for closed systems

Purdue ME 200, Thermodynamics I

Kevin J. Kircher, kircher@purdue.edu

Outline

Visualizing internally reversible heat transfer

Rate form of entropy balance

What temperatures to use in entropy balances?

Example

Reminder: internally reversible processes

• for a closed system in an internally reversible process ($\delta\sigma=0$),

$$\mathsf{d}S = rac{\delta Q}{\mathcal{T}}$$
 or equivalently $\delta Q = \mathcal{T}\mathsf{d}S$

• so the total heat transfer is

$$Q = \int \delta Q = \int T \mathrm{d}S$$

Visualizing differential heat transfer

Visualizing total heat transfer

3/21

Outline

Visualizing internally reversible heat transfer

Rate form of entropy balance

What temperatures to use in entropy balances?

Example

Delta form of entropy balance with multiple reservoirs

- suppose system exchanges heat with reservoirs R_1, \ldots, R_n
- then the change in system entropy over a process is

$$\Delta S = \sum_{j=1}^{n} \int \frac{\delta Q_j}{T_j} + \sigma$$

- T_j is system temperature at boundary with reservoir j
- δQ_j is infinitesimal heat transfer from reservoir j to system
- $\sigma \geq$ 0 is entropy generated within system

Rate form of entropy balance with multiple reservoirs

• in rate form, the instantaneous change in system entropy is

$$\frac{\mathrm{d}S}{\mathrm{d}t} = \sum_{j=1}^{n} \frac{\dot{Q}_j}{T_j} + \dot{\sigma}$$

Outline

Visualizing internally reversible heat transfer

Rate form of entropy balance

What temperatures to use in entropy balances?

Example

What temperatures to use in entropy balances?

- temperature is a continuous function of spatial coordinates
- \implies temperature changes smoothly between reservoir and system
 - this temperature change happens in a boundary layer
 - should the system or surroundings contain the boundary layer?
 - the answer determines the T_j values used in entropy balances

Standing assumption

- reservoirs are internally reversible
- in other words, $\delta \sigma_r = 0$ within reservoirs

Consider a reservoir and an internally reversible device

Option 1: Include boundary layer in surroundings

Entropy changes for option 1

• system:
$$dS = dS_d = \delta Q/T_d$$

• surroundings (boundary layer + reservoir):

$$\mathrm{d}\tilde{S} = \mathrm{d}S_b + \mathrm{d}S_r = \frac{\delta Q}{\mathcal{T}_r} - \frac{\delta Q}{\mathcal{T}_d} + \delta\sigma_b - \frac{\delta Q}{\mathcal{T}_r} = -\frac{\delta Q}{\mathcal{T}_d} + \delta\sigma_b$$

• universe (system + surroundings):

$$\mathrm{d}S + \mathrm{d}\tilde{S} = \frac{\delta Q}{\mathcal{T}_d} - \frac{\delta Q}{\mathcal{T}_d} + \delta \sigma_b = \boxed{\delta \sigma_b}$$

Option 2: Include boundary layer in system

Entropy changes for option 2

• system (device + boundary layer):

$$\mathrm{d}S = \mathrm{d}S_d + \mathrm{d}S_b = \frac{\delta Q}{\mathcal{T}_d} + \frac{\delta Q}{\mathcal{T}_r} - \frac{\delta Q}{\mathcal{T}_d} + \delta\sigma_b = \frac{\delta Q}{\mathcal{T}_r} + \delta\sigma_b$$

- surroundings (reservoir): $d\tilde{S} = dS_r = -\delta Q/T_r$
- universe (system + surroundings):

$$\mathrm{d}S + \mathrm{d}\tilde{S} = \frac{\delta Q}{\mathcal{T}_r} + \delta \sigma_b - \frac{\delta Q}{\mathcal{T}_r} = \boxed{\delta \sigma_b}$$

Comparing options 1 and 2

- in both options, the entropy change of the universe is $\delta\sigma_b$
- but the entropy change of the system differs between options
- so does the entropy change of the surroundings
- in option 2, temperature varies with position inside the system
- \implies the system cannot be in equilibrium
 - but it can be close if the boundary layer is very thin

Outline

Visualizing internally reversible heat transfer

Rate form of entropy balance

What temperatures to use in entropy balances?

Example

A closed stationary piston-cylinder device containing 1 kg of saturated liquid water at 100 $^{\circ}$ C comes into contact with a reservoir at 500 K. The water ends as saturated vapor. Including the boundary layer in the system, find the entropy changes of the (a) system, (b) surroundings, and (c) universe.

System diagram

Given and find

• given:

- $\diamond \ m=1 \ \rm kg$
- $\diamond~{\rm constant}~T=373~{\rm K}$
- \diamond $T_r = 500$ K
- \diamond state 1 is saturated liquid
- \diamond state 2 is saturated vapor
- find: entropy changes of the
 - (a) system, ΔS
 - (b) surroundings (the reservoir), ΔS_r
 - (c) universe (system + surroundings), $\Delta S + \Delta S_r$

Assumptions and basic equations

assume:

- ◊ closed (constant mass)
- ◊ stationary (constant PE and KE)
- o phase change (constant temperature and pressure)

• basic equations:

- $\diamond~$ 1st law for closed stationary systems: $\Delta U=Q-W$
- \diamond boundary work at constant pressure: $W = p \Delta V$
- $\diamond~$ 2nd law for closed systems: $\Delta S = \int \delta Q/T + \sigma$

Solution to part (a)

• from the saturation table, the system entropy change is

$$\Delta S = m(s_g - s_\ell) = (1 \text{kg})(7.3541 - 1.3072) \text{kJ/kg/K}$$

= 6.0469kJ/K

Solution to part (b)

- the boundary layer is included in the system
- so the temperature at the boundary is T_r (constant)
- and the entropy change of the surroundings (the reservoir) is

$$\Delta S_r = -\int \frac{\delta Q}{T_r} = -\frac{1}{T_r} \int \delta Q = -\frac{Q}{T_r}$$

• Q is heat transfer from reservoir to system

Solution to part (b) (continued)

- 1st law for system: $\Delta U = Q W$
- constant pressure: $W = p\Delta V$
- so $Q = \Delta U + W = \Delta U + p \Delta V = \Delta H$
- and the entropy change of the surroundings is

$$\Delta S_r = -\frac{Q}{T_r} = -\frac{\Delta H}{T_r} = -\frac{m(h_g - h_\ell)}{T_r}$$
$$= -\frac{(1 \text{kg})(2675.6 - 419.17) \text{kJ/kg}}{500 \text{K}}$$
$$= -4.5129 \text{kJ/K}$$

Solution to part (c)

• the entropy change of the universe (system + surroundings) is

 $\Delta S + \Delta S_r = (6.0469 - 4.5129) \text{kJ/K} = 1.5340 \text{kJ/K}$

 $\bullet\,$ this is also the internal entropy generation $\sigma\,$