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Motivations

• we showed last lecture that for closed systems,

∆S =

∫
δQ

T
+ σ

• this formula can be hard to use if T is not constant

• today, we’ll develop handier formulas
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The 1st TdS equation

• 1st law for stationary closed systems:

dU = δQ − δW =⇒ δQ = dU + δW

• for a closed system in an internally reversible process (δσ = 0),

dS =
δQ

T
=⇒ δQ = TdS

• for simple compressible systems (boundary work only),

δW = pdV

• combining all of the above gives

TdS = dU + pdV

2 / 20



The 2nd TdS equation

• since H = U + pV ,

dH = dU + d(pV )

• recall that the differential of z = f (x , y) is

dz =

(
∂f

∂x

)
y

dx +

(
∂f

∂y

)
x

dy

• therefore, d(pV ) = V dp + pdV , and so

dH = dU + pdV︸ ︷︷ ︸
TdS

+V dp

• rearranging gives the 2nd TdS equation,

TdS = dH − V dp
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Summary

TdS = dU + pdV

TdS = dH − V dp

• the TdS equations apply to systems that are

� stationary (constant KE and PE)
� simple (only one type of work interaction)
� compressible (the work interaction is boundary work)

• they relate entropy to familiar properties: T , V , p, U, H

• in the derivation, “δQ = TdS” assumed internal reversibility

• but the TdS equations also apply to irreversible processes

• the TdS equations can be written per unit mass:

Tds = du + pdv

Tds = dh − vdp
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Problem statement

Find the change in specific entropy of 100 ◦C water that
transitions from saturated liquid to saturated vapor. Use (a) a
saturation table and (b) a TdS equation.
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System diagram

Q

W
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Given and find

• given:
� T = 100 ◦C
� state 1 is saturated liquid
� state 2 is saturated vapor

• find:
� ∆s = s2 − s1
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Assumptions and basic equations

• assume:
� closed system
� stationary system (∆KE = ∆PE = 0)
� constant pressure and temperature during phase change

• basic equations:
� Tds = dh − vdp
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Solution to part (a)

• saturation table: s1 = 1.3072 kJ/K, s2 = 7.3541 kJ/K, so

∆s = (7.3541− 1.3072)kJ/kg/K

= 6.0469kJ/kg/K
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Solution to part (b)

• p is constant during phase changes, so dp = 0

• the second TdS equation (per unit mass) simplifies to

Tds = dh −��
�*0

V dp =⇒ ds =
dh

T

• temperature is constant during phase changes, so

∆s =
1

T

∫ h2

h1

dh =
h2 − h1

T

• saturation table: h1 = 419.17 kJ/kg, h2 = 2675.6 kJ/kg

∆s =
h2 − h1

T
=

(2675.6− 419.17)kJ/kg

373.15K
= 6.0470kJ/kg/K
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Reminder: the incompressible substance model

• most liquids and solids are ∼incompressible:

� v is ∼constant
� u ∼depends on T only

• it follows that

� dv = 0
� du = c(T )dT

(incompressible substances have only one specific heat, c(T ))
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Entropy changes for incompressible substances

• for incompressible substances, 1st TdS equation simplifies to

Tds = du︸︷︷︸
c(T )dT

+��
�*0

pdv = c(T )dT

• to find ∆s, integrate ds = (c(T )/T )dT :

s2 − s1 =

∫ T2

T1

c(T )

T
dT

≈ cav

∫ T2

T1

1

T
dT = cav ln

(
T2

T1

)
• cav is specific heat at average temperature, c((T1 + T2)/2)
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Summary

• for incompressible substances,

s2 − s1 =

∫ T2

T1

c(T )

T
dT

• if the temperature change T2 − T1 is not too large, then

s2 − s1 ≈ cav ln

(
T2

T1

)
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Problem statement

(a) Estimate the specific entropy change of water that transitions
from compressed liquid at 0 ◦C to saturated liquid at 100 ◦C.

(b) If saturated water vapor at 100 ◦C is heated at constant
pressure through the same specific entropy change as in part
(a), what is its final temperature?
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System diagrams

(a)

Qa

(b)

Qb

Wb

15 / 20



Given and find

• given:
� for part (a),

I state 1 is compressed liquid at T1 = 0 ◦C
I state 2 is saturated liquid at T2 = 100 ◦C

� for part (b),
I state 1 is saturated vapor at T1 =100 ◦C
I state 2 is superheated vapor at unknown T2

• find:
(a) ∆s
(b) T2
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Assumptions and basic equations

• assume:
� closed system
� for part (a),

I liquid water is ∼incompressible
I and its specific heat is ∼constant over the process

• basic equations:
� for incompressible substances,

∆s =

∫ T2

T1

c(T )

T
dT
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Solution to part (a)

• liquid water is ∼incompressible, so

∆s =

∫ T2

T1

c(T )

T
dT

• specific heat table: cav ≈ 4.20 kJ/kg/K between 0 and 100 ◦C

• specific heat is ∼constant, so entropy change is approximately

∆s ≈ cav ln

(
T2

T1

)
= (4.20kJ/kg/K) ln

(
373.15K

273.15K

)
= 1.310kJ/kg/K
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Solution to part (b)

• saturation table: at Tsat = 100 ◦C, psat = 1 bar and

s1 = sg = 7.3541kJ/kg/K

• final specific entropy is

s2 = s1 + ∆s = (7.3541 + 1.310)kJ/kg/K = 8.6641kJ/kg/K

• superheated vapor table at 1 bar: s = 8.6653 kJ/kg/K at

T2 = 440 ◦C
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Summary of examples (for water at 1 bar)

process ∆s (kJ/kg/K)

0 ◦C CL → 100 ◦C SL 1.31
100 ◦C SL → 100 ◦C SV 6.05
100 ◦C SV → 440 ◦C SHV 1.31
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