Lecture 25 - Calculating entropy changes

Purdue ME 200, Thermodynamics I

Kevin J. Kircher, kircher@purdue.edu

Outline

Using the TdS equations

Example \#1

Using the incompressible substance model

Example \#2

Motivations

- we showed last lecture that for closed systems,

$$
\Delta S=\int \frac{\delta Q}{T}+\sigma
$$

- this formula can be hard to use if T is not constant
- today, we'll develop handier formulas

The 1st $T \mathrm{~d} S$ equation

- 1st law for stationary closed systems:

$$
\mathrm{d} U=\delta Q-\delta W \Longrightarrow \delta Q=\mathrm{d} U+\delta W
$$

- for a closed system in an internally reversible process ($\delta \sigma=0$),

$$
\mathrm{d} S=\frac{\delta Q}{T} \Longrightarrow \delta Q=T \mathrm{~d} S
$$

- for simple compressible systems (boundary work only),

$$
\delta W=p \mathrm{~d} V
$$

- combining all of the above gives

$$
T \mathrm{~d} S=\mathrm{d} U+p \mathrm{~d} V
$$

The $2 \mathrm{nd} T \mathrm{~d} S$ equation

- since $H=U+p V$,

$$
\mathrm{d} H=\mathrm{d} U+\mathrm{d}(p V)
$$

- recall that the differential of $z=f(x, y)$ is

$$
\mathrm{d} z=\left(\frac{\partial f}{\partial x}\right)_{y} \mathrm{~d} x+\left(\frac{\partial f}{\partial y}\right)_{x} \mathrm{~d} y
$$

- therefore, $\mathrm{d}(p V)=V \mathrm{~d} p+p \mathrm{~d} V$, and so

$$
\mathrm{d} H=\underbrace{\mathrm{d} U+p \mathrm{~d} V}_{T \mathrm{~d} S}+V \mathrm{~d} p
$$

- rearranging gives the $2 \mathrm{nd} T \mathrm{~d} S$ equation,

$$
T \mathrm{~d} S=\mathrm{d} H-V \mathrm{~d} p
$$

Summary

$$
\begin{aligned}
& T \mathrm{~d} S=\mathrm{d} U+p \mathrm{~d} V \\
& T \mathrm{~d} S=\mathrm{d} H-V \mathrm{~d} p
\end{aligned}
$$

- the $T \mathrm{~d} S$ equations apply to systems that are
\diamond stationary (constant KE and PE)
\diamond simple (only one type of work interaction)
\diamond compressible (the work interaction is boundary work)
- they relate entropy to familiar properties: T, V, p, U, H
- in the derivation, " $\delta Q=T \mathrm{~d} S$ " assumed internal reversibility
- but the $T \mathrm{~d} S$ equations also apply to irreversible processes
- the $T \mathrm{~d} S$ equations can be written per unit mass:

$$
\begin{aligned}
& T \mathrm{~d} s=\mathrm{d} u+p \mathrm{~d} v \\
& T \mathrm{~d} s=\mathrm{d} h-v \mathrm{~d} p
\end{aligned}
$$

Outline

Using the TdS equations

Example \#1

Using the incompressible substance model

Example \#2

Problem statement

Find the change in specific entropy of $100^{\circ} \mathrm{C}$ water that transitions from saturated liquid to saturated vapor. Use (a) a saturation table and (b) a $T \mathrm{~d} S$ equation.

System diagram

Given and find

- given:
$\diamond T=100{ }^{\circ} \mathrm{C}$
\diamond state 1 is saturated liquid
\diamond state 2 is saturated vapor
- find:
$\diamond \Delta s=s_{2}-s_{1}$

Assumptions and basic equations

- assume:
\diamond closed system
\diamond stationary system $(\triangle \mathrm{KE}=\triangle \mathrm{PE}=0)$
\diamond constant pressure and temperature during phase change
- basic equations:
$\diamond T \mathrm{~d} s=\mathrm{d} h-v \mathrm{~d} p$

Solution to part (a)

- saturation table: $s_{1}=1.3072 \mathrm{~kJ} / \mathrm{K}, s_{2}=7.3541 \mathrm{~kJ} / \mathrm{K}$, so

$$
\begin{aligned}
\Delta s & =(7.3541-1.3072) \mathrm{kJ} / \mathrm{kg} / \mathrm{K} \\
& =6.0469 \mathrm{~kJ} / \mathrm{kg} / \mathrm{K}
\end{aligned}
$$

Solution to part (b)

- p is constant during phase changes, so $\mathrm{d} p=0$
- the second $T \mathrm{~d} S$ equation (per unit mass) simplifies to

$$
T \mathrm{~d} s=\mathrm{d} h-V \mathrm{~d} p^{-0} \Longrightarrow \mathrm{~d} s=\frac{\mathrm{d} h}{T}
$$

- temperature is constant during phase changes, so

$$
\Delta s=\frac{1}{T} \int_{h_{1}}^{h_{2}} \mathrm{~d} h=\frac{h_{2}-h_{1}}{T}
$$

- saturation table: $h_{1}=419.17 \mathrm{~kJ} / \mathrm{kg}, h_{2}=2675.6 \mathrm{~kJ} / \mathrm{kg}$

$$
\begin{aligned}
\Delta s & =\frac{h_{2}-h_{1}}{T}=\frac{(2675.6-419.17) \mathrm{kJ} / \mathrm{kg}}{373.15 \mathrm{~K}} \\
& =6.0470 \mathrm{~kJ} / \mathrm{kg} / \mathrm{K}
\end{aligned}
$$

Outline

Using the TdS equations

Example \#1

Using the incompressible substance model

Example \#2

Reminder: the incompressible substance model

- most liquids and solids are ~incompressible:
$\diamond \mathrm{v}$ is \sim constant
$\diamond u \sim d e p e n d s$ on T only
- it follows that
$\diamond \mathrm{d} v=0$
$\diamond \mathrm{d} u=c(T) \mathrm{d} T$
(incompressible substances have only one specific heat, $c(T)$)

Entropy changes for incompressible substances

- for incompressible substances, 1st $T \mathrm{~d} S$ equation simplifies to

$$
T \mathrm{~d} s=\underbrace{\mathrm{d} u}_{c(T) \mathrm{d} T}+p \mathrm{t} \nabla^{-0}=c(T) \mathrm{d} T
$$

- to find Δs, integrate $\mathrm{d} s=(c(T) / T) \mathrm{d} T$:

$$
\begin{aligned}
s_{2}-s_{1} & =\int_{T_{1}}^{T_{2}} \frac{c(T)}{T} \mathrm{~d} T \\
& \approx c_{\mathrm{av}} \int_{T_{1}}^{T_{2}} \frac{1}{T} \mathrm{~d} T=c_{\mathrm{av}} \ln \left(\frac{T_{2}}{T_{1}}\right)
\end{aligned}
$$

- c_{av} is specific heat at average temperature, $c\left(\left(T_{1}+T_{2}\right) / 2\right)$

Summary

- for incompressible substances,

$$
s_{2}-s_{1}=\int_{T_{1}}^{T_{2}} \frac{c(T)}{T} \mathrm{~d} T
$$

- if the temperature change $T_{2}-T_{1}$ is not too large, then

$$
s_{2}-s_{1} \approx c_{\mathrm{av}} \ln \left(\frac{T_{2}}{T_{1}}\right)
$$

Outline

Using the TdS equations

Example \#1

Using the incompressible substance model

Example \#2

Problem statement

(a) Estimate the specific entropy change of water that transitions from compressed liquid at $0^{\circ} \mathrm{C}$ to saturated liquid at $100^{\circ} \mathrm{C}$.
(b) If saturated water vapor at $100^{\circ} \mathrm{C}$ is heated at constant pressure through the same specific entropy change as in part (a), what is its final temperature?

System diagrams

(b)

Given and find

- given:
\diamond for part (a),
- state 1 is compressed liquid at $T_{1}=0^{\circ} \mathrm{C}$
- state 2 is saturated liquid at $T_{2}=100^{\circ} \mathrm{C}$
\diamond for part (b),
- state 1 is saturated vapor at $T_{1}=100^{\circ} \mathrm{C}$
- state 2 is superheated vapor at unknown T_{2}
- find:
(a) Δs
(b) T_{2}

Assumptions and basic equations

- assume:
\diamond closed system
\diamond for part (a),
- liquid water is ~incompressible
- and its specific heat is ~constant over the process
- basic equations:
\diamond for incompressible substances,

$$
\Delta s=\int_{T_{1}}^{T_{2}} \frac{c(T)}{T} \mathrm{~d} T
$$

Solution to part (a)

- liquid water is ~incompressible, so

$$
\Delta s=\int_{T_{1}}^{T_{2}} \frac{c(T)}{T} \mathrm{~d} T
$$

- specific heat table: $c_{\mathrm{av}} \approx 4.20 \mathrm{~kJ} / \mathrm{kg} / \mathrm{K}$ between 0 and $100^{\circ} \mathrm{C}$
- specific heat is \sim constant, so entropy change is approximately

$$
\begin{aligned}
\Delta s & \approx c_{\mathrm{av}} \ln \left(\frac{T_{2}}{T_{1}}\right) \\
& =(4.20 \mathrm{~kJ} / \mathrm{kg} / \mathrm{K}) \ln \left(\frac{373.15 \mathrm{~K}}{273.15 \mathrm{~K}}\right) \\
& =1.310 \mathrm{~kJ} / \mathrm{kg} / \mathrm{K}
\end{aligned}
$$

Solution to part (b)

- saturation table: at $T_{\text {sat }}=100^{\circ} \mathrm{C}, p_{\text {sat }}=1 \mathrm{bar}$ and

$$
s_{1}=s_{g}=7.3541 \mathrm{~kJ} / \mathrm{kg} / \mathrm{K}
$$

- final specific entropy is

$$
s_{2}=s_{1}+\Delta s=(7.3541+1.310) \mathrm{kJ} / \mathrm{kg} / \mathrm{K}=8.6641 \mathrm{~kJ} / \mathrm{kg} / \mathrm{K}
$$

- superheated vapor table at 1 bar: $s=8.6653 \mathrm{~kJ} / \mathrm{kg} / \mathrm{K}$ at

$$
T_{2}=440^{\circ} \mathrm{C}
$$

Summary of examples (for water at 1 bar)

process	$\Delta s(\mathrm{~kJ} / \mathrm{kg} / \mathrm{K})$
$0^{\circ} \mathrm{C} \mathrm{CL} \rightarrow 100^{\circ} \mathrm{C} \mathrm{SL}$	1.31
$100^{\circ} \mathrm{C} \mathrm{SL} \rightarrow 100^{\circ} \mathrm{C} \mathrm{SV}$	6.05
$100^{\circ} \mathrm{C} \mathrm{SV} \rightarrow 440^{\circ} \mathrm{C} \mathrm{SHV}$	1.31

