# Lecture 24 - Entropy <br> Purdue ME 200, Thermodynamics I 

Kevin J. Kircher, kircher@purdue.edu

## Outline

Discovering entropy

## Calculating entropy changes

## Getting entropy data

## Example

## Reminder: the Clausius inequality



- if system interacts over a cycle with reservoirs at $T_{1}, \ldots, T_{n}$
- and exchanges heat $Q_{i}$ with the reservoir at $T_{i}$, then

$$
\sum_{i=1}^{n} \frac{Q_{i}}{T_{i}} \leq 0
$$

- equality holds if and only if the cycle is reversible


## Generalization to continuous reservoir distributions



- if system interacts with continuous distribution of reservoirs
- then $n \rightarrow \infty$, each $Q_{i} \rightarrow \delta Q$, and Clausius inequality becomes

$$
\oint \frac{\delta Q}{T_{r}} \leq 0
$$

- $\oint$ denotes integral over cycle, $T_{r}$ is reservoir temperature
- equality holds if and only if cycle is reversible


## Continuous Clausius (in)equality for reversible cycles

- for any reversible cycle,
$\diamond$ the Clausius inequality holds with equality
$\diamond$ all heat transfer must be reversible
$\diamond$ so system $T$ equals reservoir $T_{r}$ whenever heat transfers
$\Longrightarrow$ for reversible cycles and continuous reservoir distributions,

$$
\oint_{\mathrm{rev}} \frac{\delta Q}{T}=0
$$

- $\oint_{\text {rev }}$ denotes integral over reversible cycle


## (Reversible) path-independence of $\int \delta Q / T$



- consider reversible paths $A$ and $B$ from state 1 to state 2
- and another reversible path $C$ from 2 back to 1
- combined path $(A, C)$ is a reversible cycle, as is $(B, C)$


## (Reversible) path-independence of $\int \delta Q / T$ (continued)

- by the Clausius inequality,

$$
\begin{aligned}
\oint_{\text {rev }} \frac{\delta Q}{T} & =\int_{A} \frac{\delta Q}{T}+\int_{C} \frac{\delta Q}{T}=0 \\
\text { and } \oint_{\text {rev }} \frac{\delta Q}{T} & =\int_{B} \frac{\delta Q}{T}+\int_{C} \frac{\delta Q}{T}=0
\end{aligned}
$$

- rearranging and combining the right-hand equations,

$$
-\int_{C} \frac{\delta Q}{T}=\int_{A} \frac{\delta Q}{T}=\int_{B} \frac{\delta Q}{T}
$$

$\Longrightarrow \quad \int_{P} \delta Q / T$ has the same value for any reversible $P$ from 1 to 2

- integral depends only on end-points, not path between them


## Path-independence, properties and entropy

- any path-independent quantity defines a property
- for example, $\int_{P}(\delta Q-\delta W)$ is independent of the path $P$
- this defines the property internal energy $U(k J)$ satisfying

$$
\mathrm{d} U=\delta Q-\delta W
$$

- we showed $\int_{P} \delta Q / T$ is independent of the (reversible) path $P$
- so we define a new property, called entropy $S(\mathrm{~kJ} / \mathrm{K})$
- over reversible processes, entropy satisfies

$$
\mathrm{d} S=\frac{\delta Q}{T}
$$

## Outline

## Discovering entropy

Calculating entropy changes

## Getting entropy data

Example

## Reminder: 2nd law for closed systems

- there is an extensive property called entropy, $S(\mathrm{~kJ} / \mathrm{K})$
- heat transfer $\delta Q$ into system at system temperature $T$
- and entropy generation $\delta \sigma$ (always $\geq 0$ ) within system
- change system entropy by

$$
\mathrm{d} S=\frac{\delta Q}{T}+\delta \sigma
$$

- for any isolated system,
$\diamond \mathrm{d} S=0$ in reversible processes
$\diamond \mathrm{d} S>0$ in irreversible processes


## Calculating entropy changes

- the change in entropy over any process is

$$
\begin{aligned}
\Delta S & =\int \mathrm{d} S=\int \frac{\delta Q}{T}+\int \delta \sigma \\
\Longrightarrow \Delta S & =\int \frac{\delta Q}{T}+\sigma
\end{aligned}
$$

- $T$ is system temperature when and where $\delta Q$ happens
- $\sigma=\int \delta \sigma \geq 0$ is entropy generated within system
- for internally reversible systems, $\sigma=0$ and

$$
\Delta S=\int \frac{\delta Q}{T}
$$

## Entropy changes for isothermal processes

- if system temperature is constant throughout process, then

$$
\begin{aligned}
\Delta S & =\frac{1}{T} \int \delta Q+\sigma \\
\Longrightarrow \Delta S & =\frac{Q}{T}+\sigma
\end{aligned}
$$

- if system is also internally reversible ( $\sigma=0$ ), then

$$
\Delta S=\frac{Q}{T}
$$

## Outline

## Discovering entropy

## Calculating entropy changes

Getting entropy data

Example

## Using property tables

- specific entropy $s=S / m(\mathrm{~kJ} / \mathrm{kg} / \mathrm{K})$ is an intensive property
- $s$ is tabulated alongside $v, u, h, \ldots$
- superheated vapor tables have $s$ for various substances
- so do compressed liquid tables
- if compressed liquid data is unavailable, use

$$
s(T, p) \approx s_{\ell}(T)
$$

- for saturated liquid-vapor mixtures, use quality $x$ as usual:

$$
s=s_{\ell}+x\left(s_{v}-s_{\ell}\right)
$$

## Drawing temperature-entropy diagrams



## Drawing temperature-entropy diagrams (continued)



## Outline

## Discovering entropy

## Calculating entropy changes

## Getting entropy data

## Example

## Problem statement

A closed rigid tank contains 5 kg of R134a, initially at $20^{\circ} \mathrm{C}$ and 140 kPa , that is cooled and stirred until it reaches 100 kPa .
(a) Calculate the entropy change over the process.
(b) Sketch the process on a $T$-s diagram.

## Given and find

- given:

$$
\begin{aligned}
& \diamond m=5 \mathrm{~kg} \\
& \diamond T_{1}=20{ }^{\circ} \mathrm{C}, p_{1}=140 \mathrm{kPa} \\
& \diamond p_{2}=100 \mathrm{kPa}
\end{aligned}
$$

- find:
(a) $\Delta S=S_{2}-S_{1}$
(b) process sketch on $T$-s diagram


## System diagram


$15 / 19$

## Assumptions and basic equations

- assume:
$\diamond$ closed $(\Delta m=0)$
$\diamond$ rigid ( $\Delta V=0$ )
- basic equations:
$\diamond \Delta S=m \Delta s$
$\diamond$ for SLVM, $s=s_{\ell}+x\left(s_{v}-s_{\ell}\right)$


## Solution to part (a)

- to find $\Delta S=m \Delta s$, we'll find $s$ in states 1 and 2
- superheated vapor table at $p_{1}=1.4$ bar and $T_{1}=20^{\circ} \mathrm{C}$ :

$$
s_{1}=1.0624 \mathrm{~kJ} / \mathrm{kg} / \mathrm{K}, \quad v_{1}=0.165 \mathrm{~m}^{3} / \mathrm{kg}
$$

- since $m$ and $V$ are constant, $v_{2}=v_{1}=0.165 \mathrm{~m}^{3} / \mathrm{kg}$
- at $p_{2}=1$ bar, $v_{2}$ is between $v_{\ell}$ and $v_{v}$, so state 2 is SLVM
- in state 2 , quality is

$$
x=\frac{v_{2}-v_{\ell}}{v_{v}-v_{\ell}}=\frac{(0.165-0.000726) \mathrm{m}^{3} / \mathrm{kg}}{(0.193-0.000726) \mathrm{m}^{3} / \mathrm{kg}}=0.854
$$

## Solution to part (a) (continued)

- specific entropy in state 2 is

$$
\begin{aligned}
s_{2} & =s_{\ell}+x\left(s_{v}-s_{\ell}\right) \\
& =0.07195 \mathrm{~kJ} / \mathrm{kg} / \mathrm{K}+0.854(0.9519-0.07195) \mathrm{kJ} / \mathrm{kg} / \mathrm{K} \\
& =0.8234 \mathrm{~kJ} / \mathrm{kg} / \mathrm{K}
\end{aligned}
$$

- so entropy change over process is

$$
\begin{aligned}
\Delta S & =m\left(s_{2}-s_{1}\right) \\
& =(5 \mathrm{~kg})(0.8234-1.0624) \mathrm{kJ} / \mathrm{kg} / \mathrm{K} \\
& =-1.195 \mathrm{~kJ} / \mathrm{K}
\end{aligned}
$$

- since $\Delta S<0$, system entropy decreases


## Solution to part (b)



