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Reminder: the Clausius inequality

system W

T1

Q1

. . . Tn

Qn

• if system interacts over a cycle with reservoirs at T1, . . . , Tn

• and exchanges heat Qi with the reservoir at Ti , then

n∑
i=1

Qi

Ti
≤ 0

• equality holds if and only if the cycle is reversible
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Generalization to continuous reservoir distributions

system W

reservoir temperature Tr

may vary over cycle

δQ . . . δQ

• if system interacts with continuous distribution of reservoirs

• then n→∞, each Qi → δQ, and Clausius inequality becomes∮
δQ

Tr
≤ 0

•
∮

denotes integral over cycle, Tr is reservoir temperature

• equality holds if and only if cycle is reversible
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Continuous Clausius (in)equality for reversible cycles

• for any reversible cycle,

� the Clausius inequality holds with equality
� all heat transfer must be reversible
� so system T equals reservoir Tr whenever heat transfers

=⇒ for reversible cycles and continuous reservoir distributions,∮
rev

δQ

T
= 0

•
∮
rev denotes integral over reversible cycle
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(Reversible) path-independence of
∫
δQ/T

p

v

1

2

A

B

C

• consider reversible paths A and B from state 1 to state 2

• and another reversible path C from 2 back to 1

• combined path (A,C ) is a reversible cycle, as is (B,C )
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(Reversible) path-independence of
∫
δQ/T (continued)

• by the Clausius inequality,∮
rev

δQ

T
=

∫
A

δQ

T
+

∫
C

δQ

T
= 0

and

∮
rev

δQ

T
=

∫
B

δQ

T
+

∫
C

δQ

T
= 0

• rearranging and combining the right-hand equations,

−
∫
C

δQ

T
=

∫
A

δQ

T
=

∫
B

δQ

T

=⇒
∫
P δQ/T has the same value for any reversible P from 1 to 2

• integral depends only on end-points, not path between them
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Path-independence, properties and entropy

• any path-independent quantity defines a property

• for example,
∫
P(δQ − δW ) is independent of the path P

• this defines the property internal energy U (kJ) satisfying

dU = δQ − δW

• we showed
∫
P δQ/T is independent of the (reversible) path P

• so we define a new property, called entropy S (kJ/K)

• over reversible processes, entropy satisfies

dS =
δQ

T
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Reminder: 2nd law for closed systems

• there is an extensive property called entropy, S (kJ/K)

• heat transfer δQ into system at system temperature T

• and entropy generation δσ (always ≥ 0) within system

• change system entropy by

dS =
δQ

T
+ δσ

• for any isolated system,

� dS = 0 in reversible processes
� dS > 0 in irreversible processes
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Calculating entropy changes

• the change in entropy over any process is

∆S =

∫
dS =

∫
δQ

T
+

∫
δσ

=⇒ ∆S =

∫
δQ

T
+ σ

• T is system temperature when and where δQ happens

• σ =
∫
δσ ≥ 0 is entropy generated within system

• for internally reversible systems, σ = 0 and

∆S =

∫
δQ

T
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Entropy changes for isothermal processes

• if system temperature is constant throughout process, then

∆S =
1

T

∫
δQ + σ

=⇒ ∆S =
Q

T
+ σ

• if system is also internally reversible (σ = 0), then

∆S =
Q

T
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Using property tables

• specific entropy s = S/m (kJ/kg/K) is an intensive property

• s is tabulated alongside v , u, h, . . .

• superheated vapor tables have s for various substances

• so do compressed liquid tables

• if compressed liquid data is unavailable, use

s(T , p) ≈ s`(T )

• for saturated liquid-vapor mixtures, use quality x as usual:

s = s` + x(sv − s`)
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Drawing temperature-entropy diagrams

T

s

p1

p2 > p1

vapor dome

CL

SHV
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Drawing temperature-entropy diagrams (continued)

T

s

v2 > v1

v1

vapor dome

CL

SHV
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Problem statement

A closed rigid tank contains 5 kg of R134a, initially at 20 ◦C and
140 kPa, that is cooled and stirred until it reaches 100 kPa.

(a) Calculate the entropy change over the process.

(b) Sketch the process on a T -s diagram.
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Given and find

• given:
� m = 5 kg
� T1 = 20 ◦C, p1 = 140 kPa
� p2 = 100 kPa

• find:
(a) ∆S = S2 − S1
(b) process sketch on T -s diagram
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System diagram

W

Q
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Assumptions and basic equations

• assume:
� closed (∆m = 0)
� rigid (∆V = 0)

• basic equations:
� ∆S = m∆s
� for SLVM, s = s` + x(sv − s`)
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Solution to part (a)

• to find ∆S = m∆s, we’ll find s in states 1 and 2

• superheated vapor table at p1 = 1.4 bar and T1 = 20 ◦C:

s1 = 1.0624kJ/kg/K, v1 = 0.165m3/kg

• since m and V are constant, v2 = v1 = 0.165 m3/kg

• at p2 = 1 bar, v2 is between v` and vv , so state 2 is SLVM

• in state 2, quality is

x =
v2 − v`
vv − v`

=
(0.165− 0.000726)m3/kg

(0.193− 0.000726)m3/kg
= 0.854
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Solution to part (a) (continued)

• specific entropy in state 2 is

s2 = s` + x(sv − s`)

= 0.07195kJ/kg/K + 0.854(0.9519− 0.07195)kJ/kg/K

= 0.8234kJ/kg/K

• so entropy change over process is

∆S = m(s2 − s1)

= (5kg)(0.8234− 1.0624)kJ/kg/K

= −1.195kJ/K

• since ∆S < 0, system entropy decreases
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Solution to part (b)

T

s

v = 0.165 m3/kg

vapor dome

CL

SHV

1

2
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