Lecture 36 – Heat pumps Purdue ME 200, Thermodynamics I

Kevin J. Kircher, kircher@purdue.edu

Outline

[Energy and heat pumps](#page-1-0)

[Vapor-compression heat pumps](#page-8-0)

[Example](#page-15-0)

Percent increase in heat pump sales in 2021 over 2020

International Energy Agency, Heat Pumps (2022)

Moran et al., Fundamentals of Engineering Thermodynamics (2018)

Outline

[Energy and heat pumps](#page-1-0)

[Vapor-compression heat pumps](#page-8-0)

[Example](#page-15-0)

Reminder: heat pump cycles

- \bullet heating capacity: \dot{Q}_h
- coefficient of performance:

 $\gamma =$ heat transfer output net work input = \dot{Q} h W˙ $=\frac{\dot{Q}_h}{\dot{\Delta}}$ $\dot Q_h - \dot Q_c$ = 1 $1-\dot{Q}_c/\dot{Q}_h$

• Carnot performance limit:

$$
\gamma \leq \frac{1}{1 - {\mathcal{T}}_c/{\mathcal{T}}_h}
$$

Carnot heat pump cycle schematic

sign convention: energy flows are positive in the arrow directions

T-s diagram of the Carnot heat pump cycle

Reminder: the ideal vapor-compression cycle

• the ideal vapor-compression cycle is like the Carnot cycle, but

- \Diamond heat transfers over finite ΔT in the evaporator and condenser
- \diamond the compressor handles superheated vapor, not SLVM
- \Diamond an expansion valve replaces the turbine
- it's still ideal in that
	- \diamond compression is isentropic (the compressor is adiabatic and internally reversible)
	- \diamond expansion is isenthalpic

(no stray heat transfer in the expansion valve)

 \Diamond the condenser, evaporator and connecting pipes are isobaric (no pressure drops due to fluid friction)

Ideal vapor-compression cycle schematic

T-s diagram of the ideal vapor-compression cycle

Outline

[Energy and heat pumps](#page-1-0)

[Vapor-compression heat pumps](#page-8-0)

[Example](#page-15-0)

An ideal vapor-compression heat pump circulates 0.085 kg/s of R-134a through isentropic compression (state $1\rightarrow 2$), condensation at 10 bar to saturated liquid (2→3), isenthalpic expansion (3→4), and evaporation at 1 bar to saturated vapor $(4\rightarrow 1)$.

- (a) Find the temperature, pressure, specific enthalpy, and specific entropy in each state.
- (b) Find the coefficient of performance.
- (c) Find the heating capacity and rate of work input.

Schematic

Compressor system diagram

Condenser system diagram

Expansion valve system diagram

Assumptions and basic equations

• assumptions:

- \diamond steady cyclic operation
- \diamond steady uniform 1D flow
- \circ no KE or PE effects
- \diamond no stray heat transfer
- \circ no fluid friction
- \diamond isentropic compression
- \diamond isenthalpic expansion

• basic equations:

- $\diamond~$ coefficient of performance: $\gamma=\dot{Q}_{23}/\dot{W}_{12}$
- \diamond compressor 1st law: $\dot{W}_{12} = \dot{m}(h_2 h_1)$
- \diamond condenser 1st law: $\,\dot{Q}_{23}= \dot{m} (\dot{h_2}-h_3)$
- \circ isenthalpic expansion valve 1st law: $h_4 = h_3$

Solution to part (a): find properties in all states

• straight from the problem statement:

Solution to part (a): (continued)

• direct look-up in the R-134a saturation table:

Solution to part (a): (state 4)

- the expansion valve is assumed isenthalpic, so $h_4 = h_3$
- this enables quality and entropy calculation in state 4:

$$
x_4 = \frac{h_4 - h_\ell(p_4)}{h_v(p_4) - h_\ell(p_4)} = \dots = 41.47\%
$$

s₄ = s_ℓ(p₄) + x₄(s_v(p₄) - s_ℓ(p₄)) = \dots = 0.43680kJ/kg/K

Solution to part (a): (state 2)

- the compressor is assumed isentropic, so $s_2 = s_1$
- superheated vapor table resolves state 2:
	- \circ at $p_2 = 10$ bar, specific entropy is 0.95255 kJ/kg/K at 50 °C
	- \Diamond this is close enough to $s_2 = 0.95188$ to skip interpolation

Solution to part (b): find the COP

• the heat pump's coefficient of performance is

$$
\gamma=\frac{\dot{Q}_{23}}{\dot{W}_{12}}
$$

• from the 1st law, $\dot{Q}_{23} = \dot{m}(h_2 - h_3)$ and $\dot{W}_{12} = \dot{m}(h_2 - h_1)$, so

$$
\gamma = \frac{\cancel{m}(h_2 - h_3)}{\cancel{m}(h_2 - h_1)} = \cdots = 3.64
$$

Solution to part (c): find the capacity and input work

• the heat pump's heating capacity is

$$
\dot{Q}_{23} = \dot{m}(h_2 - h_3) = \cdots = 14.9 \text{kW}
$$

• the rate of input work is

$$
\dot{W}_{12}=\frac{\dot{Q}_{23}}{\gamma}=\cdots=4.09kW
$$

• alternatively,

$$
W_{12} = m(h_2 - h_1) = \cdots = 4.09kW
$$