Lecture 36 – Heat pumps Purdue ME 200, Thermodynamics I

Kevin J. Kircher, kircher@purdue.edu

Outline

Energy and heat pumps

Vapor-compression heat pumps

Example

Percent increase in heat pump sales in 2021 over 2020

International Energy Agency, Heat Pumps (2022)

Moran et al., Fundamentals of Engineering Thermodynamics (2018)

Outline

Energy and heat pumps

Vapor-compression heat pumps

Example

Reminder: heat pump cycles

- heating capacity: \dot{Q}_h
- coefficient of performance:

$$\begin{split} \gamma &= \frac{\text{heat transfer output}}{\text{net work input}} \\ &= \frac{\dot{Q}_h}{\dot{W}} = \frac{\dot{Q}_h}{\dot{Q}_h - \dot{Q}_c} \\ &= \frac{1}{1 - \dot{Q}_c/\dot{Q}_h} \end{split}$$

• Carnot performance limit:

$$\gamma \leq \frac{1}{1 - T_c/T_h}$$

Carnot heat pump cycle schematic

sign convention: energy flows are positive in the arrow directions

6/22

T-s diagram of the Carnot heat pump cycle

Reminder: the ideal vapor-compression cycle

- the ideal vapor-compression cycle is like the Carnot cycle, but
 - $\diamond~$ heat transfers over finite $\Delta \mathcal{T}$ in the evaporator and condenser
 - $\diamond~$ the compressor handles superheated vapor, not SLVM
 - $\diamond\,$ an expansion valve replaces the turbine
- it's still ideal in that
 - ◊ compression is isentropic
 - (the compressor is adiabatic and internally reversible)
 - ◊ expansion is isenthalpic

(no stray heat transfer in the expansion valve)

 the condenser, evaporator and connecting pipes are isobaric (no pressure drops due to fluid friction) Ideal vapor-compression cycle schematic

T-s diagram of the ideal vapor-compression cycle

10/22

Outline

Energy and heat pumps

Vapor-compression heat pumps

Example

An ideal vapor-compression heat pump circulates 0.085 kg/s of R-134a through isentropic compression (state $1\rightarrow 2$), condensation at 10 bar to saturated liquid ($2\rightarrow 3$), isenthalpic expansion ($3\rightarrow 4$), and evaporation at 1 bar to saturated vapor ($4\rightarrow 1$).

- (a) Find the temperature, pressure, specific enthalpy, and specific entropy in each state.
- (b) Find the coefficient of performance.
- (c) Find the heating capacity and rate of work input.

Schematic

12/22

Compressor system diagram

Condenser system diagram

Expansion valve system diagram

Assumptions and basic equations

• assumptions:

- ◊ steady cyclic operation
- $\diamond~$ steady uniform 1D flow
- ◊ no KE or PE effects
- \diamond no stray heat transfer
- \diamond no fluid friction
- \diamond isentropic compression
- $\diamond~$ is enthalpic expansion

• basic equations:

- \diamond coefficient of performance: $\gamma = \dot{Q}_{23}/\dot{W}_{12}$
- \diamond compressor 1st law: $\dot{W}_{12} = \dot{m}(h_2 h_1)$
- \diamond condenser 1st law: $\dot{Q}_{23} = \dot{m}(h_2 h_3)$
- \diamond isenthalpic expansion valve 1st law: $h_4 = h_3$

Solution to part (a): find properties in all states

• straight from the problem statement:

state	phase	p (bar)	T (°C)	h (kJ/kg)	$s \; (kJ/kg/K)$
1	SV	1			
2	SHV	10			
3	SL	10			
4	SLVM	1			

Solution to part (a): (continued)

• direct look-up in the R-134a saturation table:

state	phase	p (bar)	T (°C)	h (kJ/kg)	$s \; (kJ/kg/K)$
1	SV	1	-26.4	234.46	0.95188
2	SHV	10			
3	SL	10	39.4	107.35	0.39199
4	SLVM	1	-26.4		

Solution to part (a): (state 4)

- the expansion value is assumed isenthalpic, so $h_4 = h_3$
- this enables quality and entropy calculation in state 4:

$$x_4 = \frac{h_4 - h_\ell(p_4)}{h_\nu(p_4) - h_\ell(p_4)} = \dots = 41.47\%$$

$$s_4 = s_\ell(p_4) + x_4(s_\nu(p_4) - s_\ell(p_4)) = \dots = 0.43680 \text{kJ/kg/K}$$

state	phase	p (bar)	T (°C)	h (kJ/kg)	$s \; (kJ/kg/K)$
1	SV	1	-26.4	234.46	0.95188
2	SHV	10			
3	SL	10	39.4	107.35	0.39199
4	SLVM	1	-26.4	107.35	0.43680

Solution to part (a): (state 2)

- the compressor is assumed isentropic, so $s_2 = s_1$
- superheated vapor table resolves state 2:
 - $\diamond~$ at $p_2=10~$ bar, specific entropy is 0.95255 kJ/kg/K at 50 $^\circ\text{C}$
 - \diamond this is close enough to $s_2 = 0.95188$ to skip interpolation

state	phase	p (bar)	T (°C)	h (kJ/kg)	s~(kJ/kg/K)
1	SV	1	-26.4	234.46	0.95188
2	SHV	10	50	282.74	0.95188
3	SL	10	39.4	107.35	0.39199
4	SLVM	1	-26.4	107.35	0.43680

Solution to part (b): find the COP

• the heat pump's coefficient of performance is

$$\gamma = \frac{\dot{Q}_{23}}{\dot{W}_{12}}$$

• from the 1st law, $\dot{Q}_{23}=\dot{m}(h_2-h_3)$ and $\dot{W}_{12}=\dot{m}(h_2-h_1)$, so

$$\gamma = \frac{\not n(h_2 - h_3)}{\not n(h_2 - h_1)} = \dots = 3.64$$

Solution to part (c): find the capacity and input work

• the heat pump's heating capacity is

$$\dot{Q}_{23} = \dot{m}(h_2 - h_3) = \cdots = 14.9$$
kW

• the rate of input work is

$$\dot{W}_{12} = rac{\dot{Q}_{23}}{\gamma} = \dots = 4.09$$
kW

• alternatively,

$$\dot{W}_{12} = \dot{m}(h_2 - h_1) = \cdots = 4.09$$
kW