Lecture 26 — Ideal gas entropy changes
Purdue ME 200, Thermodynamics |

Kevin J. Kircher, kircher@purdue.edu
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Outline

Integrating exact differentials



A problem in the ideal gas entropy change derivation

e we have some variable z = f(x, y) and want to calculate
Az =2 —z1 = f(x, y2) — f(x1, 1)

e we don't know f, but we know 9f /0x and Of /Oy
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A problem in the ideal gas entropy change derivation

e we have some variable z = f(x, y) and want to calculate
Az =2 —z1 = f(x, y2) — f(x1, 1)

e we don't know f, but we know 9f /0x and Of /Oy
e in 1D, we could use the fundamental theorem of calculus:

ﬂ@)—ﬂny:/&pgwx

X1

e in 2D, it's a little more complicated
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Applying path-independence
e since Jf /Ox and Of /Jy exist, z has an exact differential:

of of
- () e+ () 9

e any variable with an exact differential is path-independent
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Applying path-independence
e since Jf /Ox and Of /Jy exist, z has an exact differential:

of of
- () e+ () 9

e any variable with an exact differential is path-independent
e so we can calculate Az by integrating over any path we like
e a particularly simple path:

y

2
(a) first x; — xo with y = »1

(b) then y1 — y» with x = x»
n
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Integration

e 1D fundamental theorem of calculus applies along a and b
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Integration

e 1D fundamental theorem of calculus applies along a and b

e the change in z along (horizontal) path a is

% [ of
Az, = f(x2,y1) — f(x1,y1) = / I dx
X/ y=n

X1

e the change in z along (vertical) path b is

v [ of
Azp = f(x2,y2) — f(x0, 1) = ay dy
X=X

Y1
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Integration

e 1D fundamental theorem of calculus applies along a and b

e the change in z along (horizontal) path a is

% [ of
Az, = f(x2,y1) — f(x1,y1) = / I dx
X/ y=n

X1

e the change in z along (vertical) path b is

v [ of
Azp = f(x2,y2) — f(x0, 1) = ay dy
X=X

Y1

e so the total change in z, Az = Az, + Az, is

= (OF v [ of
f(x2,y2) — f(xi, 1) = / <> dx +/ <> dy
X1 aX y=w pg! ay X=X2
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Outline

Ideal gas entropy changes



Reminder: the ideal gas model

e the basic assumptions underlying the ideal gas model are

o the equation of state, pv = RT
o internal energy depends only on temperature, u = u(T)
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Reminder: the ideal gas model

e the basic assumptions underlying the ideal gas model are
o the equation of state, pv = RT

o internal energy depends only on temperature, u = u(T)
e it follows that h, ¢, and ¢, also depend only on temperature

e so specific internal energy and enthalpy differentials are

du=¢,(T)dT
dh=cp(T)dT
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Partial derivatives from 1st TdS equation
e the 1st TdS equation (per unit mass) is

d d
Tds =du+ pdv or equivalently ds:#—i-pT_v
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Partial derivatives from 1st TdS equation
e the 1st TdS equation (per unit mass) is

d d
Tds =du+ pdv or equivalently ds:#—i-pT_v

e but for ideal gases, du = ¢,(T)dT and p/T = R/v, so

ds = CV(T)dT—i— de
T v
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Partial derivatives from 1st TdS equation
e the 1st TdS equation (per unit mass) is

d d
Tds =du+ pdv or equivalently ds:#—i-pT_v

e but for ideal gases, du = ¢,(T)dT and p/T = R/v, so

ds = CV(T)dT—i— de
T v

e the exact differential of s = s(T,v) is

Os Os
o= (ar), o7 (52) o

5/17



Partial derivatives from 1st TdS equation
e the 1st TdS equation (per unit mass) is

d d
Tds =du+ pdv or equivalently ds:#—i-pT_v

e but for ideal gases, du = ¢,(T)dT and p/T = R/v, so

ds = CV(T)dT—i— de
T v

e the exact differential of s = s(T,v) is

Os Os
o= (ar), o7 (52) o

()4 (),
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|deal gas entropy changes from 1st TdS equation

e applying our integration formula to s = s(T, v):

T2/ 9s V2 (' 0s
52—51:/ (> dT+/ <> dv
T @T vV=v1 Vi 8‘/ T=T>
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|deal gas entropy changes from 1st TdS equation

e applying our integration formula to s = s(T, v):

T2/ 9s V2 (' 0s
52—51:/ (> dT+/ <> dv
T @T vV=v1 Vi 8‘/ T=T>

T V2
:/ CV(T)dT+/ Rav
T T % v

1
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|deal gas entropy changes from 1st TdS equation

e applying our integration formula to s = s(T, v):

T2/ 9s V2 (' 0s
52—51:/ (> dT+/ <> dv
T @T vV=v1 Vi 8‘/ T=T>
T v2
:/ “UMT+/ Rav
T T vi v

T
:/)CAUdT+Rm<W>
n T Vi
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|deal gas entropy changes from 2nd TdS equation

e we can apply the same procedure to the 2nd TdS equation

e it establishes that the partial derivatives of s = s(T, p) are

()48 (3), -4
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|deal gas entropy changes from 2nd TdS equation

e we can apply the same procedure to the 2nd TdS equation

e it establishes that the partial derivatives of s = s(T, p) are

()40 (3),

e so our integration formula for s = s( T, p) gives

T>
52—51:/ CP(T )dT Rln < )
T1 p1
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|deal gas entropy changes with constant specific heats

o if ¢,(T) =~ c2¥ between T; and Ty, then

/T2 CV(T)dTN CaV| <T >
n T T1
T Vo
—s1~c¥In(| == Rin| —
S — 851 C, n<T1>—|— n(v1>

SO
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|deal gas entropy changes with constant specific heats

o if ¢,(T) =~ c2¥ between T; and Ty, then

/T2 CV(T)dTN CaV| <T )
n T T1
T Vo
—s1~c¥In(| == Rin| —
S — 851 C, n<T1>—|— n(v1>

e similarly, if ¢,(T) =~ c;’ between Ty and Ty, then

T
—s Nca"ln Rln
a-s=en(7) - an(2)

SO
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|deal gas entropy changes with varying specific heats

e when specific heats vary significantly, we use ideal gas tables

e these tables have data for

T C
$°(T) :/T P(TT)dT

e Ty is an arbitrarily-chosen reference temperature
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Why tabulate s°(T)?

e the change in s°(T) between T; and T3 is

T2C TIC
oy sy [ oDy [ oDy

n I To
_/%CAUdT
n T
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Why tabulate s°(T)?

e the change in s°(T) between T; and T3 is

T . T
s°(T2)s°(T1):/T P(TT)dT/T A7
"2 ¢p(T)

‘/Tl T

=5°(T2) =s°(T1) — RIn (Zi)

e if we know states 1 and 2, we can find all data on the RHS
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Summary of ideal gas entropy change formulas

e if specific heats are ~constant, then

-
sp—si~c)In <2>+R|n <V2>
T vi
Tz) (P2>
ss—sp=cIn| =) —-RIn[ =
2T <T1 p1

(use whichever is more convenient)
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Summary of ideal gas entropy change formulas

e if specific heats are ~constant, then

-
sp—si~c)In <2>+R|n <V2>
T vi
Tz) (P2>
ss—sp=cIn| =) —-RIn[ =
2T <T1 p1

(use whichever is more convenient)

e if specific heats vary significantly, then

S — 85 = SO(T2) — SO(Tl) — RlIn <p2>
P1

(look up s°(T1) and s°(T2) in ideal gas table)
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Outline

Example



Problem statement

A closed piston-cylinder device contains 1 kg of air, initially at 300
K, that expands at a constant 100 kPa to 0.746 m3. Calculate the
air's specific entropy change (a) using an ideal gas table and (b)
assuming constant specific heats.
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System diagram
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Given and find

e given:
o m=1Kkg
o p = 100 kPa
o T1 =300 K
o Vo =0.746 m3
e find:

(a) As using an ideal gas table
(b) As assuming constant specific heats
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Assumptions and basic equations

e assume:
¢ closed system
o ideal gas
© constant pressure
e basic equations:
o pv=RT
o As = SO(TQ) — SO(Tl) — Rln(pz/pl)
o As = cp'In(T2/T1) — Rin(p2/p1)
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Solution to part (a)

e ideal gas, constant pressure: pvy, = RT,, so

7 _ Pv (100kPa)(0.746m3 /kg)
2 = —_-———

= 260K
R 0.287kJ /kg/K
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Solution to part (a)

e ideal gas, constant pressure: pvy, = RT,, so

pva  (100kPa)(0.746m3/kg)

T = — =
>~ R 0.287kJ /kg/K
e ideal gas table:
o s°(300 K) = 1.703 kJ/kg/K
o s°(260 K) = 1.559 kJ/kg/K

= 260K
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Solution to part (a)

e ideal gas, constant pressure: pvy, = RT,, so

pva  (100kPa)(0.746m3/kg)

>~ R 0.287kJ /kg/K
e ideal gas table:
o s°(300 K) = 1.703 kJ/kg/K
o s°(260 K) = 1.559 kJ/kg/K
e so change in specific entropy is
0

52— 51 =5°(T2) —s°(T1) —W
p1

= (1.559 — 1.703)kJ /kg/K
= —0.144kJ /kg/K
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Solution to part (b)

e specific heat table: ¢,(275 K) = 1.004 kJ/kg/K, so
0

T
52—51zc;’"|n ({) —W

260K

— —0.1437kJ /kg/K
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