Lecture 26 - Ideal gas entropy changes

Purdue ME 200, Thermodynamics I

Kevin J. Kircher, kircher@purdue.edu

Outline

Integrating exact differentials

Ideal gas entropy changes

Example

A problem in the ideal gas entropy change derivation

- we have some variable $z=f(x, y)$ and want to calculate

$$
\Delta z=z_{2}-z_{1}=f\left(x_{2}, y_{2}\right)-f\left(x_{1}, y_{1}\right)
$$

- we don't know f, but we know $\partial f / \partial x$ and $\partial f / \partial y$

A problem in the ideal gas entropy change derivation

- we have some variable $z=f(x, y)$ and want to calculate

$$
\Delta z=z_{2}-z_{1}=f\left(x_{2}, y_{2}\right)-f\left(x_{1}, y_{1}\right)
$$

- we don't know f, but we know $\partial f / \partial x$ and $\partial f / \partial y$
- in 1D, we could use the fundamental theorem of calculus:

$$
f\left(x_{2}\right)-f\left(x_{1}\right)=\int_{x_{1}}^{x_{2}} f^{\prime}(x) \mathrm{d} x
$$

- in 2D, it's a little more complicated

Applying path-independence

- since $\partial f / \partial x$ and $\partial f / \partial y$ exist, z has an exact differential:

$$
\mathrm{d} z=\left(\frac{\partial f}{\partial x}\right)_{y} \mathrm{~d} x+\left(\frac{\partial f}{\partial y}\right)_{x} \mathrm{~d} y
$$

- any variable with an exact differential is path-independent

Applying path-independence

- since $\partial f / \partial x$ and $\partial f / \partial y$ exist, z has an exact differential:

$$
\mathrm{d} z=\left(\frac{\partial f}{\partial x}\right)_{y} \mathrm{~d} x+\left(\frac{\partial f}{\partial y}\right)_{x} \mathrm{~d} y
$$

- any variable with an exact differential is path-independent
- so we can calculate Δz by integrating over any path we like
- a particularly simple path:

(a) first $x_{1} \rightarrow x_{2}$ with $y=y_{1}$
(b) then $y_{1} \rightarrow y_{2}$ with $x=x_{2}$

Integration

- 1D fundamental theorem of calculus applies along a and b

Integration

- 1D fundamental theorem of calculus applies along a and b
- the change in z along (horizontal) path a is

$$
\Delta z_{a}=f\left(x_{2}, y_{1}\right)-f\left(x_{1}, y_{1}\right)=\int_{x_{1}}^{x_{2}}\left(\frac{\partial f}{\partial x}\right)_{y=y_{1}} \mathrm{~d} x
$$

- the change in z along (vertical) path b is

$$
\Delta z_{b}=f\left(x_{2}, y_{2}\right)-f\left(x_{2}, y_{1}\right)=\int_{y_{1}}^{y_{2}}\left(\frac{\partial f}{\partial y}\right)_{x=x_{2}} \mathrm{~d} y
$$

Integration

- 1D fundamental theorem of calculus applies along a and b
- the change in z along (horizontal) path a is

$$
\Delta z_{a}=f\left(x_{2}, y_{1}\right)-f\left(x_{1}, y_{1}\right)=\int_{x_{1}}^{x_{2}}\left(\frac{\partial f}{\partial x}\right)_{y=y_{1}} \mathrm{~d} x
$$

- the change in z along (vertical) path b is

$$
\Delta z_{b}=f\left(x_{2}, y_{2}\right)-f\left(x_{2}, y_{1}\right)=\int_{y_{1}}^{y_{2}}\left(\frac{\partial f}{\partial y}\right)_{x=x_{2}} \mathrm{~d} y
$$

- so the total change in $z, \Delta z=\Delta z_{a}+\Delta z_{b}$, is

$$
f\left(x_{2}, y_{2}\right)-f\left(x_{1}, y_{1}\right)=\int_{x_{1}}^{x_{2}}\left(\frac{\partial f}{\partial x}\right)_{y=y_{1}} \mathrm{~d} x+\int_{y_{1}}^{y_{2}}\left(\frac{\partial f}{\partial y}\right)_{x=x_{2}} \mathrm{~d} y
$$

Outline

Integrating exact differentials

Ideal gas entropy changes

Example

Reminder: the ideal gas model

- the basic assumptions underlying the ideal gas model are
\diamond the equation of state, $p v=R T$
\diamond internal energy depends only on temperature, $u=u(T)$

Reminder: the ideal gas model

- the basic assumptions underlying the ideal gas model are
\diamond the equation of state, $p v=R T$
\diamond internal energy depends only on temperature, $u=u(T)$
- it follows that h, c_{v} and c_{p} also depend only on temperature
- so specific internal energy and enthalpy differentials are

$$
\begin{aligned}
\mathrm{d} u & =c_{v}(T) \mathrm{d} T \\
\mathrm{~d} h & =c_{p}(T) \mathrm{d} T
\end{aligned}
$$

Partial derivatives from 1st $T \mathrm{~d} S$ equation

- the 1st $T \mathrm{~d} S$ equation (per unit mass) is

$$
T \mathrm{~d} s=\mathrm{d} u+p \mathrm{~d} v \quad \text { or equivalently } \mathrm{d} s=\frac{\mathrm{d} u}{T}+\frac{p \mathrm{~d} v}{T}
$$

Partial derivatives from 1st $T \mathrm{~d} S$ equation

- the 1st $T \mathrm{~d} S$ equation (per unit mass) is

$$
T \mathrm{~d} s=\mathrm{d} u+p \mathrm{~d} v \quad \text { or equivalently } \mathrm{d} s=\frac{\mathrm{d} u}{T}+\frac{p \mathrm{~d} v}{T}
$$

- but for ideal gases, $\mathrm{d} u=c_{v}(T) \mathrm{d} T$ and $p / T=R / v$, so

$$
\mathrm{d} s=\frac{c_{v}(T)}{T} \mathrm{~d} T+\frac{R}{v} \mathrm{~d} v
$$

Partial derivatives from 1st $T \mathrm{~d} S$ equation

- the 1st $T \mathrm{~d} S$ equation (per unit mass) is

$$
T \mathrm{~d} s=\mathrm{d} u+p \mathrm{~d} v \quad \text { or equivalently } \mathrm{d} s=\frac{\mathrm{d} u}{T}+\frac{p \mathrm{~d} v}{T}
$$

- but for ideal gases, $\mathrm{d} u=c_{v}(T) \mathrm{d} T$ and $p / T=R / v$, so

$$
\mathrm{d} s=\frac{c_{v}(T)}{T} \mathrm{~d} T+\frac{R}{v} \mathrm{~d} v
$$

- the exact differential of $s=s(T, v)$ is

$$
\mathrm{d} s=\left(\frac{\partial s}{\partial T}\right)_{v} \mathrm{~d} T+\left(\frac{\partial s}{\partial v}\right)_{T} \mathrm{~d} v
$$

Partial derivatives from 1st $T \mathrm{~d} S$ equation

- the 1st $T \mathrm{~d} S$ equation (per unit mass) is

$$
T \mathrm{~d} s=\mathrm{d} u+p \mathrm{~d} v \quad \text { or equivalently } \mathrm{d} s=\frac{\mathrm{d} u}{T}+\frac{p \mathrm{~d} v}{T}
$$

- but for ideal gases, $\mathrm{d} u=c_{v}(T) \mathrm{d} T$ and $p / T=R / v$, so

$$
\mathrm{d} s=\frac{c_{v}(T)}{T} \mathrm{~d} T+\frac{R}{v} \mathrm{~d} v
$$

- the exact differential of $s=s(T, v)$ is

$$
\mathrm{d} s=\left(\frac{\partial s}{\partial T}\right)_{v} \mathrm{~d} T+\left(\frac{\partial s}{\partial v}\right)_{T} \mathrm{~d} v
$$

- so

$$
\left(\frac{\partial s}{\partial T}\right)_{v}=\frac{c_{v}(T)}{T},\left(\frac{\partial s}{\partial v}\right)_{T}=\frac{R}{v}
$$

Ideal gas entropy changes from 1st $T \mathrm{~d} S$ equation

- applying our integration formula to $s=s(T, v)$:

$$
s_{2}-s_{1}=\int_{T_{1}}^{T_{2}}\left(\frac{\partial s}{\partial T}\right)_{v=v_{1}} \mathrm{~d} T+\int_{v_{1}}^{v_{2}}\left(\frac{\partial s}{\partial v}\right)_{T=T_{2}} \mathrm{~d} v
$$

Ideal gas entropy changes from 1st $T \mathrm{~d} S$ equation

- applying our integration formula to $s=s(T, v)$:

$$
\begin{aligned}
s_{2}-s_{1} & =\int_{T_{1}}^{T_{2}}\left(\frac{\partial s}{\partial T}\right)_{v=v_{1}} \mathrm{~d} T+\int_{v_{1}}^{v_{2}}\left(\frac{\partial s}{\partial v}\right)_{T=T_{2}} \mathrm{~d} v \\
& =\int_{T_{1}}^{T_{2}} \frac{c_{v}(T)}{T} \mathrm{~d} T+\int_{v_{1}}^{v_{2}} \frac{R}{v} \mathrm{~d} v
\end{aligned}
$$

Ideal gas entropy changes from 1st $T \mathrm{~d} S$ equation

- applying our integration formula to $s=s(T, v)$:

$$
\begin{aligned}
s_{2}-s_{1} & =\int_{T_{1}}^{T_{2}}\left(\frac{\partial s}{\partial T}\right)_{v=v_{1}} \mathrm{~d} T+\int_{v_{1}}^{v_{2}}\left(\frac{\partial s}{\partial v}\right)_{T=T_{2}} \mathrm{~d} v \\
& =\int_{T_{1}}^{T_{2}} \frac{c_{v}(T)}{T} \mathrm{~d} T+\int_{v_{1}}^{v_{2}} \frac{R}{v} \mathrm{~d} v \\
& =\int_{T_{1}}^{T_{2}} \frac{c_{v}(T)}{T} \mathrm{~d} T+R \ln \left(\frac{v_{2}}{v_{1}}\right)
\end{aligned}
$$

Ideal gas entropy changes from 2nd $T \mathrm{~d} S$ equation

- we can apply the same procedure to the $2 \mathrm{nd} T \mathrm{~d} S$ equation
- it establishes that the partial derivatives of $s=s(T, p)$ are

$$
\left(\frac{\partial s}{\partial T}\right)_{p}=\frac{c_{p}(T)}{T},\left(\frac{\partial s}{\partial p}\right)_{T}=-\frac{R}{p}
$$

Ideal gas entropy changes from 2nd $T \mathrm{~d} S$ equation

- we can apply the same procedure to the $2 \mathrm{nd} T \mathrm{~d} S$ equation
- it establishes that the partial derivatives of $s=s(T, p)$ are

$$
\left(\frac{\partial s}{\partial T}\right)_{p}=\frac{c_{p}(T)}{T},\left(\frac{\partial s}{\partial p}\right)_{T}=-\frac{R}{p}
$$

- so our integration formula for $s=s(T, p)$ gives

$$
s_{2}-s_{1}=\int_{T_{1}}^{T_{2}} \frac{c_{p}(T)}{T} \mathrm{~d} T-R \ln \left(\frac{p_{2}}{p_{1}}\right)
$$

Ideal gas entropy changes with constant specific heats

- if $c_{v}(T) \approx c_{v}^{\text {av }}$ between T_{1} and T_{2}, then

$$
\int_{T_{1}}^{T_{2}} \frac{c_{v}(T)}{T} \mathrm{~d} T \approx c_{v}^{\mathrm{av}} \ln \left(\frac{T_{2}}{T_{1}}\right)
$$

SO

$$
s_{2}-s_{1} \approx c_{v}^{\mathrm{av}} \ln \left(\frac{T_{2}}{T_{1}}\right)+R \ln \left(\frac{v_{2}}{v_{1}}\right)
$$

Ideal gas entropy changes with constant specific heats

- if $c_{v}(T) \approx c_{v}^{\text {av }}$ between T_{1} and T_{2}, then

$$
\int_{T_{1}}^{T_{2}} \frac{c_{v}(T)}{T} \mathrm{~d} T \approx c_{v}^{\mathrm{av}} \ln \left(\frac{T_{2}}{T_{1}}\right)
$$

SO

$$
s_{2}-s_{1} \approx c_{v}^{\mathrm{av}} \ln \left(\frac{T_{2}}{T_{1}}\right)+R \ln \left(\frac{v_{2}}{v_{1}}\right)
$$

- similarly, if $c_{p}(T) \approx c_{p}^{\text {av }}$ between T_{1} and T_{2}, then

$$
s_{2}-s_{1} \approx c_{p}^{\mathrm{av}} \ln \left(\frac{T_{2}}{T_{1}}\right)-R \ln \left(\frac{p_{2}}{p_{1}}\right)
$$

Ideal gas entropy changes with varying specific heats

- when specific heats vary significantly, we use ideal gas tables
- these tables have data for

$$
s^{\circ}(T)=\int_{T_{0}}^{T} \frac{c_{p}(T)}{T} \mathrm{~d} T
$$

- T_{0} is an arbitrarily-chosen reference temperature

Why tabulate $s^{\circ}(T)$?

- the change in $s^{\circ}(T)$ between T_{1} and T_{2} is

$$
\begin{aligned}
s^{\circ}\left(T_{2}\right)-s^{\circ}\left(T_{1}\right) & =\int_{T_{0}}^{T_{2}} \frac{c_{p}(T)}{T} \mathrm{~d} T-\int_{T_{0}}^{T_{1}} \frac{c_{p}(T)}{T} \mathrm{~d} T \\
& =\int_{T_{1}}^{T_{2}} \frac{c_{p}(T)}{T} \mathrm{~d} T
\end{aligned}
$$

Why tabulate $s^{\circ}(T)$?

- the change in $s^{\circ}(T)$ between T_{1} and T_{2} is

$$
\begin{aligned}
s^{\circ}\left(T_{2}\right)-s^{\circ}\left(T_{1}\right) & =\int_{T_{0}}^{T_{2}} \frac{c_{p}(T)}{T} \mathrm{~d} T-\int_{T_{0}}^{T_{1}} \frac{c_{p}(T)}{T} \mathrm{~d} T \\
& =\int_{T_{1}}^{T_{2}} \frac{c_{p}(T)}{T} \mathrm{~d} T
\end{aligned}
$$

- this is exactly the integral in our 2 nd Δs formula:

$$
\begin{aligned}
s_{2}-s_{1} & =\int_{T_{1}}^{T_{2}} \frac{c_{p}(T)}{T} \mathrm{~d} T-R \ln \left(\frac{p_{2}}{p_{1}}\right) \\
& =s^{\circ}\left(T_{2}\right)-s^{\circ}\left(T_{1}\right)-R \ln \left(\frac{p_{2}}{p_{1}}\right)
\end{aligned}
$$

- if we know states 1 and 2, we can find all data on the RHS

Summary of ideal gas entropy change formulas

- if specific heats are \sim constant, then

$$
\begin{aligned}
& s_{2}-s_{1} \approx c_{v}^{\mathrm{av}} \ln \left(\frac{T_{2}}{T_{1}}\right)+R \ln \left(\frac{v_{2}}{v_{1}}\right) \\
& s_{2}-s_{1} \approx c_{p}^{\mathrm{av}} \ln \left(\frac{T_{2}}{T_{1}}\right)-R \ln \left(\frac{p_{2}}{p_{1}}\right)
\end{aligned}
$$

(use whichever is more convenient)

Summary of ideal gas entropy change formulas

- if specific heats are \sim constant, then

$$
\begin{aligned}
& s_{2}-s_{1} \approx c_{v}^{\mathrm{av}} \ln \left(\frac{T_{2}}{T_{1}}\right)+R \ln \left(\frac{v_{2}}{v_{1}}\right) \\
& s_{2}-s_{1} \approx c_{p}^{\mathrm{av}} \ln \left(\frac{T_{2}}{T_{1}}\right)-R \ln \left(\frac{p_{2}}{p_{1}}\right)
\end{aligned}
$$

(use whichever is more convenient)

- if specific heats vary significantly, then

$$
s_{2}-s_{1}=s^{\circ}\left(T_{2}\right)-s^{\circ}\left(T_{1}\right)-R \ln \left(\frac{p_{2}}{p_{1}}\right)
$$

(look up $s^{\circ}\left(T_{1}\right)$ and $s^{\circ}\left(T_{2}\right)$ in ideal gas table)

Outline

Integrating exact differentials

Ideal gas entropy changes

Example

Problem statement

A closed piston-cylinder device contains 1 kg of air, initially at 300 K , that expands at a constant 100 kPa to $0.746 \mathrm{~m}^{3}$. Calculate the air's specific entropy change (a) using an ideal gas table and (b) assuming constant specific heats.

System diagram

Given and find

- given:

$$
\begin{aligned}
& \diamond m=1 \mathrm{~kg} \\
& \diamond p=100 \mathrm{kPa} \\
& \diamond T_{1}=300 \mathrm{~K} \\
& \diamond V_{2}=0.746 \mathrm{~m}^{3}
\end{aligned}
$$

- find:
(a) Δs using an ideal gas table
(b) Δs assuming constant specific heats

Assumptions and basic equations

- assume:
\diamond closed system
\diamond ideal gas
\diamond constant pressure
- basic equations:
$\diamond p v=R T$
$\diamond \Delta s=s^{\circ}\left(T_{2}\right)-s^{\circ}\left(T_{1}\right)-R \ln \left(p_{2} / p_{1}\right)$
$\diamond \Delta s \approx c_{p}^{\mathrm{av}} \ln \left(T_{2} / T_{1}\right)-R \ln \left(p_{2} / p_{1}\right)$

Solution to part (a)

- ideal gas, constant pressure: $p v_{2}=R T_{2}$, so

$$
T_{2}=\frac{p v_{2}}{R}=\frac{(100 \mathrm{kPa})\left(0.746 \mathrm{~m}^{3} / \mathrm{kg}\right)}{0.287 \mathrm{~kJ} / \mathrm{kg} / \mathrm{K}}=260 \mathrm{~K}
$$

Solution to part (a)

- ideal gas, constant pressure: $p v_{2}=R T_{2}$, so

$$
T_{2}=\frac{p v_{2}}{R}=\frac{(100 \mathrm{kPa})\left(0.746 \mathrm{~m}^{3} / \mathrm{kg}\right)}{0.287 \mathrm{~kJ} / \mathrm{kg} / \mathrm{K}}=260 \mathrm{~K}
$$

- ideal gas table:

$$
\begin{aligned}
\diamond s^{\circ}(300 \mathrm{~K}) & =1.703 \mathrm{~kJ} / \mathrm{kg} / \mathrm{K} \\
\diamond s^{\circ}(260 \mathrm{~K}) & =1.559 \mathrm{~kJ} / \mathrm{kg} / \mathrm{K}
\end{aligned}
$$

Solution to part (a)

- ideal gas, constant pressure: $p v_{2}=R T_{2}$, so

$$
T_{2}=\frac{p v_{2}}{R}=\frac{(100 \mathrm{kPa})\left(0.746 \mathrm{~m}^{3} / \mathrm{kg}\right)}{0.287 \mathrm{~kJ} / \mathrm{kg} / \mathrm{K}}=260 \mathrm{~K}
$$

- ideal gas table:

$$
\begin{aligned}
\diamond s^{\circ}(300 \mathrm{~K}) & =1.703 \mathrm{~kJ} / \mathrm{kg} / \mathrm{K} \\
\diamond s^{\circ}(260 \mathrm{~K}) & =1.559 \mathrm{~kJ} / \mathrm{kg} / \mathrm{K}
\end{aligned}
$$

- so change in specific entropy is

$$
\begin{aligned}
s_{2}-s_{1} & =s^{\circ}\left(T_{2}\right)-s^{\circ}\left(T_{1}\right)-R \ln \left(\frac{p_{2}}{p_{1}}\right)^{\circ} \\
& =(1.559-1.703) \mathrm{kJ} / \mathrm{kg} / \mathrm{K} \\
& =-0.144 \mathrm{~kJ} / \mathrm{kg} / \mathrm{K}
\end{aligned}
$$

Solution to part (b)

- specific heat table: $c_{p}(275 \mathrm{~K})=1.004 \mathrm{~kJ} / \mathrm{kg} / \mathrm{K}$, so

$$
\begin{aligned}
s_{2}-s_{1} & \approx c_{p}^{\mathrm{av}} \ln \left(\frac{T_{2}}{T_{1}}\right)-R \ln \left(\frac{p_{2}}{p_{1}}\right)^{0} \\
& =(1.004 \mathrm{~kJ} / \mathrm{kg} / \mathrm{K}) \ln \left(\frac{260 \mathrm{~K}}{300 \mathrm{~K}}\right) \\
& =-0.1437 \mathrm{~kJ} / \mathrm{kg} / \mathrm{K}
\end{aligned}
$$

