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A problem in the ideal gas entropy change derivation

• we have some variable z = f (x , y) and want to calculate

∆z = z2 − z1 = f (x2, y2)− f (x1, y1)

• we don’t know f , but we know ∂f /∂x and ∂f /∂y

• in 1D, we could use the fundamental theorem of calculus:

f (x2)− f (x1) =

∫ x2

x1

f ′(x)dx

• in 2D, it’s a little more complicated
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Applying path-independence
• since ∂f /∂x and ∂f /∂y exist, z has an exact differential:

dz =

(
∂f

∂x

)
y

dx +

(
∂f

∂y

)
x

dy

• any variable with an exact differential is path-independent

• so we can calculate ∆z by integrating over any path we like

• a particularly simple path:

y

x
x1

y1

x2

y2

a

b
(a) first x1 → x2 with y = y1

(b) then y1 → y2 with x = x2
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Integration

• 1D fundamental theorem of calculus applies along a and b

• the change in z along (horizontal) path a is

∆za = f (x2, y1)− f (x1, y1) =

∫ x2

x1

(
∂f

∂x

)
y=y1

dx

• the change in z along (vertical) path b is

∆zb = f (x2, y2)− f (x2, y1) =

∫ y2

y1

(
∂f

∂y

)
x=x2

dy

• so the total change in z , ∆z = ∆za + ∆zb, is

f (x2, y2)− f (x1, y1) =

∫ x2

x1

(
∂f

∂x

)
y=y1

dx +

∫ y2

y1

(
∂f

∂y

)
x=x2

dy
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Reminder: the ideal gas model

• the basic assumptions underlying the ideal gas model are

� the equation of state, pv = RT
� internal energy depends only on temperature, u = u(T )

• it follows that h, cv and cp also depend only on temperature

• so specific internal energy and enthalpy differentials are

du = cv (T )dT

dh = cp(T )dT
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Partial derivatives from 1st TdS equation

• the 1st TdS equation (per unit mass) is

Tds = du + pdv or equivalently ds =
du

T
+

pdv

T

• but for ideal gases, du = cv (T )dT and p/T = R/v , so

ds =
cv (T )

T
dT +

R

v
dv

• the exact differential of s = s(T , v) is

ds =

(
∂s

∂T

)
v

dT +

(
∂s

∂v

)
T

dv

• so (
∂s

∂T

)
v

=
cv (T )

T
,

(
∂s

∂v

)
T

=
R

v
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Ideal gas entropy changes from 1st TdS equation

• applying our integration formula to s = s(T , v):

s2 − s1 =

∫ T2

T1

(
∂s

∂T

)
v=v1

dT +

∫ v2

v1

(
∂s

∂v

)
T=T2

dv

=

∫ T2

T1

cv (T )

T
dT +

∫ v2

v1

R

v
dv

=

∫ T2

T1

cv (T )

T
dT + R ln

(
v2
v1

)
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Ideal gas entropy changes from 2nd TdS equation

• we can apply the same procedure to the 2nd TdS equation

• it establishes that the partial derivatives of s = s(T , p) are(
∂s

∂T

)
p

=
cp(T )

T
,

(
∂s

∂p

)
T

= −R

p

• so our integration formula for s = s(T , p) gives

s2 − s1 =

∫ T2

T1

cp(T )

T
dT − R ln

(
p2
p1

)
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Ideal gas entropy changes with constant specific heats

• if cv (T ) ≈ cavv between T1 and T2, then∫ T2

T1

cv (T )

T
dT ≈ cavv ln

(
T2

T1

)
so

s2 − s1 ≈ cavv ln

(
T2

T1

)
+ R ln

(
v2
v1

)

• similarly, if cp(T ) ≈ cavp between T1 and T2, then

s2 − s1 ≈ cavp ln

(
T2

T1

)
− R ln

(
p2
p1

)
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Ideal gas entropy changes with varying specific heats

• when specific heats vary significantly, we use ideal gas tables

• these tables have data for

s◦(T ) =

∫ T

T0

cp(T )

T
dT

• T0 is an arbitrarily-chosen reference temperature
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Why tabulate s◦(T )?

• the change in s◦(T ) between T1 and T2 is

s◦(T2)− s◦(T1) =

∫ T2

T0

cp(T )

T
dT −

∫ T1

T0

cp(T )

T
dT

=

∫ T2

T1

cp(T )

T
dT

• this is exactly the integral in our 2nd ∆s formula:

s2 − s1 =

∫ T2

T1

cp(T )

T
dT − R ln

(
p2
p1

)
= s◦(T2)− s◦(T1)− R ln

(
p2
p1

)
• if we know states 1 and 2, we can find all data on the RHS
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Summary of ideal gas entropy change formulas

• if specific heats are ∼constant, then

s2 − s1 ≈ cavv ln

(
T2

T1

)
+ R ln

(
v2
v1

)
s2 − s1 ≈ cavp ln

(
T2

T1

)
− R ln

(
p2
p1

)
(use whichever is more convenient)

• if specific heats vary significantly, then

s2 − s1 = s◦(T2)− s◦(T1)− R ln

(
p2
p1

)
(look up s◦(T1) and s◦(T2) in ideal gas table)
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Problem statement

A closed piston-cylinder device contains 1 kg of air, initially at 300
K, that expands at a constant 100 kPa to 0.746 m3. Calculate the
air’s specific entropy change (a) using an ideal gas table and (b)
assuming constant specific heats.
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System diagram

Q

W
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Given and find

• given:
� m = 1 kg
� p = 100 kPa
� T1 = 300 K
� V2 = 0.746 m3

• find:
(a) ∆s using an ideal gas table
(b) ∆s assuming constant specific heats
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Assumptions and basic equations

• assume:
� closed system
� ideal gas
� constant pressure

• basic equations:
� pv = RT
� ∆s = s◦(T2)− s◦(T1)− R ln(p2/p1)
� ∆s ≈ cavp ln(T2/T1)− R ln(p2/p1)
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Solution to part (a)

• ideal gas, constant pressure: pv2 = RT2, so

T2 =
pv2
R

=
(100kPa)(0.746m3/kg)

0.287kJ/kg/K
= 260K

• ideal gas table:

� s◦(300 K) = 1.703 kJ/kg/K
� s◦(260 K) = 1.559 kJ/kg/K

• so change in specific entropy is

s2 − s1 = s◦(T2)− s◦(T1)−
�
��

�
��*

0

R ln

(
p2
p1

)
= (1.559− 1.703)kJ/kg/K

= −0.144kJ/kg/K
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Solution to part (b)

• specific heat table: cp(275 K) = 1.004 kJ/kg/K, so

s2 − s1 ≈ cavp ln

(
T2

T1

)
−
��

�
��
�*0

R ln

(
p2
p1

)
= (1.004kJ/kg/K) ln

(
260K

300K

)
= −0.1437kJ/kg/K
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