Lecture 30 – Isentropic processes Purdue ME 200, Thermodynamics I

Kevin J. Kircher, kircher@purdue.edu

Outline

Isentropic processes

Ideal gases in general

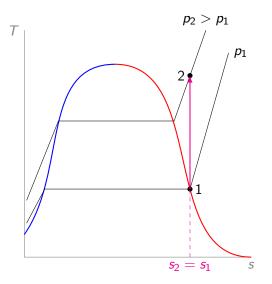
Ideal gases with constant specific heats

Example

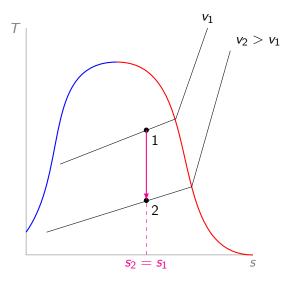
Isentropic processes

- isentropic means constant entropy, $S_2 = S_1$
- if $m_2 = m_1$ in an isentropic process, then $s_2 = s_1$
- this is true for closed systems
- it's also true for steady-flow and steady-state processes
- a bit loosely, we often call any process with $s_2 = s_1$ isentropic

Isentropic processes on T-s diagrams (with isobars)



Isentropic processes on T-s diagrams (with isochors)



Outline

Isentropic processes

Ideal gases in general

Ideal gases with constant specific heats

Example

Reminder: entropy changes for ideal gases

• the entropy change for an ideal gas over any process is

$$s_2 - s_1 = s^{\circ}(T_2) - s^{\circ}(T_1) - R \ln\left(\frac{p_2}{p_1}\right)$$

- this is true whether or not specific heats are constant
- $s^{\circ}(T_1)$ and $s^{\circ}(T_2)$ live in ideal gas tables

Entropy changes for ideal gases in isentropic processes

• for an ideal gas in an isentropic process,

$$s_2 = s_1 \implies s^{\circ}(T_2) - s^{\circ}(T_1) = R \ln \left(\frac{p_2}{p_1} \right)$$

• equivalently,

$$\frac{p_2}{p_1} = e^{(s^{\circ}(T_2) - s^{\circ}(T_1))/R}$$
$$= e^{s^{\circ}(T_2)/R} e^{-s^{\circ}(T_1)/R}$$
$$= \frac{e^{s^{\circ}(T_2)/R}}{e^{s^{\circ}(T_1)/R}}$$

Relative pressure (tabulated for air)

• define the relative pressure

$$p_r(T) = e^{s^\circ(T)/R}$$

• then for an ideal gas in an isentropic process,

$$\frac{p_2}{p_1} = \frac{e^{s^\circ(T_2)/R}}{e^{s^\circ(T_1)/R}} = \frac{p_r(T_2)}{p_r(T_1)}$$

• for air, $p_r(T_1)$ and $p_r(T_2)$ can be found in ideal gas tables

Relative volume (tabulated for air)

• define the **relative volume**

$$v_r(T) = \frac{RT}{p_r(T)}$$

• then for an ideal gas in an isentropic process,

$$\frac{v_2}{v_1} = \frac{RT_2/p_2}{RT_1/p_1} = \frac{RT_2}{RT_1}\frac{p_1}{p_2}$$

• but $p_1/p_2 = p_r(T_1)/p_r(T_2)$, so

$$\frac{v_2}{v_1} = \frac{RT_2}{RT_1} \frac{p_r(T_1)}{p_r(T_2)} = \frac{RT_2/p_r(T_2)}{RT_1/p_r(T_1)} = \frac{v_r(T_2)}{v_r(T_1)}$$

• for air, $v_r(T_1)$ and $v_r(T_2)$ can be found in ideal gas tables

Summary

• for any ideal gas in an isentropic process,

$$\frac{p_2}{p_1} = \frac{e^{s^\circ(T_2)/R}}{e^{s^\circ(T_1)/R}}$$

(all ideal gas tables include $s^{\circ}(T)$)

• for air, it can save time to use

$$\frac{p_2}{p_1} = \frac{p_r(T_2)}{p_r(T_1)} \quad \text{or} \quad \frac{v_2}{v_1} = \frac{v_r(T_2)}{v_r(T_1)}$$

(ideal gas table for air also includes $p_r(T)$ and $v_r(T)$)

Outline

Isentropic processes

Ideal gases in general

Ideal gases with constant specific heats

Example

Reminder: ideal gas entropy changes with constant c_v , c_p

 $\bullet\,$ in any process where ideal gas specific heats are $\sim\!constant,$

$$s_2 - s_1 \approx c_{\nu} \ln\left(\frac{T_2}{T_1}\right) + R \ln\left(\frac{\nu_2}{\nu_1}\right)$$
$$s_2 - s_1 \approx c_{\rho} \ln\left(\frac{T_2}{T_1}\right) - R \ln\left(\frac{p_2}{p_1}\right)$$

• so for an ideal gas in an isentropic process,

$$c_{\nu} \ln\left(\frac{T_2}{T_1}\right) \approx -R \ln\left(\frac{v_2}{v_1}\right)$$
$$c_{\rho} \ln\left(\frac{T_2}{T_1}\right) \approx R \ln\left(\frac{p_2}{p_1}\right)$$

Two expressions for the temperature ratio

• rearranging the first equation,

$$\ln\left(\frac{T_2}{T_1}\right) \approx -\frac{R}{c_v} \ln\left(\frac{v_2}{v_1}\right) = \ln\left[\left(\frac{v_2}{v_1}\right)^{-R/c_v}\right]$$
$$\implies \frac{T_2}{T_1} \approx \left(\frac{v_2}{v_1}\right)^{-R/c_v}$$

• rearranging the second equation,

$$\ln\left(\frac{T_2}{T_1}\right) \approx \frac{R}{c_p} \ln\left(\frac{p_2}{p_1}\right) = \ln\left[\left(\frac{p_2}{p_1}\right)^{R/c_p}\right]$$
$$\implies \frac{T_2}{T_1} \approx \left(\frac{p_2}{p_1}\right)^{R/c_p}$$

Reminder: ideal gases specific heats

- ideal gas specific heats always satisfy $c_p(T) = c_v(T) + R$
- in terms of the specific heat ratio $k(T) = c_p(T)/c_v(T)$,

$$rac{R}{c_{
u}(T)}=k(T)-1$$
 and $rac{R}{c_{p}(T)}=rac{k(T)-1}{k(T)}$

• so the two expressions for T_2/T_1 can be written as

$$\frac{T_2}{T_1} \approx \left(\frac{v_2}{v_1}\right)^{-R/c_\nu} = \left(\frac{v_2}{v_1}\right)^{-(k-1)} = \left(\frac{v_1}{v_2}\right)^{k-1}$$
$$\frac{T_2}{T_1} \approx \left(\frac{p_2}{p_1}\right)^{R/c_\rho} = \left(\frac{p_2}{p_1}\right)^{(k-1)/k}$$

Ideal gas + isentropic + constant $c_v \& c_p = polytropic$

• equating the two expressions for T_2/T_1 gives

$$\left(\frac{p_2}{p_1}\right)^{(k-1)/k} \approx \left(\frac{v_1}{v_2}\right)^{k-1} \iff \frac{p_2}{p_1} \approx \left(\frac{v_1}{v_2}\right)^k$$

- so $p_2 v_2^k \approx p_1 v_1^k$
- \implies the process is ~polytropic with coefficient $k = c_p/c_v$

Summary

• for ideal gas in isentropic process with \sim constant $k=c_p/c_v$,

$$p_1v_1^k\approx p_2v_2^k$$

$$\frac{T_2}{T_1} \approx \left(\frac{p_2}{p_1}\right)^{(k-1)/k} \approx \left(\frac{v_1}{v_2}\right)^{k-1}$$

• and (from lecture 12) boundary work is

$$\int_{V_1}^{V_2} p \mathrm{d} V \approx \frac{mR(T_2 - T_1)}{1 - k}$$

Outline

Isentropic processes

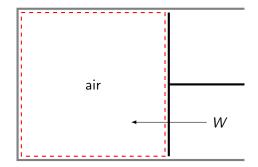
Ideal gases in general

Ideal gases with constant specific heats

Example

A closed insulated reversible piston-cylinder device compresses air from 22 $^{\circ}$ C and 95 kPa to 1/8 its initial volume. Find the final air temperature (a) assuming constant specific heats and (b) using an ideal gas table.

System diagram



Given and find

• given:

• find:

- (a) T_2 assuming constant specific heats
- (b) T_2 using an ideal gas table

Assumptions and basic equations

- assume:
 - \diamond closed system ($m_2 = m_1$)
 - $\diamond \ \, \text{ideal gas}$
 - \diamond isentropic (insulated + reversible) compression
- basic equations:

 $\diamond\,$ ideal gas with $\sim\!$ constant specific heats in isentropic process:

$$rac{T_2}{T_1} pprox \left(rac{v_1}{v_2}
ight)^{k-1}$$
 where $k=rac{c_{
ho}}{c_{
m v}}$

 $\diamond\,$ air (as an ideal gas) in isentropic process:

$$\frac{v_2}{v_1} = \frac{v_r(T_2)}{v_r(T_1)}$$

Solution to part (a)

• ideal gas with constant specific heats in isentropic process:

$$\frac{T_2}{T_1} \approx \left(\frac{v_1}{v_2}\right)^{k-1} \implies T_2 \approx T_1 \left(\frac{v_1}{v_2}\right)^{k-1}$$

• since
$$m_2 = m_1$$
,

$$\frac{v_2}{v_1} = \frac{mV_2}{mV_1} = \frac{V_2}{V_1} = \frac{1}{8}$$

SO

$$T_2\approx 8^{k-1}T_1$$

Solution to part (a) (continued)

- what value of $k = c_p/c_v$ to use?
- in reality, $c_p(T)$ and $c_v(T)$ vary with T, so k(T) does too
- but we are asked to assume constant specific heats
- in these approximations, we usually use $T_{av} = (T_1 + T_2)/2$
- but in this calculation, T_2 is unknown
- so let's start with what we know: $k(T_1) = k(295 \text{ K})$

Solution to part (a) (continued)

• specific heat table: $c_p(295 \text{ K}) = 1.005 \text{ kJ/kg/K}$, so

$$c_v(295K) = c_p(295K) - R$$

= (1.005 - 0.287)kJ/kg/K
= 0.718kJ/kg/K

- so k(295K) = 1.005/0.718 = 1.400
- therefore, a tentative estimate of T_2 is

$$\hat{T}_2 = 8^{k(295\mathrm{K})-1} T_1 = 8^{1.400-1}(295\mathrm{K}) = 677.4\mathrm{K}$$

Solution to part (a) (continued)

- now we have an estimate \hat{T}_2 of T_2
- so we can estimate T_{av} by

$$\hat{T}_{av} = rac{T_1 + \hat{T}_2}{2} = rac{295\text{K} + 677.4\text{K}}{2} = 486.2\text{K}$$

- repeating the table look-up and calculations, $k(\hat{T}_{av}) \approx 1.389$
- this gives a refined estimate of T₂:

$$T_2 \approx 8^{k(\hat{T}_{av})-1} T_1 = 8^{1.389-1} (295 \text{K}) = 662.3 \text{K}$$

21 / 22

Solution to part (b)

• from the relative volume equation,

$$\frac{v_2}{v_1} = \frac{v_r(T_2)}{v_r(T_1)} \implies v_r(T_2) = v_r(T_1)\frac{v_2}{v_1}$$

• ideal gas table: at $T_1 = 295$ K, $v_r(T_1) = 647.9$, so

$$v_r(T_2) = v_r(T_1)\frac{v_2}{v_1} = \frac{647.9}{8} = 80.99$$

- ideal gas table: $v_r(660K) = 81.89$ and $v_r(670K) = 78.61$
- interpolating gives $T_2 = 662.7 \text{ K}$