Lecture 35 — Vapor-compression
refrigeration
Purdue ME 200, Thermodynamics |
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Outline

Energy and air conditioning



Many people in hot climates lack air conditioning
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y-axis: percent of population that has air conditioning
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But many people will soon get air conditioning
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Air conditioning uses a lot of electricity
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Air conditioning drives electricity demand peaks
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Outline

The Carnot refrigeration cycle



Reminder: refrigeration cycles

e cooling capacity: Qc

hot
reservoir

e coefficient of performance:

heat transfer input

Qn = net work input
/',’ \\‘\ _ & _ Qc
! osystem e |/ W Qn— Qe
00
1 - Qc/Qn
e Carnot performance limit:
cold T
reservoir B< #
—1-T./Ty



Carnot refrigeration cycle schematic
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sign convention: energy flows are positive in the arrow directions
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T-s diagram of the Carnot refrigeration cycle
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Verifying the Carnot refrigeration cycle COP

e 1st law on the full system: Q41 + W12 = ng + W34
e so the Carnot COP is

_ Qa1 o Q41_ _ Q41_/Q23_,
Wio —Was Qs — Qa1 1 — Qa1/Qo3

B‘k

from the T-s diagram, Q23/n'1 = fss; Tds = T3(s3 — s2)
similarly, Q41/rh = fsil Tds = T1(ss — s1)
but s3 = 54 and s, = 51, 50 Q41/ Q3 = T1/ T3 and

g /T _Te/Th
1-T/Ts 1-T./T,
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Outline

Departures from the Carnot refrigeration cycle



Heat transfer through finite temperature differences

e in the Carnot cycle, T1 = T, and T3 = T,
e so AT = 0 for heat transfer in the evaporator and condenser

e in reality, the evaporator and condenser AT must be finite
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T-s diagram with finite temperature differences
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COP with finite temperature differences

all but one step of the Carnot COP derivation still hold

exception: the last step used 71 = T and T3 = Ty
with finite temperature differences (T1 # T. and T3 # Tj),

T/ T3

ﬂzl—TﬂE

but 71 < T. and T3 > Ty, so

1 c 1 c
T g 1ot e
o7 T3 g Th

o therefore, the COP is below the Carnot limit:

5= T1/T3 T/ Th
1—T1/T3 l—TC/Th
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Requiring ‘dry’ compression

e in the Carnot cycle, compression happens in the vapor dome
e but liquid droplets can damage real compressors

e in practice, state 1 is usually saturated or superheated vapor
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T-s diagram with finite AT and dry compression
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Replacing the turbine with an expansion valve

e the Carnot cycle extracts work in a turbine after the condenser
e this turbine operates in the vapor dome at fairly low quality

e as with compressors, liquid droplets can damage real turbines
e also, the amount of work extracted is not large

e in practice, an expansion valve usually replaces the turbine
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Outline

The ideal vapor-compression refrigeration cycle



The ideal vapor-compression refrigeration cycle

e the ideal vapor-compression cycle is like the Carnot refrigerator

e but it uses the 3 modifications in the previous section
e it's still ideal in that

© compression is isentropic
(the compressor is adiabatic and internally reversible)

© expansion is isenthalpic
(no stray heat transfer in the expansion valve)

© the condenser, evaporator and connecting pipes are isobaric
(no pressure drops due to fluid friction)
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|deal vapor-compression refrigeration cycle schematic
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T-s diagram of the ideal vapor-compression cycle
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1st and 2nd laws in the ideal vapor-compression refrigerator

e from the steady-state 1st law in rate form,
o whole system: W12 + Q41 = Q23

compressor: Wiy = m(hy — hy)

condenser: Q3 = ri(hy — hs)

expansion valve: hy = h3

evaporator: Qa1 = m(hy — hs)

S 000

e from the steady-state 2nd law in rate form,
whole system: & = Qu3/ T4 — Qa1/ TS
compressor: dip = (s, — s1)

condenser: 623 = Qu3/ T2 + m(s3 — )
expansion valve: ¢34 = m(ss — s3)
evaporator: ¢41 = m(s; — s4) — Qa1/Th

SO0 00
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The ideal vapor-compression refrigerator COP

e compressor energy balance: Wy, = m(hy — hy)
e evaporator energy balance: Qu1 = m(hy — ha)

e so the ideal vapor-compression refrigerator COP is

Qar_ m(hy —hs)  hi—hs

b= Wy, m(ha—h1)  ha—hy
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