Lecture 35 – Vapor-compression refrigeration

Purdue ME 200, Thermodynamics I

Kevin J. Kircher, kircher@purdue.edu

Outline

Energy and air conditioning

The Carnot refrigeration cycle

Departures from the Carnot refrigeration cycle

Many people in hot climates lack air conditioning

International Energy Agency, The Future of Cooling (2018)

But many people will soon get air conditioning

International Energy Agency, The Future of Cooling (2018)

Air conditioning uses a lot of electricity

International Energy Agency, The Future of Cooling (2018)

Air conditioning drives electricity demand peaks

International Energy Agency, The Future of Cooling (2018)

Outline

Energy and air conditioning

The Carnot refrigeration cycle

Departures from the Carnot refrigeration cycle

Reminder: refrigeration cycles

- cooling capacity: \dot{Q}_c
- coefficient of performance:

 $\beta = \frac{\text{heat transfer input}}{\text{net work input}}$ $= \frac{\dot{Q}_c}{\dot{W}} = \frac{\dot{Q}_c}{\dot{Q}_h - \dot{Q}_c}$ $= \frac{\dot{Q}_c/\dot{Q}_h}{1 - \dot{Q}_c/\dot{Q}_h}$

• Carnot performance limit:

$$\beta \le \frac{T_c/T_h}{1 - T_c/T_h}$$

Carnot refrigeration cycle schematic

sign convention: energy flows are positive in the arrow directions

T-s diagram of the Carnot refrigeration cycle

Verifying the Carnot refrigeration cycle COP

- 1st law on the full system: $\dot{Q}_{41}+\dot{W}_{12}=\dot{Q}_{23}+\dot{W}_{34}$
- so the Carnot COP is

$$\beta^{\star} = \frac{\dot{Q}_{41}}{\dot{W}_{12} - \dot{W}_{34}} = \frac{\dot{Q}_{41}}{\dot{Q}_{23} - \dot{Q}_{41}} = \frac{\dot{Q}_{41}/\dot{Q}_{23}}{1 - \dot{Q}_{41}/\dot{Q}_{23}}$$

- from the T-s diagram, $\dot{Q}_{23}/\dot{m}=\int_{s_2}^{s_3}T\mathrm{d}s=T_3(s_3-s_2)$
- similarly, $\dot{Q}_{41}/\dot{m} = \int_{s_4}^{s_1} T ds = T_1(s_4 s_1)$
- but $s_3=s_4$ and $s_2=s_1$, so $\dot{Q}_{41}/\dot{Q}_{23}=T_1/T_3$ and

$$\beta^{\star} = \frac{T_1/T_3}{1 - T_1/T_3} = \frac{T_c/T_h}{1 - T_c/T_h}$$

Outline

Energy and air conditioning

The Carnot refrigeration cycle

Departures from the Carnot refrigeration cycle

Heat transfer through finite temperature differences

- in the Carnot cycle, $T_1 = T_c$ and $T_3 = T_h$
- so $\Delta T = 0$ for heat transfer in the evaporator and condenser
- in reality, the evaporator and condenser $\Delta \mathcal{T}$ must be finite

T-s diagram with finite temperature differences

COP with finite temperature differences

- all but one step of the Carnot COP derivation still hold
- exception: the last step used $T_1 = T_c$ and $T_3 = T_h$
- with finite temperature differences ($T_1 \neq T_c$ and $T_3 \neq T_h$),

$$\beta = \frac{T_1/T_3}{1 - T_1/T_3}$$

• but $T_1 < T_c$ and $T_3 > T_h$, so

$$rac{T_1}{T_3} < rac{T_c}{T_h} \quad ext{and} \quad 1 - rac{T_1}{T_3} > 1 - rac{T_c}{T_h}$$

• therefore, the COP is below the Carnot limit:

$$\beta = \frac{T_1/T_3}{1 - T_1/T_3} < \frac{T_c/T_h}{1 - T_c/T_h}$$

 $11 \, / \, 19$

Requiring 'dry' compression

- in the Carnot cycle, compression happens in the vapor dome
- but liquid droplets can damage real compressors
- in practice, state 1 is usually saturated or superheated vapor

T-s diagram with finite ΔT and dry compression

Replacing the turbine with an expansion valve

- the Carnot cycle extracts work in a turbine after the condenser
- this turbine operates in the vapor dome at fairly low quality
- as with compressors, liquid droplets can damage real turbines
- also, the amount of work extracted is not large
- in practice, an expansion valve usually replaces the turbine

Outline

Energy and air conditioning

The Carnot refrigeration cycle

Departures from the Carnot refrigeration cycle

- the ideal vapor-compression cycle is like the Carnot refrigerator
- but it uses the 3 modifications in the previous section
- it's still ideal in that
 - compression is isentropic (the compressor is adiabatic and internally reversible)
 - expansion is isenthalpic (no stray heat transfer in the expansion valve)
 - the condenser, evaporator and connecting pipes are isobaric (no pressure drops due to fluid friction)

Ideal vapor-compression refrigeration cycle schematic

T-s diagram of the ideal vapor-compression cycle

1st and 2nd laws in the ideal vapor-compression refrigerator

- from the steady-state 1st law in rate form,
- from the steady-state 2nd law in rate form,
 - \diamond whole system: $\dot{\sigma} = \dot{Q}_{23}/T^b_{23} \dot{Q}_{41}/T^b_{41}$
 - \diamond compressor: $\dot{\sigma}_{12} = \dot{m}(s_2 s_1)$
 - \diamond condenser: $\dot{\sigma}_{23} = \dot{Q}_{23} / T_{23}^b + \dot{m}(s_3 s_2)$
 - $\diamond~$ expansion valve: $\dot{\sigma}_{34}=\dot{m}(s_4-s_3)$
 - \diamond evaporator: $\dot{\sigma}_{41} = \dot{m}(s_1 s_4) Q_{41}/T_{41}^b$

The ideal vapor-compression refrigerator COP

- compressor energy balance: $\dot{W}_{12} = \dot{m}(h_2 h_1)$
- evaporator energy balance: $\dot{Q}_{41} = \dot{m}(h_1 h_4)$
- so the ideal vapor-compression refrigerator COP is

$$\beta = \frac{\dot{Q}_{41}}{\dot{W}_{12}} = \frac{\dot{m}(h_1 - h_4)}{\dot{m}(h_2 - h_1)} = \frac{h_1 - h_4}{h_2 - h_1}$$