Lecture 29 — What is entropy?
Purdue ME 200, Thermodynamics |
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Outline

Entropy and heat transfer



Problem statement

A closed insulated stationary piston-cylinder device initially
contains 1 kg of saturated liquid water at 100 °C. It receives
energy via heat transfer from a reservoir at 200 °C until the water
is saturated vapor. Find the entropy generated over the process.
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System diagram

T, =200 °C T =100 °C
_____ m=1kg
Q |
_:L_, W
reservoir | S _L_V_I\{I _______ i
Tp=T,
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Given and find

e given:
o m=1Kkg
o constant T =373 K, T, =473 K
© state 1 is saturated liquid
© state 2 is saturated vapor

e find:

© entropy generated over the process, o
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Assumptions and basic equations

e assume:

<
<
<
<
<

<

closed (constant mass)

insulated (no heat transfer other than reservoir — system)
stationary (constant PE and KE)

phase change (constant temperature and pressure)

no entropy generation within reservoir

system contains boundary layer (T, = T,)

e basic equations:

<
<
<

1st law for closed stationary systems: AU = Q — W
boundary work at constant pressure: W = [ pdV = pAV
2nd law for closed systems: AS = [6Q/ Ty + o
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Solution

e 2nd law for closed system in isothermal process with T, = T,:

_Q _ Q
As—f—ka = J—AS—Tr

e 1st law for closed stationary system at constant pressure:

AU=Q—-pAV — Q=AU+ pAV =AH
e water transitions from SL to SV, so

Q = AH = m(h, — hy)
= (1kg)(2675.6 — 419.17)kJ /kg
= 2256.43kJ
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Solution (continued)

e entropy generation is

J:AS—_IG_)r:m(SV—Sg)—

= (1kg)(7.3541 — 1.3072)

il

k) 2256.43kJ
g K 473.15K

— 1.2780kJ/K
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Reversible power cycle work

T, T
Q ——

— W

reservoir SLVM |

e in this example, heat transfers naturally via conduction

e what if we used a reversible power cycle instead?

T, .
g reversible
power
, cycle
reservolr

SLVM |
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Reversible power cycle work (continued)
e the cycle efficiency would be n = W, /Q, =1—T/T,, so

Wr:nQr:<1_Tr> Qr

e but Q/Q, = T/T, since the cycle is reversible, so

QT, T,
- (- T) % (3o

473.15K
= (m - 1) (2256.43kJ)

= 604.7kJ

e curiously. ..

T,o = (473.15K)(1.2780kJ/K) = 604.7k) = W, 7?17
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Heat transfer, entropy, and lost work

e more generally, suppose ¢ Q. transfers from T}, to T,

the entropy generated by this heat transfer is

1 1
07 =0Q (n‘n)

e imagine a reversible power cycle that absorbs § Qp, emits 6 Q.

(thermodynamic temperature scale = §Qp/0Qc = Tn/ T¢)

the work that this imaginary, reversible cycle would do is

B B 0@y
W =06Qn —6Qc =6Qc <5Qc 1>

1 1
= 5Qc <Tc - 1) = 7_hfch (TC - Th>

= Thpoo
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Summary

The entropy generated by heat transfer through a finite
temperature difference can be viewed as the ‘lost work’ that a
reversible power cycle would have produced when delivering the
same amount of heat (divided by the hot reservoir temperature).

Th Th
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Outline

Increase of entropy for isolated systems



Reminder: isolated systems

e an open system or control volume is a region of space
e a closed system or control mass is a collection of matter

e an isolated system does not interact with the surroundings

‘ open ‘ closed ‘ isolated
no
no no

energy crosses boundary?
matter crosses boundary?
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An isolated system

Q21 —— sub- X

myy —+—— 2

subsystem 1

system |
1 .
——> M2
1

e despite internal flows, the combined system is

isolated
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Nondecrease of entropy for isolated systems

e for isolated systems, the entropy balance in rate form is

e internal entropy generation always satisfies ¢ > 0

e so for isolated systems, entropy never decreases:

ds
~—5>0
at 0=
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Equilibrium states maximize entropy

e during any real (irreversible) process, & > 0
e 50 an isolated system's entropy

© increases (dS/dt > 0) during any real process
o only stabilizes (dS/dt = 0) when all processes stop

e therefore, entropy reaches a maximum in equilibrium
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Outline

A microscopic view of entropy



Microscopic arrangements and thermodynamic states

the systems in this class are made up of many tiny things
o molecules
© atoms
© protons, neutrons, electrons
o subatomic particles, ...

each tiny thing can be arranged in many ways

< many different x, y and z positions
o many different x, y and z velocities

so the overall system can be arranged in many many ways

but its thermo state is just 2 independent intensive properties

—> any thermo state has many possible microscopic arrangements
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Entropy and probability

e for any given thermodynamic state, define
o £, the number of its possible microscopic arrangements

© pj, the probability of arrangement /, foreach i=1, ..., Q
o (sop1>0,...,pa>0and p1 + -+ pg =1)
e the entropy associated with the probabilities p1, ..., pq is

Q
—k > piln(pi)
i=1

e k=1.381x 10723 J/K is the Boltzmann constant
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The simplest example (basically a biased coin flip)
e suppose there are 2 = 2 possible microscopic arrangements
e then pp = 1— p1, and the entropy associated with p; and p; is

Q
—kY " piln(p;) = —k[p1In(p1) + p2 In(p2)]
i=1

= —k[p1In(p1) + (1 — p1) In(1 — p1)]

e entropy reaches a maximum at kIn(2) when p; = po = 1/2

klIn(2

~—

entropy
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Boltzmann's entropy formula

e recall that entropy reaches a maximum in equilibrium

e it turns out that for any €, entropy reaches a maximum when

1
pPL=:=pa=g
e the entropy associated with these special p1,..., pq is

1 1
Fdn(3)-lin (3]
e this is Boltzmann's famous formula for entropy in equilibrium:

S =kIn(Q)
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