Introduction and class policies

Purdue ME 597, Distributed Energy Resources

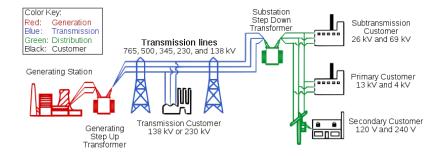
Kevin J. Kircher

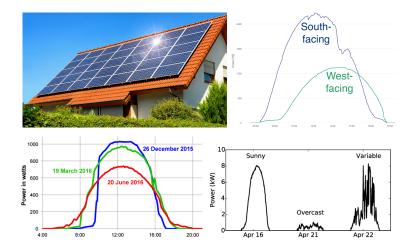

What are DERs?

Why study DERs?

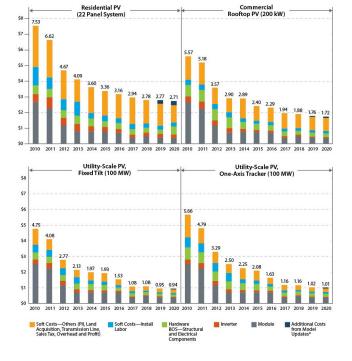
Class outline

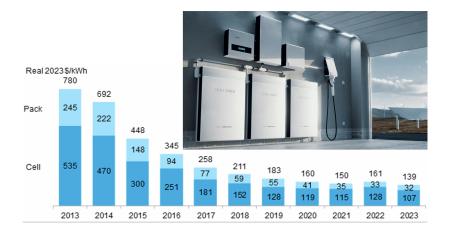
Class policies


What are Distributed Energy Resources (DERs)?

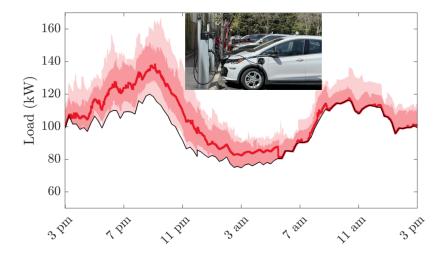

controllable electrical devices that plug in at the edge of the grid

DOE Loan Programs Office: Posters


The power grid

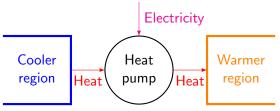

Solar photovoltaics

Getty Images; Solar Talk: Solar panel direction; Dan's Diary: A Year of Solar Data; Lee et al. (2017): *Distributed Rate Control for Smart Solar Arrays*



Batteries

Getty Images; BloombergNEF: Lithium-ion battery prices


Electric vehicles

Alexeenko et al. (2023): Achieving reliable coordination of residential plug-in electric vehicle charging; Pew Research Center: How Americans view EVs

Heat pumps and air conditioners

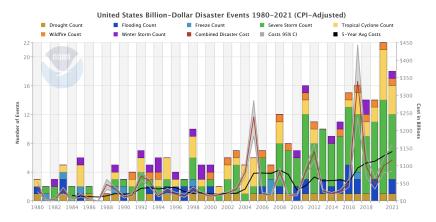
Elephant Energy: Guide to Cold Climate Heat Pumps; ACHR News: NYC's 'Clean Heat For All Challenge'

Thermal storage and water heaters

Green Energy Times: Electric Thermal Storage; MA Clean Energy Center: Heat pump water heaters

What are DERs?

Why study DERs?

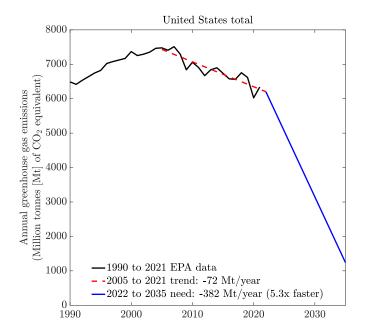

Class outline

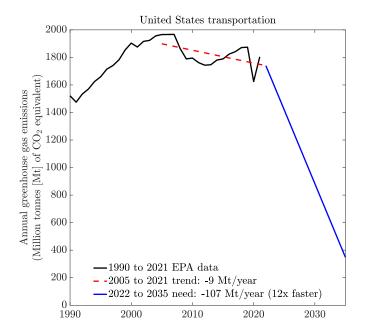
Class policies

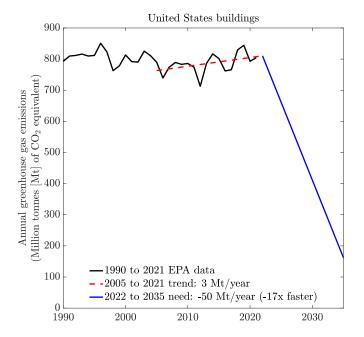
Why study DERs?

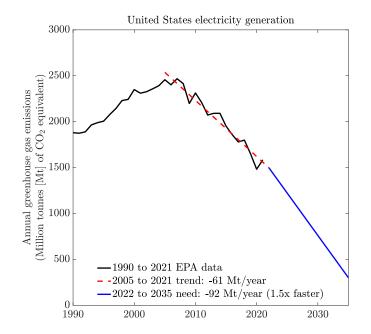
- we must reduce greenhouse gas emissions at speed and scale
- DERs will feature prominently in energy transitions
- DER adoption is already taking off
- good design and control can make DERs much more valuable
 - ◊ improve user experiences
 - ◊ deepen emission reductions
 - $\diamond~$ reduce installation and operating costs
 - \diamond unlock participation in (& revenue from) power grid operations

Humans have changed the climate

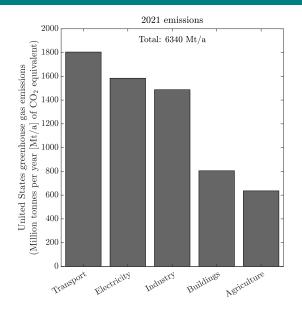


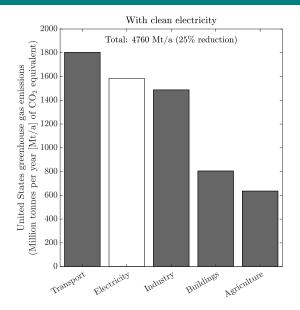

increased frequency and severity of storms, droughts, wildfires, ...

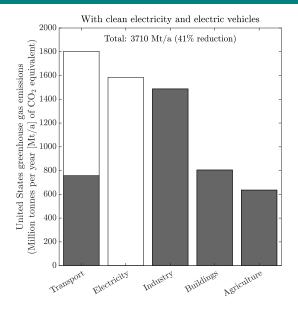

NOAA (2023): Billion-Dollar Weather and Climate Disasters

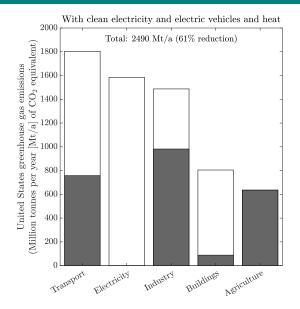

"By 2035, emissions need to decline by 80% in advanced economies and 60% in emerging market and developing economies compared to the 2022 level."

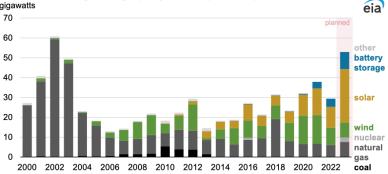
International Energy Agency: Net Zero Roadmap (2023 Update)





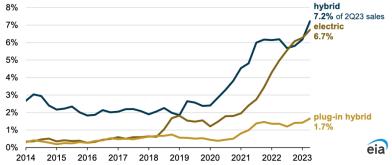

A two-step strategy for deep decarbonization


1. Decarbonize electricity generation


2. Electrify light-duty vehicles...

2. Electrify light-duty vehicles & space/water/process heat

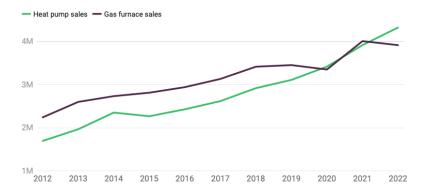
Most new electrical capacity is now wind, solar, or batteries



Annual U.S. electric-generating capacity additions (2000–2023) gigawatts

Energy Information Administration: Today in Energy (March 6, 2023)

Electric vehicle sales are growing quickly


Quarterly light-duty vehicle sales by powertrain, United States (2014-2023)

percentage of total vehicle sales

Energy Information Administration: Today in Energy (September 7, 2023)

Heat pump sales have outpaced gas furnaces

Canary Media: Americans bought more heat pumps than gas furnaces last year $19 \ / \ 29$

What are DERs?

Why study DERs?

Class outline

Class policies

Modeling and simulation

- review of linear differential equations
- introduction to linear dynamical systems
- (semi-)physical models of and data sources for
 - $\diamond~$ batteries and electric vehicles
 - ◊ buildings
 - $\diamond~$ heat pumps and air conditioners
 - $\diamond~$ thermal storage and water heaters
 - ◊ solar photovoltaics

Optimization

- convex sets and functions
- convex optimization problems
- disciplined convex programming in Matlab with CVX
- applications to DER design, sizing, model fitting,

Control

- open-loop optimal control
- model predictive control
- model-free predictive control via behavioral systems theory
- other topics of interest? reinforcement learning, co-design, ...
- applications to DER operation
 - $\diamond~$ reducing energy costs
 - $\diamond~$ reducing pollution
 - $\diamond\,$ providing reliability services to the power grid

Other possible topics

- a bit of machine learning
 - $\diamond~$ time-series prediction
 - $\diamond~$ system identification
- power grid physics

÷

• electricity markets and policy

What are DERs?

Why study DERs?

Class outline

Class policies

Prerequisities

- ordinary differential equations
- linear algebra
- programming in Matlab, Python, or Julia
- not required, but may enhance appreciation:
 - ◊ probability and statistics
 - ◊ machine learning
 - \diamond control systems
 - ◊ optimization

Homework

- 20% of grade
- $\bullet~{\sim}8$ problem sets with a mix of math and coding
- done individually or in teams
- everyone submits their own write-up
- outside resources are okay, but you must **cite them** (to really learn, *try homework with no outside help*)
- homework front-loaded in first ${\sim} half$ of semester
- second ~half: focus on semester projects

Midterm exam

- 30% of grade
- take-home over 24 hours
- $\bullet\,$ taken $\sim\!$ halfway through semester
- no final exam

Semester project

- 50% of grade
- done individually or in teams of 2 or 3
- each team gives one ${\sim}15$ minute conference-style talk
 - ◊ one presenter only (but whole team helps prepare)
 - $\diamond~$ whole team fields questions for ${\sim}10~minutes$
- each team writes one ${\sim}6$ page conference-style paper
- each team member assesses their own contributions (in a meeting with me and their team)

Websites

• Brightspace

- $\diamond~$ download lecture slides and videos
- $\diamond~$ download homework assignments and midterm

• Gradescope

- $\diamond~$ upload completed homeworks and midterm
- $\diamond \ \, \text{view grades}$

Online participation

- view lecture slides and videos whenever (or join class in real time via Zoom if you prefer)
- upload homeworks and midterm when in-person class does
- join Zoom office hours if helpful
- work remotely with project team (or work alone if you prefer)
- join Zoom for your team's project presentation