Linear dynamical systems
 Purdue ME 597, Distributed Energy Resources

Kevin J. Kircher

Outline

Continuous-time linear dynamical systems

Linearization

Time discretization

Example: A simple climate model

A continuous-time linear dynamical system (LDS)

$$
\frac{\mathrm{d} x(t)}{\mathrm{d} t}=A(t) x(t)+B(t) u(t)+w(t)
$$

- $t \in \mathbf{R}$ denotes time
- $x(t) \in \mathbf{R}^{n_{x}}$ is the state
- $u(t) \in \mathbf{R}^{n_{u}}$ is the action or control
- $w(t) \in \mathbf{R}^{n_{x}}$ is the disturbance
- $A(t) \in \mathbf{R}^{n_{x} \times n_{x}}$ is the dynamics matrix
- $B(t) \in \mathbf{R}^{n_{x} \times n_{u}}$ is the action matrix or control matrix

$$
\begin{aligned}
\frac{\mathrm{d} x(t)}{\mathrm{d} t} & =A(t) x(t)+B(t) u(t)+w(t) \\
y(t) & =C(t) x(t)+D(t) u(t)+v(t)
\end{aligned}
$$

- $y(t) \in \mathbf{R}^{n_{y}}$ is the observation or output
- $v(t) \in \mathbf{R}^{n_{y}}$ is the noise
- $C(t) \in \mathbf{R}^{n_{y} \times n_{x}}$ is the observation matrix
- $D(t) \in \mathbf{R}^{n_{y} \times n_{u}}$ is the feedthrough matrix

Common simplifications

- time-invariant: A, B, C, and D are independent of t
- single-input, single-output: $n_{u}=n_{y}=1$
- no feedthrough: $D(t)=0$ for all t
- perfectly observed: $y(t)=x(t)$
- deterministic: $w(t)=0$ and $v(t)=0$ for all t

Outline

Continuous-time linear dynamical systems

Linearization

Time discretization

Example: A simple climate model

Reminder: Linearizing scalar-valued functions of scalars

- suppose nonlinear $f: \mathbf{R} \rightarrow \mathbf{R}$ is differentiable at $\hat{x} \in \mathbf{R}$
- Taylor's theorem: if x is near \hat{x}, then $f(x)$ is very near

$$
f(\hat{x})+f^{\prime}(\hat{x})(x-\hat{x})
$$

Linearizing vector-valued functions of vectors

- suppose nonlinear $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is differentiable at $\hat{x} \in \mathbf{R}^{n}$
- Taylor's theorem: if x is near \hat{x}, then $f(x)$ is very near

$$
f(\hat{x})+D_{f}(\hat{x})(x-\hat{x})
$$

where

$$
D_{f}(\hat{x})=\left[\begin{array}{ccc}
\left.\frac{\partial f_{1}}{\partial x_{1}}\right|_{\hat{x}} & \cdots & \left.\frac{\partial f_{1}}{\partial x_{n}}\right|_{\hat{x}} \\
\vdots & & \vdots \\
\left.\frac{\partial f_{m}}{\partial x_{1}}\right|_{\hat{x}} & \cdots & \left.\frac{\partial f_{m}}{\partial x_{n}}\right|_{\hat{x}}
\end{array}\right] \in \mathbf{R}^{m \times n}
$$

is the derivative (Jacobian) matrix of f at \hat{x}

Linearizing dynamical systems

- consider the nonlinear vector ODE

$$
\frac{\mathrm{d} x(t)}{\mathrm{d} t}=f(x(t), u(t), w(t))
$$

with dynamics function $f: \mathbf{R}^{n_{x}} \times \mathbf{R}^{n_{u}} \times \mathbf{R}^{n_{w}} \rightarrow \mathbf{R}^{n_{x}}$

- suppose at each $t, \hat{x}(t), \hat{u}(t)$, and $\hat{w}(t)$ satisfy

$$
\frac{\mathrm{d} \hat{x}(t)}{\mathrm{d} t}=f(\hat{x}(t), \hat{u}(t), \hat{w}(t))
$$

(we call \hat{x}, \hat{u}, and \hat{w} nominal trajectories)

- define the perturbations

$$
\delta_{x}(t)=x(t)-\hat{x}(t), \delta_{u}(t)=u(t)-\hat{u}(t), \delta_{w}(t)=w(t)-\hat{w}(t)
$$

Linearizing dynamical systems (continued)

- if $(x(t), u(t), w(t)) \approx(\hat{x}(t), \hat{u}(t), \hat{w}(t))$, then

$$
\begin{aligned}
\frac{\mathrm{d} \delta_{x}(t)}{\mathrm{d} t} & =\frac{\mathrm{d} x(t)}{\mathrm{d} t}-\frac{\mathrm{d} \hat{x}(t)}{\mathrm{d} t} \\
& =f(x(t), u(t), w(t))-f(\hat{x}(t), \hat{u}(t), \hat{w}(t)) \\
& \approx A(t) \delta_{x}(t)+B(t) \delta_{u}(t)+G(t) \delta_{w}(t)
\end{aligned}
$$

where

$$
\begin{aligned}
A_{i j}(t) & =\left.\frac{\partial f_{i}}{\partial x_{j}}\right|_{\hat{x}(t), \hat{u}(t), \hat{w}(t)} \\
B_{i j}(t) & =\left.\frac{\partial f_{i}}{\partial u_{j}}\right|_{\hat{x}(t), \hat{u}(t), \hat{w}(t)} \\
G_{i j}(t) & =\left.\frac{\partial f_{i}}{\partial w_{j}}\right|_{\hat{x}(t), \hat{u}(t), \hat{w}(t)}
\end{aligned}
$$

- this is an LDS with state δ_{x}, action δ_{u}, and disturbance $G \delta_{w}$

Outline

Continuous-time linear dynamical systems

Linearization

Time discretization

Example: A simple climate model

Time discretization

- computers can simulate or optimize the evolution of LDS
- this is easiest if we divide the time span into discrete chunks

- K is the number of time steps
- $k \in\{0, \ldots, K\}$ indexes time steps
- often, we use a uniform time step $\Delta t: t_{k}=t_{0}+k \Delta t$

Reminder: Solving first-order linear vector ODE IVPs

the solution to the first-order linear vector ODE IVP

$$
x\left(t^{\text {init }}\right)=x^{\text {init }}, \frac{\mathrm{d} x(t)}{\mathrm{d} t}=A x(t)+b(t)
$$

with constant $A \in \mathbf{R}^{n \times n}$ is

$$
x(t)=e^{\left(t-t^{\text {init }}\right) A} x^{\text {init }}+e^{t A} \int_{t_{\text {init }}}^{t} e^{-\tau A} b(\tau) \mathrm{d} \tau
$$

Time discretization in general

- consider the perfectly observed LDS

$$
\frac{\mathrm{d} x(t)}{\mathrm{d} t}=A(t) x(t)+B(t) u(t)+w(t)
$$

- suppose A is piecewise constant:

$$
t_{k} \leq t<t_{k+1} \Longrightarrow A(t)=A\left(t_{k}\right)
$$

- then

$$
\begin{aligned}
x\left(t_{k+1}\right)= & e^{\left(t_{k+1}-t_{k}\right) A\left(t_{k}\right)} x\left(t_{k}\right) \\
& +e^{t_{k+1} A\left(t_{k}\right)} \int_{t_{k}}^{t_{k+1}} e^{-\tau A\left(t_{k}\right)}(B(\tau) u(\tau)+w(\tau)) \mathrm{d} \tau
\end{aligned}
$$

- this is just the ODE IVP solution with $t^{\text {init }}=t_{k}, t=t_{k+1}$, and

$$
b(t)=B(t) u(t)+w(t)
$$

Time discretization in general

$11 / 27$

Time discretization with piecewise constant inputs

- if A, B, u, and w are piecewise constant,

$$
t_{k} \leq t<t_{k+1} \Longrightarrow\left\{\begin{array}{l}
A(t)=A\left(t_{k}\right), B(t)=B\left(t_{k}\right) \\
u(t)=u\left(t_{k}\right), w(t)=w\left(t_{k}\right)
\end{array}\right.
$$

then

$$
\begin{aligned}
x\left(t_{k+1}\right)= & e^{\left(t_{k+1}-t_{k}\right) A\left(t_{k}\right)} x\left(t_{k}\right) \\
& +e^{t_{k+1} A\left(t_{k}\right)} \int_{t_{k}}^{t_{k+1}} e^{-\tau A\left(t_{k}\right)} \mathrm{d} \tau\left(B\left(t_{k}\right) u\left(t_{k}\right)+w\left(t_{k}\right)\right)
\end{aligned}
$$

- if $A\left(t_{k}\right)$ is invertible, then

$$
e^{t_{k+1} A\left(t_{k}\right)} \int_{t_{k}}^{t_{k+1}} e^{-\tau A\left(t_{k}\right)} \mathrm{d} \tau=\left(e^{\left(t_{k+1}-t_{k}\right) A\left(t_{k}\right)}-l\right) A\left(t_{k}\right)^{-1}
$$

Time discretization with piecewise constant inputs

$13 / 27$

Summary: Discretizing LDS

- consider the continuous-time LDS

$$
\frac{\mathrm{d} x(t)}{\mathrm{d} t}=\tilde{A}(t) x(t)+\tilde{B}(t) u(t)+\tilde{w}(t)
$$

with piecewise constant $\tilde{A}, \tilde{B}, u, \tilde{w}$

- the equivalent discrete-time LDS is

$$
x(k+1)=A(k) x(k)+B(k) u(k)+w(k)
$$

where $\cdot(k)$ denotes $\cdot\left(t_{k}\right), A(k)=e^{\left(t_{k+1}-t_{k}\right) \tilde{A}\left(t_{k}\right)}$, and

$$
\begin{aligned}
& B(k)=e^{t_{k+1} \tilde{A}\left(t_{k}\right)} \int_{t_{k}}^{t_{k+1}} e^{-\tau \tilde{A}\left(t_{k}\right)} \mathrm{d} \tau \tilde{B}\left(t_{k}\right) \\
& w(k)=e^{t_{k+1} \tilde{A}\left(t_{k}\right)} \int_{t_{k}}^{t_{k+1}} e^{-\tau \tilde{A}\left(t_{k}\right)} \mathrm{d} \tau \tilde{w}\left(t_{k}\right)
\end{aligned}
$$

Summary: Discretizing LDS (continued)

- sample Matlab discretization code:

```
csys = ss(Atk,Btk,Ctk,Dtk); % continuous-time system
dsys = c2d(csys,t(k+1)-t(k)); % discrete-time system
Ak = dsys.A; % discrete-time dynamics matrix
```

- if the dynamics matrix $\tilde{A}\left(t_{k}\right)$ is invertible, then

$$
\begin{aligned}
& B(k)=(A(k)-I) \tilde{A}\left(t_{k}\right)^{-1} \tilde{B}\left(t_{k}\right) \\
& w(k)=(A(k)-I) \tilde{A}\left(t_{k}\right)^{-1} \tilde{w}\left(t_{k}\right)
\end{aligned}
$$

Discretizing nonlinear dynamical systems

- there is no general analytical formula for discretizing

$$
\frac{\mathrm{d} x(t)}{\mathrm{d} t}=f(x(t), u(t), w(t))
$$

with an arbitrary nonlinear dynamics function f

- but numerical ODE solvers can do the trick
- Runge-Kutta 4th order method works well for most problems
- Matlab example with $f(x(t), u(t), w(t))=x(t) u(t)^{w(t)} \in \mathbf{R}$:

```
fk = @(tk,xk) xk*u(k)`w(k); % dynamics function
[~,soln] = ode45(fk,[t(k),t(k+1)],x(k)); % solver call
x(k+1) = soln(end); % solution
```


Outline

Continuous-time linear dynamical systems

Linearization

Time discretization

Example: A simple climate model

A simple model of earth's temperature dynamics

Earth's surface, T

- orange is shortwave radiation (sunlight), red is longwave
- $R=6.38 \times 10^{6} \mathrm{~m}$ is the earth's radius
- $S=1370 \mathrm{~W} / \mathrm{m}^{2}$ is the solar constant
- $\alpha=0.3, \varepsilon=0.767$ are the atmosphere's albedo, emissivity
- $\sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} / \mathrm{K}^{4}$ is the Stefan-Boltzmann constant

Assumptions

- "atmosphere" is very thin with negligible thermal capacitance \Longrightarrow its temperature responds instantly to changes in forcing
- "earth's surface" is 70 m of water covering 70% of surface \Longrightarrow its internal energy is $U=C T$ with thermal capacitance

$$
C=m c=\rho V c=\rho A \ell c=1.05 \times 10^{23} \mathrm{~J} / \mathrm{K}
$$

Earth's surface
$A=0.7\left(4 \pi R^{2}\right)$

Steady-state power balance on atmosphere

power in $=$ power out
$\Longleftrightarrow \pi R^{2}\left(S+4 \sigma T^{4}\right)=\pi R^{2}[\alpha S+(1-\alpha) S$ $\left.+8 \varepsilon \sigma T_{a}^{4}+4(1-\varepsilon) \sigma T^{4}\right]$
$\Longleftrightarrow T_{a}^{4}=T^{4} / 2$

Transient power balance on earth's surface

rate of change of energy $=$ power in - power out

$$
\begin{aligned}
\frac{\mathrm{d} U}{\mathrm{~d} t} & \left.=\pi R^{2}\left[(1-\alpha) S+4 \sigma \varepsilon T_{a}^{4}-4 \sigma T^{4}\right)\right] \\
\frac{\mathrm{d} T}{\mathrm{~d} t} & =\frac{\pi R^{2}}{C}\left[(1-\alpha) S-4 \sigma(1-\varepsilon / 2) T^{4}\right]
\end{aligned}
$$

Effect of greenhouse gases on surface temperatures

- greenhouse gas emissions increase atmospheric emissivity ε
- in steady state, global-average surface temperature is

$$
T=\sqrt[4]{\frac{(1-\alpha) S}{4 \sigma(1-\varepsilon / 2)}}
$$

- if $\varepsilon=0$, then $T=255 \mathrm{~K}=-18{ }^{\circ} \mathrm{C}=-0.4^{\circ} \mathrm{F}$
- if $\varepsilon=1$, then $T=303.3 \mathrm{~K}=30.3^{\circ} \mathrm{C}=86.5^{\circ} \mathrm{F}$
- 1880-1900 average: $T=286.7 \mathrm{~K}=13.7^{\circ} \mathrm{C}=56.7^{\circ} \mathrm{F}$ (consistent with an atmospheric emissivity of $\varepsilon=0.748$)
- in 2022, T was $287.8 \mathrm{~K}=14.8^{\circ} \mathrm{C}=58.6^{\circ} \mathrm{F}$ (consistent with an atmospheric emissivity of $\varepsilon=0.767$)

$22 / 27$

Nonlinear dynamical system

dynamics:

$$
\begin{aligned}
\frac{\mathrm{d} T(t)}{\mathrm{d} t} & =\frac{\pi R^{2}}{C}\left[(1-\alpha(t)) S-4 \sigma(1-\varepsilon(t) / 2) T(t)^{4}\right] \\
\Longleftrightarrow \frac{\mathrm{d} x(t)}{\mathrm{d} t} & =\underbrace{-\beta(1-u(t) / 2) x(t)^{4}+\tilde{w}(t)}_{f(x(t), u(t), \tilde{w}(t))}
\end{aligned}
$$

with

- state: $x(t)=T(t)$
- action: $u(t)=\varepsilon(t)$ (a stand-in for CO_{2} concentration)
- (continuous-time) disturbance: $\tilde{w}(t)=\pi R^{2}(1-\alpha(t)) S / C$
- parameter $\beta=4 \sigma \pi R^{2} / C$

Linearization

- given nominal $\hat{u}(t), \hat{\tilde{w}}(t)$, compute nominal $\hat{x}(t)$ with ODE45
- the partial derivatives

$$
\begin{aligned}
& \frac{\partial f}{\partial x(t)}=-4 \beta(1-u(t) / 2) x(t)^{3} \\
& \frac{\partial f}{\partial u(t)}=\beta x(t)^{4} / 2, \frac{\partial f}{\partial \tilde{w}(t)}=1
\end{aligned}
$$

give linearized continuous-time dynamics

$$
\delta_{x}(t)=\tilde{a}(t) \delta_{x}(t)+\tilde{b}(t) \delta_{u}(t)+\delta_{\tilde{w}}(t)
$$

with $\delta .(t)=\cdot(t)-\hat{\ddots}(t)$ and

$$
\tilde{a}(t)=-4 \beta(1-\hat{u}(t) / 2) \hat{x}(t)^{3}, \tilde{b}(t)=\beta \hat{x}(t)^{4} / 2
$$

Time discretization

- use uniform time step Δt
- assume $\tilde{a}(t), \tilde{b}(t), \delta_{u}(t), \delta_{\tilde{w}}(t)$ are piecewise constant
- then the discrete-time linearized system is

$$
\delta_{x}(k+1)=a(k) \delta_{x}(k)+b(k) \delta_{u}(k)+\delta_{w}(k)
$$

with

$$
\begin{aligned}
a(k) & =e^{\Delta t \tilde{a}\left(t_{k}\right)}, b(k)=(a(k)-1) \tilde{b}\left(t_{k}\right) / \tilde{a}\left(t_{k}\right) \\
\delta_{w}(k) & =(a(k)-1) \delta_{\tilde{w}}\left(t_{k}\right) / \tilde{a}\left(t_{k}\right)
\end{aligned}
$$

- $x^{\text {lin }}$ stays within $0.0035{ }^{\circ} \mathrm{C}$ of true x
- $x^{\text {lin }}$ gets farther from x as x gets farther from nominal \hat{x}

