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A continuous-time linear dynamical system (LDS)

dx(t)

dt
= A(t)x(t) + B(t)u(t) + w(t)

• t ∈ R denotes time

• x(t) ∈ Rnx is the state

• u(t) ∈ Rnu is the action or control

• w(t) ∈ Rnx is the disturbance

• A(t) ∈ Rnx×nx is the dynamics matrix

• B(t) ∈ Rnx×nu is the action matrix or control matrix
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A continuous-time LDS with imperfect observations

dx(t)

dt
= A(t)x(t) + B(t)u(t) + w(t)

y(t) = C (t)x(t) + D(t)u(t) + v(t)

• y(t) ∈ Rny is the observation or output

• v(t) ∈ Rny is the noise

• C (t) ∈ Rny×nx is the observation matrix

• D(t) ∈ Rny×nu is the feedthrough matrix

2 / 27



Common simplifications

• time-invariant: A, B, C , and D are independent of t

• single-input, single-output: nu = ny = 1

• no feedthrough: D(t) = 0 for all t

• perfectly observed: y(t) = x(t)

• deterministic: w(t) = 0 and v(t) = 0 for all t
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Reminder: Linearizing scalar-valued functions of scalars

• suppose nonlinear f : R→ R is differentiable at x̂ ∈ R

• Taylor’s theorem: if x is near x̂ , then f (x) is very near

f (x̂) + f ′(x̂)(x − x̂)

x

f (x) = x2

f (x̂) + f ′(x̂)(x − x̂) = x − 1
4

x̂ = 1
2

f (x̂) = 1
4
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Linearizing vector-valued functions of vectors

• suppose nonlinear f : Rn → Rm is differentiable at x̂ ∈ Rn

• Taylor’s theorem: if x is near x̂ , then f (x) is very near

f (x̂) + Df (x̂)(x − x̂)

where

Df (x̂) =


∂f1
∂x1

∣∣∣
x̂

. . . ∂f1
∂xn

∣∣∣
x̂

...
...

∂fm
∂x1

∣∣∣
x̂

. . . ∂fm
∂xn

∣∣∣
x̂

 ∈ Rm×n

is the derivative (Jacobian) matrix of f at x̂
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Linearizing dynamical systems

• consider the nonlinear vector ODE

dx(t)

dt
= f (x(t), u(t),w(t))

with dynamics function f : Rnx × Rnu × Rnw → Rnx

• suppose at each t, x̂(t), û(t), and ŵ(t) satisfy

dx̂(t)

dt
= f (x̂(t), û(t), ŵ(t))

(we call x̂ , û, and ŵ nominal trajectories)

• define the perturbations

δx(t) = x(t)− x̂(t), δu(t) = u(t)− û(t), δw (t) = w(t)− ŵ(t)
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Linearizing dynamical systems (continued)

• if (x(t), u(t),w(t)) ≈ (x̂(t), û(t), ŵ(t)), then

dδx(t)

dt
=

dx(t)

dt
− dx̂(t)

dt
= f (x(t), u(t),w(t))− f (x̂(t), û(t), ŵ(t))

≈ A(t)δx(t) + B(t)δu(t) + G (t)δw (t)

where

Aij(t) =
∂fi
∂xj

∣∣∣
x̂(t),û(t),ŵ(t)

Bij(t) =
∂fi
∂uj

∣∣∣
x̂(t),û(t),ŵ(t)

Gij(t) =
∂fi
∂wj

∣∣∣
x̂(t),û(t),ŵ(t)

• this is an LDS with state δx , action δu, and disturbance Gδw
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Time discretization

• computers can simulate or optimize the evolution of LDS

• this is easiest if we divide the time span into discrete chunks

. . .
t0 t1 tK

• K is the number of time steps

• k ∈ {0, . . . ,K} indexes time steps

• often, we use a uniform time step ∆t: tk = t0 + k∆t
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Reminder: Solving first-order linear vector ODE IVPs

the solution to the first-order linear vector ODE IVP

x(t init) = x init,
dx(t)

dt
= Ax(t) + b(t)

with constant A ∈ Rn×n is

x(t) = e(t−t init)Ax init + etA
∫ t

t init

e−τAb(τ)dτ
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Time discretization in general

• consider the perfectly observed LDS

dx(t)

dt
= A(t)x(t) + B(t)u(t) + w(t)

• suppose A is piecewise constant:

tk ≤ t < tk+1 =⇒ A(t) = A(tk)

• then

x(tk+1) = e(tk+1−tk )A(tk )x(tk)

+ etk+1A(tk )

∫ tk+1

tk

e−τA(tk )(B(τ)u(τ) + w(τ))dτ

• this is just the ODE IVP solution with t init = tk , t = tk+1, and

b(t) = B(t)u(t) + w(t)
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Time discretization in general

. . .
t0 t1 tK

t

x

x(t0)

x(t1)

x(tK )

. . .
t0 t1 tK

t

u

u(t0)

u(t1)

u(tK )
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Time discretization with piecewise constant inputs

• if A, B, u, and w are piecewise constant,

tk ≤ t < tk+1 =⇒

{
A(t) = A(tk), B(t) = B(tk)

u(t) = u(tk), w(t) = w(tk),

then

x(tk+1) = e(tk+1−tk )A(tk )x(tk)

+ etk+1A(tk )

∫ tk+1

tk

e−τA(tk )dτ(B(tk)u(tk) + w(tk))

• if A(tk) is invertible, then

etk+1A(tk )

∫ tk+1

tk

e−τA(tk )dτ =
(
e(tk+1−tk )A(tk ) − I

)
A(tk)−1
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Time discretization with piecewise constant inputs

. . .
t0 t1 tK

t

x

x(t0)

x(t1)

x(tK )

. . .
t0 t1 tK

t

u

u(t0)

u(t1)

u(tK−1)
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Summary: Discretizing LDS

• consider the continuous-time LDS

dx(t)

dt
= Ã(t)x(t) + B̃(t)u(t) + w̃(t)

with piecewise constant Ã, B̃, u, w̃

• the equivalent discrete-time LDS is

x(k + 1) = A(k)x(k) + B(k)u(k) + w(k)

where ·(k) denotes ·(tk), A(k) = e(tk+1−tk )Ã(tk ), and

B(k) = etk+1Ã(tk )

∫ tk+1

tk

e−τ Ã(tk )dτ B̃(tk)

w(k) = etk+1Ã(tk )

∫ tk+1

tk

e−τ Ã(tk )dτ w̃(tk)
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Summary: Discretizing LDS (continued)

• sample Matlab discretization code:

csys = ss(Atk,Btk,Ctk,Dtk); % continuous-time system

dsys = c2d(csys,t(k+1)-t(k)); % discrete-time system

Ak = dsys.A; % discrete-time dynamics matrix

• if the dynamics matrix Ã(tk) is invertible, then

B(k) = (A(k)− I ) Ã(tk)−1B̃(tk)

w(k) = (A(k)− I ) Ã(tk)−1w̃(tk)
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Discretizing nonlinear dynamical systems

• there is no general analytical formula for discretizing

dx(t)

dt
= f (x(t), u(t),w(t))

with an arbitrary nonlinear dynamics function f

• but numerical ODE solvers can do the trick

• Runge-Kutta 4th order method works well for most problems

• Matlab example with f (x(t), u(t),w(t)) = x(t)u(t)w(t) ∈ R:

fk = @(tk,xk) xk*u(k)^w(k); % dynamics function

[~,soln] = ode45(fk,[t(k),t(k+1)],x(k)); % solver call

x(k+1) = soln(end); % solution

16 / 27



Outline

Continuous-time linear dynamical systems

Linearization

Time discretization

Example: A simple climate model



A simple model of earth’s temperature dynamics

Atmosphere, Ta

Earth’s surface, T

πR2S

(1− α)πR2S

απR2S

4πR2εσT 4
a

4πR2εσT 4
a

4πR2σT 4

4πR2(1− ε)σT 4

• orange is shortwave radiation (sunlight), red is longwave

• R = 6.38× 106 m is the earth’s radius

• S = 1370 W/m2 is the solar constant

• α = 0.3, ε = 0.767 are the atmosphere’s albedo, emissivity

• σ = 5.67× 10−8 W/m2/K4 is the Stefan-Boltzmann constant
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Assumptions

• “atmosphere” is very thin with negligible thermal capacitance

=⇒ its temperature responds instantly to changes in forcing

• “earth’s surface” is 70 m of water covering 70% of surface

=⇒ its internal energy is U = CT with thermal capacitance

C = mc = ρVc = ρA`c = 1.05× 1023 J/K

Earth’s surface ` = 70 m

A = 0.7(4πR2)
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Steady-state power balance on atmosphere

πR2S

(1− α)πR2S

απR2S

4πR2εσT 4
a

4πR2εσT 4
a

4πR2σT 4

4πR2(1− ε)σT 4

power in = power out

⇐⇒ πR2(S + 4σT 4) = πR2 [αS + (1− α)S

+ 8εσT 4
a + 4(1− ε)σT 4

]
⇐⇒ T 4

a = T 4/2
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Transient power balance on earth’s surface

(1− α)πR2S 4πR2εσT 4
a 4πR2σT 4

rate of change of energy = power in− power out

dU

dt
= πR2

[
(1− α)S + 4σεT 4

a − 4σT 4)
]

dT

dt
=
πR2

C

[
(1− α)S − 4σ(1− ε/2)T 4

]
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Effect of greenhouse gases on surface temperatures

• greenhouse gas emissions increase atmospheric emissivity ε

• in steady state, global-average surface temperature is

T = 4

√
(1− α)S

4σ(1− ε/2)

• if ε = 0, then T = 255 K = −18 ◦C = −0.4 ◦F

• if ε = 1, then T = 303.3 K = 30.3 ◦C = 86.5 ◦F

• 1880–1900 average: T = 286.7 K = 13.7 ◦C = 56.7 ◦F
(consistent with an atmospheric emissivity of ε = 0.748)

• in 2022, T was 287.8 K = 14.8 ◦C = 58.6 ◦F
(consistent with an atmospheric emissivity of ε = 0.767)

NOAA (2023), Climate Change: Global Temperature
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Nonlinear dynamical system

dynamics:

dT (t)

dt
=
πR2

C

[
(1− α(t))S − 4σ(1− ε(t)/2)T (t)4

]
⇐⇒ dx(t)

dt
= −β(1− u(t)/2)x(t)4 + w̃(t)︸ ︷︷ ︸

f (x(t),u(t),w̃(t))

with

• state: x(t) = T (t)

• action: u(t) = ε(t) (a stand-in for CO2 concentration)

• (continuous-time) disturbance: w̃(t) = πR2(1− α(t))S/C

• parameter β = 4σπR2/C
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Linearization

• given nominal û(t), ˆ̃w(t), compute nominal x̂(t) with ODE45

• the partial derivatives

∂f

∂x(t)
= −4β(1− u(t)/2)x(t)3

∂f

∂u(t)
= βx(t)4/2,

∂f

∂w̃(t)
= 1

give linearized continuous-time dynamics

δx(t) = ã(t)δx(t) + b̃(t)δu(t) + δw̃ (t)

with δ·(t) = ·(t)− ·̂(t) and

ã(t) = −4β(1− û(t)/2)x̂(t)3, b̃(t) = βx̂(t)4/2
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Time discretization

• use uniform time step ∆t

• assume ã(t), b̃(t), δu(t), δw̃ (t) are piecewise constant

• then the discrete-time linearized system is

δx(k + 1) = a(k)δx(k) + b(k)δu(k) + δw (k)

with

a(k) = e∆tã(tk ), b(k) = (a(k)− 1) b̃(tk)/ã(tk)

δw (k) = (a(k)− 1) δw̃ (tk)/ã(tk)
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• x lin stays within 0.0035 ◦C of true x

• x lin gets farther from x as x gets farther from nominal x̂
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