Linear ordinary differential equations

Purdue ME 597, Distributed Energy Resources

Kevin J. Kircher

Outline

Notation and math reminders

First-order linear scalar ODEs

Battery example

Linear vector ODEs

Scalars

- a scalar is a number
- \mathbf{R} is the set of real scalars
(as opposed to integer, rational, imaginary, complex, ...)
- the notation $\alpha \in \mathbf{R}$ means α is a real scalar

Vectors

- a vector is an ordered list of numbers
- the dimension of a vector is the length of the list
- column vectors are vertical lists; row vectors are horizontal
- \mathbf{R}^{n} is the set of real n-dimensional column vectors
- we write $a \in \mathbf{R}^{n}$ as

$$
a=\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right] \text { or }\left(a_{1}, \ldots, a_{n}\right)
$$

- $a_{i} \in \mathbf{R}$ is element i of a

Matrices

- a matrix is a rectangular array of numbers
- the size of a matrix is (\# of rows) \times (\# of columns)
- $\mathbf{R}^{m \times n}$ is the set of real $m \times n$ matrices
- we write $A \in \mathbf{R}^{m \times n}$ as

$$
A=\left[\begin{array}{ccc}
A_{11} & \ldots & A_{1 n} \\
\vdots & & \vdots \\
A_{m 1} & \ldots & A_{m n}
\end{array}\right]
$$

- $A_{i j} \in \mathbf{R}$ is element i, j of A
- the transpose of $A \in \mathbf{R}^{m \times n}$ is

$$
A^{\top}=\left[\begin{array}{ccc}
A_{11} & \ldots & A_{m 1} \\
\vdots & & \vdots \\
A_{1 n} & \ldots & A_{m n}
\end{array}\right] \in \mathbf{R}^{n \times m}
$$

Matrices generalize vectors generalize scalars

- a matrix $A \in \mathbf{R}^{n \times 1}$ with 1 column is a column vector (and a matrix $A \in \mathbf{R}^{1 \times n}$ with 1 row is a row vector)
- a 1-dimensional vector $a \in \mathbf{R}^{1}$ is a scalar
- for these reasons, we write $\mathbf{R}^{n \times 1}$ as \mathbf{R}^{n} and \mathbf{R}^{1} as \mathbf{R}

Scalar multiplication

for $\alpha \in \mathbf{R}, a \in \mathbf{R}^{n}$, and $A \in \mathbf{R}^{m \times n}$,

$$
\alpha a=a \alpha=\left[\begin{array}{c}
\alpha a_{1} \\
\vdots \\
\alpha a_{n}
\end{array}\right]
$$

and

$$
\alpha A=A \alpha=\left[\begin{array}{ccc}
\alpha A_{11} & \ldots & \alpha A_{1 n} \\
\vdots & & \vdots \\
\alpha A_{m 1} & \ldots & \alpha A_{m n}
\end{array}\right]
$$

Inner product

- for $a \in \mathbf{R}^{n}$ and $b \in \mathbf{R}^{n}$,

$$
a^{\top} b=\left[\begin{array}{lll}
a_{1} & \ldots & a_{n}
\end{array}\right]\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right]=a_{1} b_{1}+\cdots+a_{n} b_{n}
$$

- also called dot product, sometimes denoted $a \cdot b$ or $\langle a \mid b\rangle$
- example: $\mathbf{1}^{\top} a=a_{1}+\cdots+a_{n}$, where $\mathbf{1}=\left[\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right] \in \mathbf{R}^{n}$

Matrix-vector multiplication

- for $A \in \mathbf{R}^{m \times n}$ and $b \in \mathbf{R}^{n}$,

$$
\begin{aligned}
& A b=\left[\begin{array}{c}
A_{11} b_{1}+\cdots+A_{1 n} b_{n} \\
\vdots \\
A_{m 1} b_{1}+\cdots+A_{m n} b_{n}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
{\left[\begin{array}{lll}
A_{11} & \ldots & A_{1 n}
\end{array}\right] b} \\
& \vdots & \\
{\left[\begin{array}{lll}
A_{m 1} & \ldots & A_{m n}
\end{array}\right] b}
\end{array}\right] \\
& \\
& =b_{1}\left[\begin{array}{c}
A_{11} \\
\vdots \\
A_{m 1}
\end{array}\right]+\cdots+b_{n}\left[\begin{array}{c}
A_{1 n} \\
\vdots \\
A_{m n}
\end{array}\right] \\
& \text { - example: } I b=b \text {, where } I=\left[\begin{array}{ccc}
1 & \\
& \ddots & \\
& & 1
\end{array}\right] \in \mathbf{R}^{n \times n}
\end{aligned}
$$

Matrix-matrix multiplication

- for $A \in \mathbf{R}^{m \times n}$ and $B \in \mathbf{R}^{n \times p}$, the i, j element of $A B$ is

$$
(A B)_{i j}=\left[\begin{array}{lll}
A_{i 1} & \ldots & A_{i n}
\end{array}\right]\left[\begin{array}{c}
B_{j 1} \\
\vdots \\
B_{j n}
\end{array}\right]
$$

- syntax $A B$ only parses if (\# columns of $A)=(\#$ rows of $B)$
- caution! $A B \neq B A$ in general
\diamond syntax $A B=B A$ only parses if A and B are both $n \times n$
\diamond even if A and B are both $n \times n, A B=B A$ only in special cases
- if $A \in \mathbf{R}^{n \times n}$ is invertible, then $A^{-1} A=A A^{-1}=I$

Matrix-valued functions of scalars

- $A: \mathbf{R} \rightarrow \mathbf{R}^{m \times n}$ means A is a function that
\diamond takes scalars as inputs
\diamond gives $m \times n$ matrices as outputs
- for $A: \mathbf{R} \rightarrow \mathbf{R}^{m \times n}$ and $t \in \mathbf{R}$, we write

$$
A(t)=\left[\begin{array}{ccc}
A_{11}(t) & \ldots & A_{1 n}(t) \\
\vdots & & \vdots \\
A_{m 1}(t) & \ldots & A_{m n}(t)
\end{array}\right]
$$

- $A(t) \in \mathbf{R}^{m \times n}$ (an $m \times n$ matrix) is the value of A at t
- $A_{i j}: \mathbf{R} \rightarrow \mathbf{R}$ is element i, j of A
($A_{i j}$ is a scalar-valued function of scalars)

Differentiating matrix-valued functions of scalars

- the derivative of $A: \mathbf{R} \rightarrow \mathbf{R}^{m \times n}$ is

$$
\frac{\mathrm{d} z(t)}{\mathrm{d} t}=\left[\begin{array}{ccc}
\frac{\mathrm{d} A_{11}(t)}{\mathrm{d} t} & \ldots & \frac{\mathrm{~d} A_{1 n}(t)}{\mathrm{d} t} \\
\vdots & & \vdots \\
\frac{\mathrm{~d} A_{m 1}(t)}{\mathrm{d} t} & \ldots & \frac{\mathrm{~d} A_{m n}(t)}{\mathrm{d} t}
\end{array}\right]
$$

- product rule: for $A: \mathbf{R} \rightarrow \mathbf{R}^{m \times n}$ and $b: \mathbf{R} \rightarrow \mathbf{R}^{n}$,

$$
\frac{\mathrm{d}}{\mathrm{~d} t}(A(t) b(t))=A(t) \frac{\mathrm{d} b(t)}{\mathrm{d} t}+\frac{\mathrm{d} A(t)}{\mathrm{d} t} b(t)
$$

Integrating matrix-valued functions of scalars

- the integral of $A: \mathbf{R} \rightarrow \mathbf{R}^{m \times n}$ is

$$
\int_{t_{1}}^{t_{2}} A(t) \mathrm{d} t=\left[\begin{array}{ccc}
\int_{t_{1}}^{t_{2}} A_{11}(t) \mathrm{d} t & \ldots & \int_{t_{1}}^{t_{2}} A_{1 n}(t) \mathrm{d} t \\
\vdots & & \vdots \\
\int_{t_{1}}^{t_{2}} A_{m 1}(t) \mathrm{d} t & \ldots & \int_{t_{1}}^{t_{2}} A_{m n}(t) \mathrm{d} t
\end{array}\right]
$$

- fundamental theorem of calculus: for $A: \mathbf{R} \rightarrow \mathbf{R}^{m \times n}$,

$$
\int_{t_{1}}^{t_{2}} \frac{\mathrm{~d} A(t)}{\mathrm{d} t} \mathrm{~d} t=A\left(t_{2}\right)-A\left(t_{1}\right)
$$

Block matrices

- the elements of a block matrix are matrices, e.g.

$$
A=\left[\begin{array}{ll}
B & C \\
D & E
\end{array}\right]
$$

- submatrices B, C, D, and E must have consistent dimensions
$\diamond B$ and C must have the same \# of rows
$\diamond D$ and E must have the same \# of rows
$\diamond B$ and D must have the same \# of columns
$\diamond C$ and E must have the same \# of columns

Outline

Notation and math reminders

First-order linear scalar ODEs

Battery example

Linear vector ODEs

Scalar ordinary differential equations (ODEs)

- a scalar ODE
\diamond has a scalar-valued function of scalars as the variable \diamond relates that function to its (ordinary) derivative(s)
- examples:

$$
\begin{aligned}
& \frac{\mathrm{d} x(t)}{\mathrm{d} t}=e^{-t} x(t)-3 \\
& \frac{\mathrm{~d}^{2} x(t)}{\mathrm{d} t^{2}}=\sin (x(t)) \\
& \frac{\mathrm{d}^{3} x(t)}{\mathrm{d} t^{3}}=t \frac{\mathrm{~d} x(t)}{\mathrm{d} t}-x(t)
\end{aligned}
$$

- solving these ODEs means finding the function $x: \mathbf{R} \rightarrow \mathbf{R}$

Categorizing ODEs

- the order of an ODE is the highest derivative it contains
- an n th-order ODE is linear if it can be written as
$\frac{\mathrm{d}^{n} x(t)}{\mathrm{d} t^{n}}=a_{n-1}(t) \frac{\mathrm{d}^{n-1} x(t)}{\mathrm{d} t^{n-1}}+\cdots+a_{1}(t) \frac{\mathrm{d} x(t)}{\mathrm{d} t}+a_{0}(t) x(t)+b(t)$
for some functions $a_{0}, \ldots, a_{n-1}, b: \mathbf{R} \rightarrow \mathbf{R}$

ODE categorization examples

$$
\begin{array}{lr}
\frac{d x(t)}{d t}=e^{-t} x(t)-3 & \text { first-order, linear } \\
\frac{d^{2} x(t)}{d t^{2}}=\sin (x(t)) & \text { second-order, nonlinear } \\
\frac{d^{3} x(t)}{d t^{3}}=t \frac{d x(t)}{d t}-x(t) & \text { third-order, linear }
\end{array}
$$

Solving first-order linear ODE initial value problems (IVPs)

- a general first-order linear scalar ODE IVP has the form

$$
x\left(t^{\mathrm{init}}\right)=x^{\mathrm{init}}, \frac{\mathrm{~d} x(t)}{\mathrm{d} t}=a(t) x(t)+b(t)
$$

- multiplying the ODE by any positive $g: \mathbf{R} \rightarrow \mathbf{R}$ gives

$$
\begin{array}{r}
\frac{\mathrm{d} x(t)}{\mathrm{d} t} g(t)-x(t) a(t) g(t)=g(t) b(t) \\
\Longleftrightarrow \frac{\mathrm{d}}{\mathrm{~d} t}(x(t) g(t))=g(t) b(t)
\end{array}
$$

provided $\frac{\mathrm{d} g(t)}{\mathrm{d} t}=-a(t) g(t)$

- the second line follows from the product rule,

$$
\frac{\mathrm{d}}{\mathrm{~d} t}(x(t) g(t))=\frac{\mathrm{d} x(t)}{\mathrm{d} t} g(t)+x(t) \frac{\mathrm{d} g(t)}{\mathrm{d} t}
$$

What positive $g: \mathbf{R} \rightarrow \mathbf{R}$ satisfies $\frac{\mathrm{d} g(t)}{\mathrm{d} t}=-a(t) g(t)$?

- guess: $g(t)=e^{-\int a(t) \mathrm{d} t}$
$\diamond \int a(t) \mathrm{d} t$ (itself a function of t) is any antiderivative of a
\diamond for example, if $a(t)=\cos (t)$, we can use $\int a(t) \mathrm{d} t=\sin (t)$
\diamond this g is positive since $e^{z}>0$ for any number $z \in \mathbf{R}$
- check:

$$
\begin{aligned}
\frac{\mathrm{d} g(t)}{\mathrm{d} t} & =\frac{\mathrm{d}}{\mathrm{~d} t} e^{-\int a(t) \mathrm{d} t} \\
& =e^{-\int a(t) \mathrm{d} t} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(-\int a(t) \mathrm{d} t\right) \\
& =e^{-\int a(t) \mathrm{d} t}(-a(t)) \\
& =-a(t) g(t)
\end{aligned}
$$

Solving first-order linear ODEs (continued)

- with $g(t)=e^{-\int a(t) \mathrm{d} t}$, we have

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t}(x(t) g(t))=g(t) b(t) \\
\Longrightarrow & \int_{t^{\text {init }}}^{t} \frac{\mathrm{~d}}{\mathrm{~d} \tau}(x(\tau) g(\tau)) \mathrm{d} \tau=\int_{t_{\text {init }}}^{t} g(\tau) b(\tau) \mathrm{d} \tau \\
\Longrightarrow & x(t) g(t)-x\left(t^{\text {init }}\right) g\left(t^{\text {init }}\right)=\int_{t^{\text {init }}}^{t} g(\tau) b(\tau) \mathrm{d} \tau \\
\Longrightarrow & x(t)=\frac{1}{g(t)}\left[g\left(t^{\text {init }}\right) x^{\text {init }}+\int_{t^{\text {init }}}^{t} g(\tau) b(\tau) \mathrm{d} \tau\right]
\end{aligned}
$$

- this is the solution x to our first-order linear ODE IVP

Summary: Solving first-order linear ODE IVPs

the solution to the first-order linear ODE IVP

$$
x\left(t^{\text {init }}\right)=x^{\text {init }}, \frac{\mathrm{d} x(t)}{\mathrm{d} t}=a(t) x(t)+b(t)
$$

is

$$
x(t)=\frac{1}{g(t)}\left[g\left(t^{\text {init }}\right) x^{\text {init }}+\int_{t^{\text {init }}}^{t} g(\tau) b(\tau) \mathrm{d} \tau\right]
$$

where

$$
g(t)=e^{-\int a(t) \mathrm{d} t}
$$

Homework: A concrete example

- consider the IVP

$$
x(1)=\frac{1}{2}, \frac{\mathrm{~d} x(t)}{\mathrm{d} t}=-\frac{2 x(t)}{t}+t-1+\frac{1}{t}
$$

- write down $a(t)$ and $b(t)$
- find $g(t)$
- find $\int_{t}^{t}{ }^{t}{ }^{\text {nit }} g(\tau) b(\tau) \mathrm{d} \tau$
- write down the solution $x(t)$

Special cases with constant coefficients

- if a is constant, then $g(t)=e^{-t a}$ and

$$
x(t)=e^{\left(t-t^{\text {init }}\right) a} x^{\text {init }}+e^{t a} \int_{t_{\text {init }}}^{t} e^{-\tau a} b(\tau) \mathrm{d} \tau
$$

- if b is also constant and $a \neq 0$, then

$$
x(t)=e^{\left(t-t^{\text {init }}\right) a} x^{\text {init }}+\frac{e^{\left(t-t^{\text {init }}\right) a}-1}{a} b
$$

- if $a=0$ and b is constant, then

$$
x(t)=x^{\text {init }}+\left(t-t^{\text {init }}\right) b
$$

as expected from the IVP $x\left(t^{\text {init }}\right)=x^{\text {init }}, \frac{\mathrm{d} x(t)}{\mathrm{d} t}=b$

Outline

Notation and math reminders

First-order linear scalar ODEs

Battery example

Linear vector ODEs

A simple battery model

- a simple model of a battery is

$$
\frac{\mathrm{d} x(t)}{\mathrm{d} t}=-\frac{x(t)}{\tau}+p^{\mathrm{chem}}(t)
$$

- $x(t) \in \mathbf{R}(\mathrm{kWh})$ is the stored chemical potential energy
- $\tau>0(\mathrm{~h})$ is the self-dissipation time constant
- $p^{\text {chem }}(t)(\mathrm{kW})$ is the chemical charging power (or discharging if $p^{\text {chem }}(t)<0$)

Solving a battery IVP with constant power

- the battery model is a first-order linear ODE with

$$
\begin{aligned}
& \diamond a=-1 / \tau \text { (constant) } \\
& \diamond b(t)=p^{\text {chem }}(t)
\end{aligned}
$$

- so if $p^{\text {chem }}(t)$ is constant and $x\left(t^{\text {init }}\right)=x^{\text {init }}$, then

$$
x(t)=e^{-\left(t-t^{\text {init }}\right) / \tau} x^{\text {init }}+\left[1-e^{-\left(t-t^{\text {init }}\right) / \tau}\right] \tau p^{\text {chem }}
$$

- as $t \rightarrow \infty, x(t)$ approaches a steady state $x^{\text {fin }}=\tau p^{\text {chem }}$:

$$
x(t)=x^{\text {fin }} \Longrightarrow \frac{\mathrm{d} x(t)}{\mathrm{d} t}=-\frac{\tau p^{\text {chem }}}{\tau}+p^{\text {chem }}=0
$$

The solution is a mixture of the initial and final states

- any mixture of quantities z_{1} and z_{2} can be written as

$$
\lambda z_{1}+(1-\lambda) z_{2}
$$

for some weight $\lambda \in[0,1]$

- since τ is positive, $e^{-\left(t-t^{\text {init }}\right) / \tau} \in[0,1]$ for all $t \geq t^{\text {init }}$
- so (with constant $p^{\text {chem }}$) the battery IVP solution

$$
x(t)=e^{-\left(t-t^{\text {init }}\right) / \tau} x^{\text {init }}+\left[1-e^{-\left(t-t^{\text {init }}\right) / \tau}\right] x^{\text {fin }}
$$

is a mixture of $x^{\text {init }}$ and $x^{\text {fin }}$, weighted by $\lambda(t)=e^{-\left(t-t^{\text {init }}\right) / \tau}$

Convergence rate in terms of the time constant τ

- define the normalized gap between $x(t)$ and $x^{\text {fin }}$,

$$
y(t)=\frac{x^{\mathrm{fin}^{\mathrm{fin}}}-x(t)}{x^{\text {fin }}-x^{\text {init }}}
$$

normalized by the initial gap $x^{\text {fin }}-x^{\text {init }}$

- a little algebra shows that $y(t)=e^{-\left(t-t^{\text {init }}\right) / \tau}$
- so after n time constants, $100 e^{-n} \%$ of the initial gap remains

t	$y(t)$
$t^{\text {init }}$	100%
$t^{\text {init }}+\tau$	37%
$t^{\text {init }}+2 \tau$	14%
$t^{\text {init }}+3 \tau$	5%
$t^{\text {init }}+4 \tau$	2%

Energy evolution with constant $p^{\text {chem }}$

Outline

Notation and math reminders

First-order linear scalar ODEs

Battery example

Linear vector ODEs

First-order linear vector ODEs

- a first-order linear scalar ODE has the form

$$
\frac{\mathrm{d} x(t)}{\mathrm{d} t}=a(t) x(t)+b(t)
$$

where $a(t) \in \mathbf{R}, b(t) \in \mathbf{R}$, and the variable is $x: \mathbf{R} \rightarrow \mathbf{R}$

- a first-order linear vector ODE has the form

$$
\frac{\mathrm{d} x(t)}{\mathrm{d} t}=A(t) x(t)+b(t)
$$

where $A(t) \in \mathbf{R}^{n \times n}, b(t) \in \mathbf{R}^{n}$, and the variable is $x: \mathbf{R} \rightarrow \mathbf{R}^{n}$

- in terms of the matrix and vector elements,

$$
\left[\begin{array}{c}
\mathrm{d} x_{1}(t) / \mathrm{d} t \\
\vdots \\
\mathrm{~d} x_{n}(t) / \mathrm{d} t
\end{array}\right]=\left[\begin{array}{ccc}
A_{11}(t) & \ldots & A_{1 n}(t) \\
\vdots & & \vdots \\
A_{n 1}(t) & \ldots & A_{n n}(t)
\end{array}\right]\left[\begin{array}{c}
x_{1}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right]+\left[\begin{array}{c}
b_{1}(t) \\
\vdots \\
b_{n}(t)
\end{array}\right]
$$

Writing n th-order scalar ODEs as first-order vector ODEs

- consider the n th-order linear scalar ODE

$$
x^{(n)}=a_{n-1} x^{(n-1)}+\cdots+a_{1} x^{(1)}+a_{0} x+b
$$

(with time arguments suppressed and notation $x^{(i)}=\mathrm{d}^{i} x / \mathrm{d} t^{i}$)

- define a new variable $z: \mathbf{R} \rightarrow \mathbf{R}^{n}$ by $z=\left(x, \ldots, x^{(n-1)}\right)$
- then the first derivative of z is

$$
\left[\begin{array}{c}
x^{(1)} \\
\vdots \\
x^{(n-1)} \\
x^{(n)}
\end{array}\right]=\left[\begin{array}{cccc}
1 & & \\
& & \ddots & \\
& & & 1 \\
a_{0} & \cdots & a_{n-2} & a_{n-1}
\end{array}\right]\left[\begin{array}{c}
x \\
\vdots \\
x^{(n-2)} \\
x^{(n-1)}
\end{array}\right]+\left[\begin{array}{c}
\\
b
\end{array}\right]
$$

- this is a first-order linear vector ODE of the form

$$
\frac{\mathrm{d} z(t)}{\mathrm{d} t}=A(t) z(t)+c(t)
$$

Solving first-order linear vector ODE IVPs

- the first-order linear vector ODE IVP

$$
x\left(t^{\mathrm{init}}\right)=x^{\mathrm{init}} \in \mathbf{R}^{n}, \frac{\mathrm{~d} x(t)}{\mathrm{d} t}=A(t) x(t)+b(t)
$$

has no analytical solution for general time-varying $A(t)$

- but for constant A, the IVP has solution

$$
x(t)=e^{\left(t-t^{\text {init }}\right) A} x^{\text {init }}+e^{t A} \int_{t^{\text {init }}}^{t} e^{-\tau A} b(\tau) \mathrm{d} \tau
$$

where $e^{M} \in \mathbf{R}^{n \times n}$ is the matrix exponential of $M \in \mathbf{R}^{n \times n}$

- in Matlab, $e^{M}=\operatorname{expm}$ (M)

The matrix exponential of any $M \in \mathbf{R}^{n \times n}$

- notation: $M^{2}=M M, M^{3}=M M M$, and so on
- definition:

$$
e^{M}=I+M+\frac{1}{2!} M^{2}+\frac{1}{3!} M^{3}+\ldots
$$

- why define the matrix exponential? because for any $t \in \mathbf{R}$,

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} e^{t M} & =\frac{\mathrm{d}}{\mathrm{~d} t}\left(I+t M+\frac{1}{2!} t^{2} M^{2}+\frac{1}{3!} t^{3} M^{3}+\ldots\right) \\
& =M+t M^{2}+\frac{1}{2!} t^{2} M^{3}+\ldots \\
& =M\left(1+t M+\frac{1}{2!} t^{2} M^{2}+\ldots\right) \\
& =M e^{t M}
\end{aligned}
$$

- $\frac{\mathrm{d}}{\mathrm{d} t} e^{t M}=M e^{t M}=e^{t M} M$ for any $t \in \mathbf{R}$
- $e^{0}=I$ (where 0 and I are $n \times n$)
- $e^{\left(t_{1}+t_{2}\right) M}=e^{t_{1} M} e^{t_{2} M}$ for any $t_{1}, t_{2} \in \mathbf{R}$
- e^{M} is always invertible and $\left(e^{t M}\right)^{-1}=e^{-t M}$:

$$
e^{t M} e^{-t M}=e^{(t-t) M}=e^{0 M}=e^{0}=l
$$

Properties of the matrix exponential (continued)

if M is invertible, then

$$
\int_{t_{1}}^{t_{2}} e^{t M} d t=M^{-1}\left(e^{t_{2} M}-e^{t_{1} M}\right)=\left(e^{t_{2} M}-e^{t_{1} M}\right) M^{-1}
$$

since

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t} e^{t M}=M e^{t M} \\
\Longrightarrow & \int_{t_{1}}^{t_{2}} \frac{\mathrm{~d}}{\mathrm{~d} t} e^{t M} \mathrm{~d} t=M \int_{t_{1}}^{t_{2}} e^{t M} \mathrm{~d} t \\
\Longrightarrow & e^{t_{2} M}-e^{t_{1} M}=M \int_{t_{1}}^{t_{2}} e^{t M} \mathrm{~d} t \\
\Longrightarrow & M^{-1}\left(e^{t_{2} M}-e^{t_{1} M}\right)=\int_{t_{1}}^{t_{2}} e^{t M} \mathrm{~d} t
\end{aligned}
$$

$$
\begin{aligned}
x\left(t^{\text {init }}\right) & =x^{\text {init }} \in \mathbf{R}^{n}, \frac{\mathrm{~d} x(t)}{\mathrm{d} t}=A x(t)+b(t) \\
\Longrightarrow x(t) & =e^{\left(t-t^{\text {init }}\right) A} x^{\text {init }}+e^{t A} \int_{t^{\text {init }}}^{t} e^{-\tau A} b(\tau) \mathrm{d} \tau
\end{aligned}
$$

- follow the steps from the scalar ODE IVP proof
- use properties of the matrix exponential
- use the product rule: for $G: \mathbf{R} \rightarrow \mathbf{R}^{n \times n}$ and $x: \mathbf{R} \rightarrow \mathbf{R}^{n}$,

$$
\frac{\mathrm{d}}{\mathrm{~d} t}(G(t) x(t))=G(t) \frac{\mathrm{d} x(t)}{\mathrm{d} t}+\frac{\mathrm{d} G(t)}{\mathrm{d} t} x(t)
$$

Special case of invertible A, constant b

if A is invertible and b is constant, then

$$
x(t)=e^{\left(t-t^{\text {init }}\right) A} x^{\text {init }}+\left[e^{\left(t-t^{\text {init }}\right) A}-I\right] A^{-1} b
$$

since

$$
\begin{aligned}
e^{t A} \int_{t_{\text {init }}}^{t} e^{-\tau A} b \mathrm{~d} \tau & =e^{t A} \int_{\text {tinit }}^{t} e^{-\tau A} \mathrm{~d} \tau b \\
& =e^{t A}\left[-\left(e^{-t A}-e^{t^{\text {init }} A}\right) A^{-1}\right] b \\
& =e^{t A}\left(e^{-t^{\text {init }} A}-e^{-t A}\right) A^{-1} b \\
& =\left[e^{\left(t-t^{\text {init }}\right) A}-1\right] A^{-1} b
\end{aligned}
$$

Special case of noninvertible A, constant b

- if A and b are constant, then

$$
x(t)=e^{\left(t-t^{\text {init }}\right) A} x^{\text {init }}+e^{t A} \int_{t^{\text {init }}}^{t} e^{-\tau A} \mathrm{~d} \tau b
$$

- how to compute $e^{t A} \int_{t^{\text {init }}}^{t} e^{-\tau A} \mathrm{~d} \tau b$ when A is noninvertible?
- compute $e^{\left(t-t^{\text {init }}\right) \bar{A}}$, where $\bar{A}=\left[\begin{array}{ll}A & b \\ & \end{array}\right] \in \mathbf{R}^{n+1 \times n+1}$
- the upper right $n \times 1$ block of $e^{\left(t-t^{\text {init }}\right) \bar{A}}$ is $e^{t A} \int_{t^{\text {init }}}^{t} e^{-\tau A} \mathrm{~d} \tau b$

Special case of noninvertible A, constant b (proof)

- define the constant dummy variable $y(t)=1$ and

$$
z(t)=\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{cc}
e^{\left(t-t^{\text {init }}\right) A} & e^{t A} \int_{t^{\text {init }}}^{t} e^{-\tau A} \mathrm{~d} \tau b \\
1
\end{array}\right]\left[\begin{array}{c}
x^{\text {init }} \\
1
\end{array}\right]
$$

- then

$$
z\left(t^{\text {init }}\right)=\left[\begin{array}{c}
x^{\text {init }} \\
1
\end{array}\right], \frac{\mathrm{d} z(t)}{\mathrm{d} t}=\left[\begin{array}{c}
\frac{\mathrm{d} x(t)}{\mathrm{d} t} \\
\frac{\mathrm{~d} y(t)}{\mathrm{d} t}
\end{array}\right]=\left[\begin{array}{ll}
A & b \\
&
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\bar{A} z(t)
$$

- this linear ODE IVP has solution $z(t)=e^{\left(t-t^{\text {init }}\right)} \bar{A}\left[\begin{array}{c}x^{\text {init }} \\ 1\end{array}\right]$
- it follows that $\left[\begin{array}{cc}e^{\left(t-t^{\text {init }}\right) A} & e^{t A} \int_{t^{\text {init }}}^{t} e^{-\tau A} \mathrm{~d} \tau b \\ 1\end{array}\right]=e^{\left(t-t^{\text {init }}\right) \bar{A}}$

