Thermal modeling of buildings

Purdue ME 597, Distributed Energy Resources

Kevin J. Kircher

Outline

Background

First-order thermal circuits

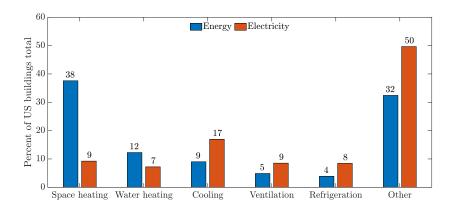
Thermal circuit model parameters

Higher-order thermal circuits

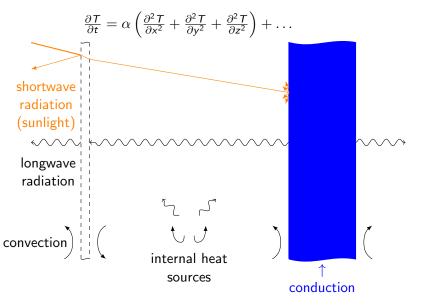
Simulating buildings

Buildings as thermal batteries

HVAC&R dominates building energy and electricity use



Detailed thermal modeling is hard



Software for detailed thermal modeling

- EnergyPlus (US DOE, open source)
- TRNSYS (Transient System Simulation, commercial)
- Modelica buildings library (US DOE, open source)
- these programs are broad and powerful, but can
 - or require many parameters, some hard to specify or fit
 - $\diamond\,$ be slow (numerical solution of coupled nonlinear PDEs)
 - $\diamond~$ be difficult to integrate with other software
- our focus: simpler models for DER design and control

Outline

Background

First-order thermal circuits

Thermal circuit model parameters

Higher-order thermal circuits

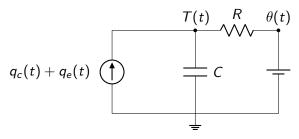
Simulating buildings

Buildings as thermal batteries

Thermal circuit models capture dominant physics

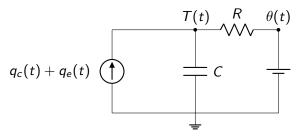
- thermal circuits work by analogy to electrical circuits
 - $\diamond \ \ \text{temperature} \ \leftrightarrow \ \ \text{voltage}$
 - $\diamond \ \text{heat} \leftrightarrow \text{charge}$
 - $\diamond\,$ thermal resistance $\leftrightarrow\,$ electrical resistance
 - $\diamond~$ thermal capacitance \leftrightarrow electrical capacitance
- basic idea: temperature differences drive heat flow (like voltage differences drive charge flow [current])

Simplest thermal circuit: 1R1C



- T(t) (°C) is indoor temperature
- $\theta(t)$ (°C) is boundary (often outdoor air) temperature
- R (°C/kW) is thermal resistance between T and θ
- C (kWh/°C) is indoor thermal capacitance
- $q_c(t)$ (kW) is thermal power from controlled equipment
- q_e(t) (kW) is thermal power from exogenous sources (sunlight, body heat, plug loads, ...)

1R1C continuous-time dynamics



- Ohm's law: current through resistor is $(T(t) \theta(t))/R$
- rate of charge accumulation on capacitor is C dT(t)/dt
- Kirchhoff's Current Law (KCL) at node labeled T(t):

current inflow = current outflow

$$q_c(t) + q_e(t) = \frac{T(t) - \theta(t)}{R} + C \frac{dT(t)}{dt}$$

1R1C discrete-time dynamics

• rearranging continuous-time dynamics gives

$$\frac{\mathrm{d}T(t)}{\mathrm{d}t} = \frac{1}{RC} \left[-T(t) + \theta(t) + R\left(q_c(t) + q_e(t)\right) \right],$$

a first-order linear ODE

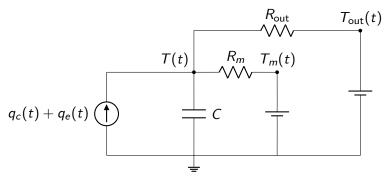
• with uniform time step Δt and piecewise constant θ , q_c , q_e ,

$$T(k+1) = aT(k) + (1-a)R(q_c(k) + w(k))$$

where $a = e^{-\Delta t/(RC)}$ and $w(k) = q_e(k) + \theta(k)/R$

• homework: show this

A 2R1C thermal circuit



- $T_m(t)$ (°C) is thermal mass temperature
- $T_{out}(t)$ (°C) is outdoor air temperature
- R_m (°C/kW) is thermal resistance between T and T_m
- R_{out} (°C/kW) is thermal resistance between T and T_{out}

Reducing a 2R1C thermal circuit to 1R1C

• KCL at node labeled T(t) gives 2R1C dynamics:

$$C\frac{\mathsf{d}T(t)}{\mathsf{d}t} = \frac{T_m(t) - T(t)}{R_m} + \frac{T_{\mathsf{out}}(t) - T(t)}{R_{\mathsf{out}}} + q_c(t) + q_e(t)$$

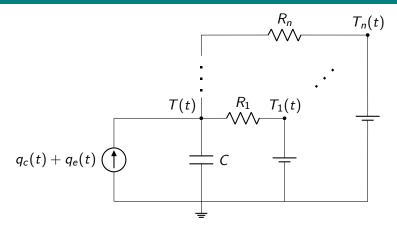
• homework: show this is equivalent to the 1R1C model

$$C\frac{\mathsf{d}T(t)}{\mathsf{d}t} = \frac{\theta(t) - T(t)}{R} + q_c(t) + q_e(t)$$

with

$$R = \frac{R_m R_{out}}{R_m + R_{out}}$$
$$\theta(t) = \frac{R_{out} T_m(t) + R_m T_{out}(t)}{R_m + R_{out}}$$

An *n*R1C thermal circuit



$$\mathsf{KCL} \implies C \frac{\mathsf{d} T(t)}{\mathsf{d} t} = \sum_{i=1}^{n} \frac{T_i(t) - T(t)}{R_i} + q_c(t) + q_e(t)$$

Reducing an *n*R1C thermal circuit to 1R1C

• *n*R1C model is equivalent to 1R1C model

$$C\frac{\mathsf{d}T(t)}{\mathsf{d}t} = \frac{\theta(t) - T(t)}{R} + q_c(t) + q_e(t)$$

with

$$R = \frac{R_1 \cdots R_n}{R_2 \cdots R_n + \cdots + R_1 \cdots R_{n-1}}$$
$$\theta(t) = \frac{R_2 \cdots R_n T_1(t) + \cdots + R_1 \cdots R_{n-1} T_n(t)}{R_2 \cdots R_n + \cdots + R_1 \cdots R_{n-1}}$$

• homework: show this

Outline

Background

First-order thermal circuits

Thermal circuit model parameters

Higher-order thermal circuits

Simulating buildings

Buildings as thermal batteries

thermal circuit models have three types of parameter:

- 1. thermal resistance R > 0 (°C/kW)
- 2. thermal capacitance C > 0 (kWh/°C)
- 3. exogenous thermal power $q_e(t)$ (kW, a time series)

- can model thermal resistance as $R = 1/(UA_w)$, where
 - $\diamond A_w$ (m²) is exterior walls' outward-facing surface area
 - $\diamond U (kW/[^{\circ}C m^{2}])$ is their overall thermal transmittance
- typical thermal transmittances (note units of W, not kW) are
 ~1 to 6 W/(°C m²) for triple- to single-pane windows
 ~0.2 to 0.8 W/(°C m²) for framed, insulated, opaque walls

A typical wall assembly

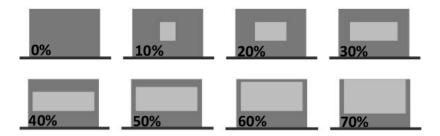
The Gold Hive: How (and why) to install rockwool insulation

- for a wall assembly whose surface area is $100\lambda\%$ windows,

$$U = \lambda U_{ ext{window}} + (1-\lambda) U_{ ext{wall}}$$

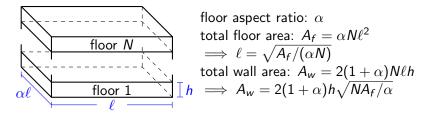
- a typical wall assembly has $\lambda pprox$ 0.2 to 0.4
- \implies overall $U \approx 0.9$ to 2 $\mathbf{W}/(^{\circ}\mathrm{C} \mathrm{m}^2)$

Window-to-wall ratio λ

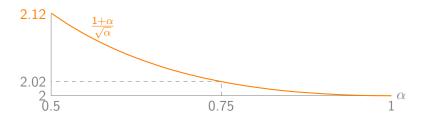


El-Deeb (2013): Combined effect of window-to-wall ratio and wall composition on energy consumption

Typical thermal resistance values (continued)



$$\frac{1+\alpha}{\sqrt{\alpha}} \approx 2$$
, so $A_w \approx 4h\sqrt{NA_f}$



Typical thermal capacitance values

- can model thermal capacitance as $C = \rho c_p V$, where
 - ◊ $ρ = 1.293 \text{ kg/m}^3$ ◊ $c_p = 2.792 \times 10^{-4} \text{ kWh/(kg °C)}$ ◊ $V = A_f h$ is enclosed volume
- this models air at standard temperature and pressure
- often, other stuff (ducts, etc.) is tightly coupled to indoor air

$$\implies C \approx (10 \text{ to } 15)\rho c_p V$$
$$\approx (0.011 \text{ to } 0.014 \text{ kWh/[°C m^2]})A_f$$

Summary: Typical resistance and capacitance values

• for a building with N stories and total floor area A_f ,

$$\begin{split} R &\approx \frac{1}{(0.01 \text{ to } 0.022 \text{ kW}/[^{\circ}\text{C m}])\sqrt{NA_f}} \\ C &\approx (0.011 \text{ to } 0.014 \text{ kWh}/[^{\circ}\text{C m}^2])A_f \end{split}$$

- time constant: $\tau = RC \approx (0.6 \text{ to } 1.3)\sqrt{A_f/N}$
- plausible values for a 200 m² house with 2 stories:

 $R pprox 3.5 \ ^{\circ}\text{C/kW}, \ C pprox 2.5 \ \text{kWh}/^{\circ}\text{C}, \ au pprox 8.5 \ \text{h}$

Typical exogenous thermal power values

- can decompose $q_e(t)$ into heat transfer from
 - 1. plugged-in devices (lights, electronics, electric cooking, ...)
 - 2. sun
 - 3. other (body heat, fossil-fueled cooking, wood fireplaces, \dots)
- often, #1 is measured via input electricity (typical intensity for homes: 5 to 10 W per m² of floor area)
- for #2, can use solar irradiance data I(t) (kW/m²):

 $q_{
m sun}(t) pprox (0.15 ext{ to } 0.23 ext{ m}) \sqrt{NA_f} I(t)$

(more on this when we learn about solar)

• #3 is often small (e.g., \sim 100 W per body)

Outline

Background

First-order thermal circuits

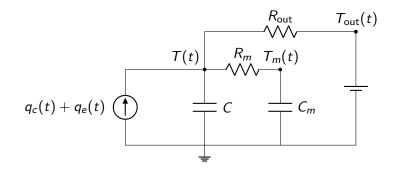
Thermal circuit model parameters

Higher-order thermal circuits

Simulating buildings

Buildings as thermal batteries

A 2R2C thermal circuit



$$C\frac{dT(t)}{dt} = \frac{T_m(t) - T(t)}{R_m} + \frac{T_{out}(t) - T(t)}{R_{out}} + q_c(t) + q_e(t)$$
$$C_m \frac{dT_m(t)}{dt} = \frac{T(t) - T_m(t)}{R_m}$$

Discrete-time dynamics

• continuous-time dynamics are

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} T(t) \\ T_m(t) \end{bmatrix} = \tilde{A} \begin{bmatrix} T(t) \\ T_m(t) \end{bmatrix} + \tilde{B}(q_c(t) + w(t))$$

with

$$\begin{split} \tilde{A} &= \begin{bmatrix} -(1/R_m + 1/R_{\text{out}})/C & 1/(R_mC) \\ 1/(R_mC_m) & -1/(R_mC_m) \end{bmatrix} \\ \tilde{B} &= \begin{bmatrix} 1/C \\ \end{bmatrix}, \ w(t) &= q_e(t) + T_{\text{out}}(t)/R_{\text{out}} \end{split}$$

• can exactly discretize this LDS via matrix exponential to

$$\begin{bmatrix} T(k+1) \\ T_m(k+1) \end{bmatrix} = A \begin{bmatrix} T(k) \\ T_m(k) \end{bmatrix} + B (q_c(k) + w(k))$$

where $A = e^{\Delta t \tilde{A}}$, $B = (A - I)\tilde{A}^{-1}\tilde{B}$ (can show \tilde{A}^{-1} exists)

- in empirical studies of real buildings, typically
 - $\diamond \ C_m \approx (8 \text{ to } 16)C$
 - $\diamond R_m \approx R/(4 \text{ to } 8)$
- check: $C_m/(0.3 \text{ kWh}/[\text{m}^3 \circ \text{C}]) \approx$ equivalent volume of pine

Penman (1990): Second order system identification in the thermal response of a working school

Two-timing

- T typically changes much faster than T_m
- $\implies\,$ air and mass dynamics define two characteristic time scales
 - fast time scale: $T_m(t) \approx T_{m0}$ (a constant) for all t
 - slow time scale: $dT(t)/dt \approx 0$ for (almost) all t

$$C\frac{\mathrm{d}T(t)}{\mathrm{d}t} \approx \frac{T_{m0} - T(t)}{R_m} + \frac{T_{\mathrm{out}}(t) - T(t)}{R_{\mathrm{out}}} + q_c(t) + q_e(t)$$
$$= \frac{\theta(t) - T(t)}{R} + q_c(t) + q_e(t)$$

with

$$R = \frac{R_m R_{out}}{R_m + R_{out}}$$
$$\theta(t) = \frac{R_{out} T_{m0} + R_m T_{out}(t)}{R_m + R_{out}}$$

Slow dynamics: 1R1C with state $T_m(t)$

$$C_m \frac{\mathrm{d} T_m(t)}{\mathrm{d} t} = \frac{T(t) - T_m(t)}{R_m}$$

• if T(t) is ~constant over each time step of duration Δt , then

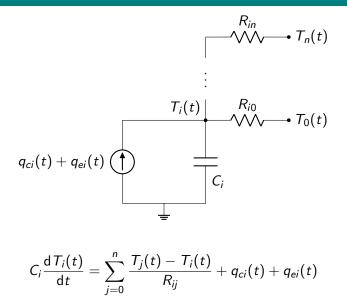
$$T_m(k+1)pprox a_m T_m(k) + (1-a_m) T(k)$$

where $a_m = e^{-\Delta t/(R_m C_m)}$

• since $dT(t)/dt \approx 0$,

$$q_c(t) pprox rac{T(t) - T_m(t)}{R_m} + rac{T(t) - T_{
m out}(t)}{R_{
m out}} - q_e(t)$$

General *m*R*n*C thermal circuits



General *m*R*n*C thermal circuits (continued)

- node 0 is a boundary node (such as the outdoor air)
- $1/R_{ij} = 0$ if no heat transfers between nodes *i* and *j*
- $q_{ci} = 0$ if equipment transfers no heat to or from node i
- can put mRnC model in matrix form and discretize like 2R2C

Outline

Background

First-order thermal circuits

Thermal circuit model parameters

Higher-order thermal circuits

Simulating buildings

Buildings as thermal batteries

Perfect setpoint tracking control (1R1C)

- define indoor temperature setpoints $\hat{T}(k)$
- 1R1C discrete-time dynamics are

$$T(k+1) = aT(k) + (1-a)R(q_c(k) + w(k))$$

 \implies to drive temperature from T(k) to $T(k+1) = \hat{T}(k+1)$, set

$$\hat{q}_c(k) = \frac{\hat{T}(k+1) - aT(k)}{(1-a)R} - w(k)$$

Perfect setpoint tracking control (2R2C)

• 2R2C discrete-time dynamics are

$$\begin{bmatrix} T(k+1) \\ T_m(k+1) \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} T(k) \\ T_m(k) \end{bmatrix} + \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} (q_c(k) + w(k))$$

 \implies to drive temperature from T(k) to $T(k+1) = \hat{T}(k+1)$, set

$$\hat{q}_{c}(k) = rac{\hat{T}(k+1) - A_{11}T(k) - A_{12}T_{m}(k)}{B_{1}} - w(k)$$

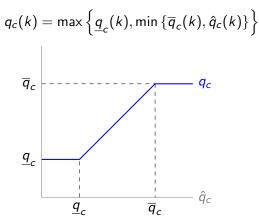
• can treat arbitrary mRnC thermal circuits similarly

(Near-)perfect setpoint tracking with capacity limits

· heating and cooling systems have capacity constraints

$$\underline{q}_{c}(k) \leq q_{c}(k) \leq \overline{q}_{c}(k)$$

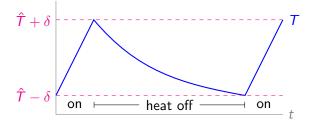
• to respect capacity constraints, saturate $\hat{q}_c(k)$:



Thermostatic control

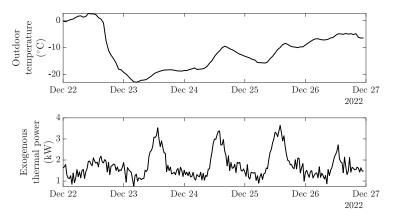
- many heating and cooling systems operate in an on/off fashion
- these systems typically use thermostatic control
- heating example with action $u(k) \in \{0,1\}$, deadband δ (°C):

Set $q_c(k) = \underline{q}_c(k) + u(k) \left(q_c(k) - \underline{q}_c(k) \right)$ ♦ increment k, update T(k), and repeat



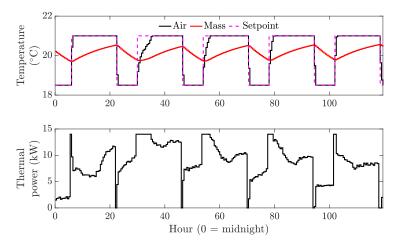
Example: Exact 2R2C vs. two-timing

- N = 2 story house with $A_f = 200 \text{ m}^2$ total floor area
- simulated over 5 very cold days from 2022 in West Lafayette



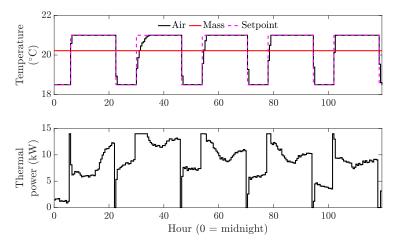
Exact 2R2C simulation results

- lower indoor air temperature setpoint overnight
- control tries to track setpoint but saturates at capacity limits



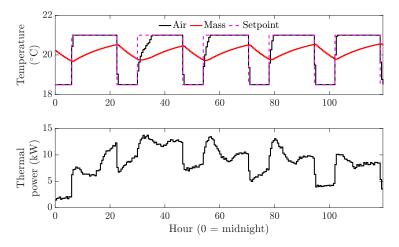
Fast 1R1C simulation results

- mass temperature assumed constant at time-average setpoint
- 0.36 kW thermal power MAE, 10.4 kWh (1%) energy error



Slow 1R1C simulation results

- quasi-steady thermal power model, air temperature from 2R2C
- 0.7 kW thermal power MAE, 1.2 kWh (0.1%) energy error



Outline

Background

First-order thermal circuits

Thermal circuit model parameters

Higher-order thermal circuits

Simulating buildings

Buildings as thermal batteries

Reminder: Batteries

one battery model is

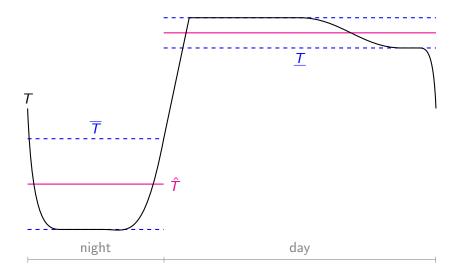
$$egin{aligned} rac{\mathsf{d}x(t)}{\mathsf{d}t} &= -rac{x(t)}{ au} + p^{\mathsf{chem}}(t) \ &\underline{x} &\leq x(t) \leq \overline{x} \ -\overline{p}^{\mathsf{chem}}_d &\leq p^{\mathsf{chem}}(t) \leq \overline{p}^{\mathsf{chem}}_c \end{aligned}$$

Indoor air as a thermal battery

• at fast time scales,
$$C \frac{\mathrm{d} T(t)}{\mathrm{d} t} = \frac{\theta(t) - T(t)}{R} + q_c(t) + q_e(t)$$

- define nominal \hat{T} , \hat{q}_c with $C \frac{d\hat{T}(t)}{dt} = \frac{\theta(t) \hat{T}(t)}{R} + \hat{q}_c(t) + q_e(t)$
- then thermal energy $x(t) = C(T(t) \hat{T}(t))$ satisfies

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = C\left(\frac{\mathrm{d}T(t)}{\mathrm{d}t} - \frac{\mathrm{d}\hat{T}(t)}{\mathrm{d}t}\right)$$
$$= \frac{\hat{T}(t) - T(t)}{R} + q_c(t) - \hat{q}_c(t)$$
$$= -\underbrace{\frac{x(t)}{RC}}_{\times(t)/\tau} + \underbrace{q_c(t) - \hat{q}_c(t)}_{p^{\mathrm{thrm}}(t)}$$



Indoor air as a thermal battery: Energy capacity

• suppose indoor air temperature has comfort constraints

$$\underline{T}(t) \leq \overline{T}(t) \leq \overline{T}(t)$$

• then thermal energy $x(t) = C(T(t) - \hat{T}(t))$ must satisfy

$$\underbrace{\mathcal{C}(\underline{T}(t) - \hat{T}(t))}_{\underline{x}(t)} \leq x(t) \leq \underbrace{\mathcal{C}(\overline{T}(t) - \hat{T}(t))}_{\overline{x}(t)}$$

• for a house with $C \approx 2.5 \text{ kWh/°C}$, $\overline{T}(t) - \underline{T}(t) \approx 2 \text{ °C}$,

$$\overline{x}(t) - \underline{x}(t) pprox 5$$
 kWh

Indoor air as a thermal battery: Power capacities

• heating and cooling systems have capacity constraints

$$\underline{q}_{c}(t) \leq q_{c}(t) \leq \overline{q}_{c}(t)$$

• so $p^{ ext{thrm}}(t) = q_c(t) - \hat{q}_c(t)$ must satisfy

$$\underbrace{\underline{q}_{c}(t) - \hat{q}_{c}(t)}_{-\overline{p}_{d}^{\text{thrm}}(t)} \leq p^{\text{thrm}}(t) \leq \underbrace{\overline{q}_{c}(t) - \hat{q}_{c}(t)}_{\overline{p}_{c}^{\text{thrm}}(t)}$$

• for a typical US house,

$$\overline{p}_c^{
m thrm}+\overline{p}_d^{
m thrm}=\overline{q}_c(t)-\underline{q}_c(t)pprox$$
 10 to 15 kW

Thermal mass as a thermal battery

- at slow time scales, $C_m \frac{dT_m(t)}{dt} = \frac{T(t) T_m(t)}{R_m}$
- define nominal \hat{T} , \hat{T}_m with $C_m \frac{\mathrm{d}\hat{T}_m(t)}{\mathrm{d}t} = \frac{\hat{T}(t) \hat{T}_m(t)}{R_m}$
- then thermal energy $x_m(t) = C_m(T_m(t) \hat{T}_m(t))$ satisfies

$$\frac{\mathrm{d}x_m(t)}{\mathrm{d}t} = C_m \left(\frac{\mathrm{d}T_m(t)}{\mathrm{d}t} - \frac{\mathrm{d}\hat{T}_m(t)}{\mathrm{d}t} \right)$$
$$= \frac{T(t) - \hat{T}(t) - (T_m(t) - \hat{T}_m(t))}{R_m}$$
$$= -\frac{x_m(t)}{\underbrace{R_m C_m}_{x_m(t)/\tau_m}} + \underbrace{\frac{T(t) - \hat{T}(t)}{R_m}}_{p_m^{\text{thrm}}(t)}$$

Thermal mass as a thermal battery: Energy capacity

• suppose thermal mass temperature must satisfy

$$\underline{T}_m(t) \leq T_m(t) \leq \overline{T}_m(t)$$

• then thermal energy $x_m(t) = C(T_m(t) - \hat{T}_m(t))$ must satisfy

$$\underbrace{C_m(\underline{T}_m(t) - \hat{T}_m(t))}_{\underline{x}_m(t)} \leq x_m(t) \leq \underbrace{C_m(\overline{T}_m(t) - \hat{T}_m(t))}_{\overline{x}_m(t)}$$

• for a house with $C_m \approx 25$ kWh/°C, $\overline{T}_m(t) - \underline{T}_m(t) \approx 2$ °C,

$$\overline{x}_m(t) - \underline{x}_m(t) pprox 50 \text{ kWh}$$

Thermal mass as a thermal battery: Power capacities

• indoor air temperature has constraints

$$\underline{T}(t) \leq \overline{T}(t) \leq \overline{T}(t)$$

• so $p_m^{\mathrm{thrm}}(t) = (T(t) - \hat{T}(t))/R_m$ must satisfy

$$\underbrace{\frac{\underline{T}(t) - \hat{T}(t)}{R_m}}_{-\overline{p}_d^{\text{thrm}}(t)} \le p_m^{\text{thrm}}(t) \le \underbrace{\frac{\overline{T}(t) - \hat{T}(t)}{R_m}}_{\overline{p}_c^{\text{thrm}}(t)}$$

• for a house with $R_m \approx 0.5 \ ^{\circ}\text{C/kW}$, $\overline{T}(t) - \underline{T}(t) \approx 2 \ ^{\circ}\text{C}$,

$$\overline{p}_{c}^{\mathrm{thrm}} + \overline{p}_{d}^{\mathrm{thrm}} pprox 4 \ \mathrm{kW}$$

Summary: Buildings as thermal batteries

- can view a 2R2C model of a building as two thermal batteries
- indoor air and 'shallow' thermal mass has
 - \diamond time constant RC
 - \diamond thermal energy capacity $C(\overline{T}(t) \underline{T}(t))$
 - \diamond thermal charging power capacity $\overline{q}_c(t) \hat{q}_c(t)$
 - \diamond thermal discharging power capacity $\hat{q}_c(t) \underline{q}_c(t)$
- 'deep' thermal mass has
 - \diamond time constant $R_m C_m$
 - \diamond thermal energy capacity $C_m(\overline{T}_m(t) \underline{T}_m(t))$
 - \diamond thermal charging power capacity $(\overline{T}(t) \hat{T}(t))/R_m$
 - \diamond thermal discharging power capacity $(\hat{T}(t) \underline{T}(t))/R_m$

Comparing thermal and chemical energy storage

- a battery converts 1 kWh electrical back to ${\sim}1$ kWh electrical
- a heat pump converts 1 kWh electrical to ~3 kWh thermal (more on heat pumps next lecture)
- so 1 kWh thermal storage is 'worth' ${\sim}1/3$ kWh in a battery

