Overview of optimization
 Purdue ME 597, Distributed Energy Resources

Kevin J. Kircher
these slides draw on materials by Stephen Boyd at Stanford

Outline

Optimization problems

Optimization vocabulary

Tractable optimization problems

Our goal in studying optimization in ME 597

to become good users of convex optimization for DER applications

- optimization is a broad and deep field
- most optimization problems are intractable
- but convex problems are (usually) tractable
\diamond rich theory
\diamond efficient, reliable algorithms
\diamond convenient modeling software
\diamond often solved in subroutines for nonconvex problems
\diamond applications in engineering, science, economics, ...
- we won't go deep, but you can (and should!) in other classes

Optimization problems

- choose $x \in \mathbf{R}^{n}$
- to minimize $f_{0}(x)$
- subject to $f_{1}(x) \leq 0, \ldots, f_{m}(x) \leq 0$
- given $f_{0}, \ldots, f_{m}: \mathbf{R}^{n} \rightarrow \mathbf{R}$

Problem interpretation

- 'choose the best feasible n-vector'
- the variable $x=\left(x_{1}, \ldots, x_{n}\right)$ is the choice made
- the objective $f_{0}(x)$ quantifies 'how bad' x is
- x is feasible if
$\diamond f_{0}, \ldots, f_{m}$ are all defined at x (for example, log : $\mathbf{R} \rightarrow \mathbf{R}$ is defined only for $x>0$)
$\diamond x$ satisfies all the constraints: $f_{1}(x) \leq 0, \ldots, f_{m}(x) \leq 0$

Example: Solar photovoltaic array sizing

- choose solar array size (number of panels or rated power)
- possible objectives:
\diamond initial cost (hardware, permitting, installation, ...)
\diamond energy costs
\diamond greenhouse gas emissions
- possible constraints:
\diamond budget
\diamond usable rooftop area
\diamond panel power output equations

Example: Electric vehicle charging

- choose charging powers at each time over a planning horizon
- possible objectives:
\diamond energy costs
\diamond greenhouse gas emissions
\diamond peak electricity demand
- possible constraints:
\diamond battery energy and power capacities
\diamond battery dynamics
\diamond charging deadline

Equivalent problems

two problems are equivalent if

- a solution to the first readily yields a solution to the second
- and vice versa

Maximization and minimization

- suppose $g: \mathbf{R}^{n} \rightarrow \mathbf{R}$ quantifies 'how good' x is
- the maximization problem
\diamond choose $x \in \mathbf{R}^{n}$
\diamond to maximize $g(x)$
\diamond subject to $f_{1}(x) \leq 0, \ldots, f_{m}(x) \leq 0$
is equivalent to the minimization problem
\diamond choose $x \in \mathbf{R}^{n}$
\diamond to minimize $-g(x)$
\diamond subject to $f_{1}(x) \leq 0, \ldots, f_{m}(x) \leq 0$

Constant objective terms

for any constant $a \in \mathbf{R}$, the problem

- choose $x \in \mathbf{R}^{n}$
- to minimize $f_{0}(x)+a$
- subject to $f_{1}(x) \leq 0, \ldots, f_{m}(x) \leq 0$
is equivalent to
- choose $x \in \mathbf{R}^{n}$
- to minimize $f_{0}(x)$
- subject to $f_{1}(x) \leq 0, \ldots, f_{m}(x) \leq 0$

Objective and constraint transformations

- suppose
$\diamond h: \mathbf{R} \rightarrow \mathbf{R}$ is increasing, meaning $y>z \Longrightarrow h(y)>h(z)$
$\diamond g_{1}, \ldots, g_{m}: \mathbf{R} \rightarrow \mathbf{R}$ satisfy $g_{i}(y) \leq 0 \Longleftrightarrow y \leq 0$
- then the problem
\diamond choose $x \in \mathbf{R}^{n}$
\diamond to minimize $f_{0}(x)$
\diamond subject to $f_{1}(x) \leq 0, \ldots, f_{m}(x) \leq 0$
is equivalent to
\diamond choose $x \in \mathbf{R}^{n}$
\diamond to minimize $h\left(f_{0}(x)\right)$
\diamond subject to $g_{1}\left(f_{1}(x)\right) \leq 0, \ldots, g_{m}\left(f_{m}(x)\right) \leq 0$

Constraints with nonzero righthand sides

- for $g, h: \mathbf{R}^{n} \rightarrow \mathbf{R}$, the inequality constraint

$$
g(x) \leq h(x)
$$

is equivalent to $f_{1}(x) \leq 0$ with $f_{1}(x)=g(x)-h(x)$

- similarly,

$$
g(x) \geq h(x)
$$

is equivalent to $f_{2}(x) \leq 0$ with $f_{2}(x)=h(x)-g(x)$

Equality constraints

for $g, h: \mathbf{R}^{n} \rightarrow \mathbf{R}$, the equality constraint

$$
g(x)=h(x)
$$

is equivalent to the two inequality constraints

$$
g(x) \leq h(x) \text { and } g(x) \geq h(x),
$$

which are equivalent to

$$
f_{1}(x) \leq 0 \text { and } f_{2}(x) \leq 0
$$

with $f_{1}(x)=g(x)-h(x)$ and $f_{2}(x)=h(x)-g(x)$

Feasibility problems

- suppose we only want to
\diamond find any $x \in \mathbf{R}^{n}$
\diamond satisfying $f_{1}(x) \leq 0, \ldots, f_{m}(x) \leq 0$
- this is equivalent to the optimization problem
\diamond choose $x \in \mathbf{R}^{n}$
\diamond to minimize 0
\diamond subject to $f_{1}(x) \leq 0, \ldots, f_{m}(x) \leq 0$

Feasibility problems (example)

solving the system of nonlinear equations

$$
g_{1}(x)=h_{1}(x), \ldots, g_{m}(x)=h_{m}(x)
$$

is equivalent to solving the feasibility problem

- find $x \in \mathbf{R}^{n}$
- subject to $g_{i}(x)-h_{i}(x) \leq 0, h_{i}(x)-g(x) \leq 0, i=1, \ldots, m$

Outline

Optimization problems

Optimization vocabulary

Tractable optimization problems

Infeasible and unbounded problems

a problem is

- infeasible if no feasible x exists
example: minimize x subject to $x \geq 1, x^{2} \leq 0$
- unbounded if there is a sequence of feasible $x(k)$ such that

$$
f_{0}(x(k)) \rightarrow-\infty \text { as } k \rightarrow \infty
$$

example: $\operatorname{minimize} \log (x)($ take $x(1)=1, x(k+1)=x(k) / 2)$

Optimality

- an $x^{\star} \in \mathbf{R}^{n}$ is optimal (or an optimizer) if
$\diamond x^{\star}$ is feasible
$\diamond f_{0}\left(x^{\star}\right) \leq f_{0}(x)$ for all feasible x
- infeasible problems have no optimizers
- unbounded problems have no optimizers
- feasible, bounded problems can have multiple optimizers example: choose $x \in \mathbf{R}^{2}$ to minimize x_{2} subject to $x_{2}=1$

Local optimality

- an \tilde{x} is locally optimal (or a local optimizer) if
$\diamond \tilde{x}$ is feasible
$\diamond f_{0}(\tilde{x}) \leq f_{0}(x)$ for all feasible x in a neighborhood of \tilde{x}
- an unlucky local optimizer \tilde{x} might have $f_{0}(\tilde{x}) \gg f_{0}\left(x^{\star}\right)$

Outline

Optimization problems

Optimization vocabulary

Tractable optimization problems

Tractable optimization problems

- few optimization problems can be solved analytically
- but many can be solved numerically
- in general, global solve times grow exponentially in n and m
- often, local solve times grow only polynomially in n and m

Intractable example: The knapsack problem

- choose $x \in \mathbf{R}^{n}$
- to maximize $c^{\top} x$
- subject to $a^{\top} x \leq b$ and $x_{1}, \ldots, x_{n} \in\{0,1\}$
- given $c \in \mathbf{R}^{n}, a \in \mathbf{R}^{n}, b \in \mathbf{R}$
- prove a polynomial-time algorithm? earn $\$ 1$ million

Local and global optimization

- a local optimizer \tilde{x}
\diamond can usually be computed efficiently
\diamond but might be far worse than a global $x^{\star}\left(f_{0}(\tilde{x}) \gg f_{0}\left(x^{\star}\right)\right)$
- a global optimizer x^{\star}
\diamond gives the best feasible performance
\diamond but might be very slow to compute
- for convex problems, all local optimizers are global optimizers (more on convexity next lecture)

Least-squares

- choose $x \in \mathbf{R}^{n}$
- to minimize $(A x-b)^{\top}(A x-b)$
- given $A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^{m}, m \geq n$ (so A is tall)
- idea: no $x \in \mathbf{R}^{n}$ exactly satisfies all m equations in " $A x=b$ "
- so least-squares finds an x with $A x \approx b$
- analytical solution: $x^{\star}=\left(A^{\top} A\right)^{-1} A^{\top} b(A \backslash b$ in Matlab $)$
- solve time is \sim proportional to $n^{2} m$

Least-squares solution

- for $f(x)=x^{\top} P x+q^{\top} x+r$ with $P=P^{\top} \in \mathbf{R}^{n \times n}$,

$$
\nabla f(x)=2 P x+q
$$

- least-squares has $P=A^{\top} A=P^{\top}, q=-2 A^{\top} b$:

$$
\begin{aligned}
(A x-b)^{\top}(A x-b) & =\left(x^{\top} A^{\top}-b^{\top}\right)(A x-b) \\
& =x^{\top} A^{\top} A x-x^{\top} A^{\top} b-b^{\top} A x+b^{\top} b \\
& =x^{\top} A^{\top} A x-2 b^{\top} A x+b^{\top} b
\end{aligned}
$$

(recalling that $(C D)^{\top}=D^{\top} C^{\top}$ for matrices C and D)

- setting the gradient equal to zero gives

$$
2 A^{\top} A x^{\star}-2 A^{\top} b=0 \Longleftrightarrow x^{\star}=\left(A^{\top} A\right)^{-1} A^{\top} b
$$

provided $A^{\top} A$ is invertible ($\boldsymbol{r a n k} A=n$)

One least-squares interpretation: Model fitting

- b_{i} is observation i of a target we want to predict (e.g., a community's electricity demand)
- $A_{i 1}, \ldots, A_{i n}$ are observations i of n predictive features (e.g., outdoor temperature, hour, weekday, season, ...)
- x_{1}, \ldots, x_{n} are parameters in a prediction model
- problem: choose x so that $x_{1} A_{i 1}+\cdots+x_{n} A_{i n} \approx b_{i}$ for all i
- the least-squares objective

$$
(A x-b)^{\top}(A x-b)=\sum_{i=1}^{m}\left(x_{1} A_{i 1}+\cdots+x_{n} A_{i n}-b_{i}\right)^{2}
$$

penalizes errors between $x_{1} A_{i 1}+\cdots+x_{n} A_{i n}$ and b_{i} for all i

Linear programming

- choose $x \in \mathbf{R}^{n}$
- to minimize $c^{\top} x$
- subject to $A x \preceq b$ (notation: for $y, z \in \mathbf{R}^{n}, y \preceq z$ means $y_{1} \leq z_{1}, \ldots, y_{n} \leq z_{n}$)
- given $A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^{m}, c \in \mathbf{R}^{n}$
- no analytical solution, but good algorithms
- solve time is \sim proportional to $n^{2} m$
- tricks can transform nonlinear problems into linear programs

Linear programming example: Chebyshev approximation

- x, A, b have same interpretations at least-squares example (parameter vector, feature matrix, target vector)
- same goal: choose x so that $x_{1} A_{i 1}+\cdots+x_{n} A_{i n} \approx b_{i}$ for all i
- instead of the least-squares objective (sum of squared errors)

$$
\sum_{i=1}^{m}\left(x_{1} A_{i 1}+\cdots+x_{n} A_{i n}-b_{i}\right)^{2}
$$

use the maximum absolute error

$$
\max _{i=1, \ldots, m}\left|x_{1} A_{i 1}+\cdots+x_{n} A_{i n}-b_{i}\right|
$$

- this is not a linear program, but can be transformed into one

Chebyshev approximation as a linear program

- the Chebyshev approximation problem is to
\diamond choose $x \in \mathbf{R}^{n}$
\diamond to minimize $\max _{i=1, \ldots, m}\left|x_{1} A_{i 1}+\cdots+x_{n} A_{i n}-b_{i}\right|$
- equivalently,
\diamond choose $(x, y) \in \mathbf{R}^{n+1}$
\diamond to minimize y
\diamond subject to $\left|x_{1} A_{i 1}+\cdots+x_{n} A_{i n}-b_{i}\right| \leq y, i=1, \ldots, m$
- still not a linear program, but closer

Chebyshev approximation as a linear program (continued)

- for any $u, v \in \mathbf{R},|u| \leq v \Longleftrightarrow u \leq v$ and $-u \leq v$
- so an equivalent problem to Chebyshev approximation is to
\diamond choose $(x, y) \in \mathbf{R}^{n+1}$
\diamond to minimize y
\diamond subject to

$$
\begin{aligned}
& x_{1} A_{i 1}+\cdots+x_{n} A_{i n}-b_{i} \leq y, i=1, \ldots, m \\
& -\left(x_{1} A_{i 1}+\cdots+x_{n} A_{i n}-b_{i}\right) \leq y, i=1, \ldots, m
\end{aligned}
$$

- a linear program with $n+1$ variables and $2 m$ constraints

Model fitting example

- noisy data generated from unknown function of $z: b_{i}=f\left(z_{i}\right)$
- goal: approximate each b_{i} by cubic, $x_{1}+x_{2} z_{i}+x_{3} z_{i}^{2}+x_{4} z_{i}^{3}$
- so $n=4$ and $A_{i j}=z_{i}^{j-1}$

Least-squares approximation error

Convex optimization

- choose $x \in \mathbf{R}^{n}$
- to minimize $f_{0}(x)$
- subject to $f_{1}(x) \leq 0, \ldots, f_{m}(x) \leq 0$
- given convex $f_{0}, \ldots, f_{m}: \mathbf{R}^{n} \rightarrow \mathbf{R}$
- no analytical solution, but good algorithms
- solve time is \sim proportional to $\max \left\{n^{3}, n^{2} m\right\}$
- includes least-squares, linear programming, and much more

How to use convex optimization

- formulate your problem
- hopefully, recognize it as convex
- otherwise, reformulate or approximate it as convex
- code it in a convex modeling language (CVX, CVXPY, Convex.jl, CVXR, ...)
- tell modeling language to pass your problem to a solver (SeDuMi, SDPT3, Gurobi, MOSEK, GLPK, ...)
- check solution, tune formulation, repeat until satisfied

Coming soon

- convex sets and functions
- solving convex optimization problems
- DER optimization examples

