Solar energy

Purdue ME 597, Distributed Energy Resources

Kevin J. Kircher

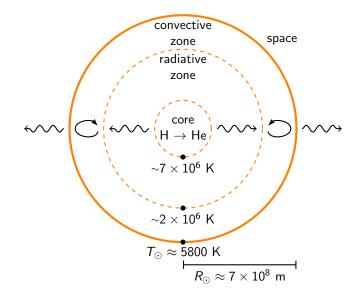
The solar resource

The sun's position in the sky

Incident irradiance on surfaces

Solar photovoltaics

The sun is (?) a mass of incandescent gas


They Might Be Giants (1993): Why Does the Sun Shine?

The sun is a miasma of incandescent plasma

They Might Be Giants (2009): Why Does the Sun Really Shine?

The sun

Sunlight in space

earth
$$\rightarrow$$
 (\sim) $R \approx 1.5 \times 10^{11} \text{ m}$

- as a black body at $\, T_\odot \approx 5800$ K, sun's surface radiates

$$\sigma A_{\odot} T_{\odot}^4 = 4 \sigma \pi R_{\odot}^2 T_{\odot}^4 \approx 4 \times 10^{26} \text{ W}$$

• at earth's distance from sun, irradiance is

$$S_0 := rac{\sigma A_{\odot} T_{\odot}^4}{4\pi R^2} pprox rac{4 imes 10^{26} \text{ W}}{4\pi (1.5 imes 10^{11} \text{ m})^2} pprox 1360 \text{ W/m}^2$$

• solar constant S_0 is irradiance at top of earth's atmosphere

How much solar power 'hits' the earth?

• solar power incident on earth's upper atmosphere:

$$(1360 \text{ W}/\text{m}^2)\pi(6.4\times 10^6 \text{ m})^2\approx 1.7\times 10^{17} \text{ W}$$

• $\sim\!\!10,\!000$ times humanity's $\sim\!\!1.8\times10^{13}$ W used for all purposes

(Almost) all energy on earth is solar energy

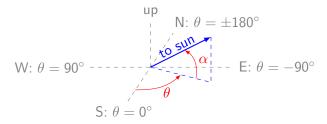
- hydro \leftarrow solar (via the water cycle)
- wind \leftarrow solar (via hot air rising)
- biomass \leftarrow solar (via photosynthesis)
- fossil fuels \leftarrow biomass (via rotting underground) \leftarrow solar

but

- nuclear $\not\leftarrow$ solar
- $\bullet \ geothermal \leftarrow nuclear \ (via \ reactions \ underground)$

and solar \leftarrow nuclear

so really, all (?) energy on earth is nuclear energy

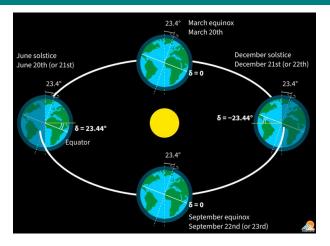

The solar resource

The sun's position in the sky

Incident irradiance on surfaces

Solar photovoltaics

Elevation and azimuth angles



- origin is at observer on earth's surface
- observer sees sun at elevation α and azimuth θ
- $\alpha = 0^{\circ}$ at sunrise/sunset
- $\theta = 0^{\circ}$ if sun is due south, increases clockwise

- $\alpha = 90^{\circ} \alpha \cos[\sin(\phi_0)\sin(\delta) + \cos(\phi_0)\cos(\delta)\cos(\lambda)]$
- $\theta = \operatorname{atan2}[\cos(\delta)\sin(\lambda), \sin(\phi_0)\cos(\delta)\cos(\lambda) \cos(\phi_0)\sin(\delta)]$
- ϕ_0 is observer's **latitude**
- δ and λ are declination and hour angles
- acos returns values in $[0^\circ, 90^\circ]$; atan2 in $[-180^\circ, 180^\circ]$

Zhang (2021): A solar azimuth formula based on the subsolar point and atan2

Declination angle

 $\delta pprox 23.45^\circ \sin(\gamma), \ \gamma = rac{360^\circ(d-81)}{365}, \ {\sf day} \ \# \ d \ {\sf is} \ 1 \ {\sf on} \ {\sf Jan} \ 1$

Hour angle

• the empirical equation of time,

 $\tau \approx (0.165 \text{ h}) \sin(2\gamma) - (0.126 \text{ h}) \cos(\gamma) - (0.025 \text{ h}) \sin(\gamma),$

converts Greenwich Mean Time t_{gm} to local **solar time** (solar time, $t_{gm} + \tau$, equals 12 h when sun is highest)

• the hour angle,

$$\lambda = \lambda_0 + (15 \ ^\circ/h)(t_{gm} + \tau - 12 \ h),$$

is defined such that

- $\diamond \lambda$ equals observer's **longitude** λ_0 when sun is highest
- $\diamond~\lambda$ increases by 360° every 24 h

The solar resource

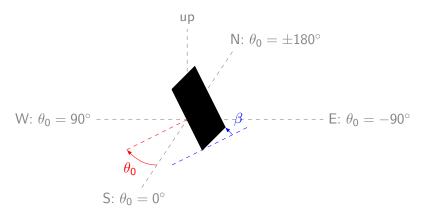
The sun's position in the sky

Incident irradiance on surfaces

Solar photovoltaics

Sunlight at earth's surface

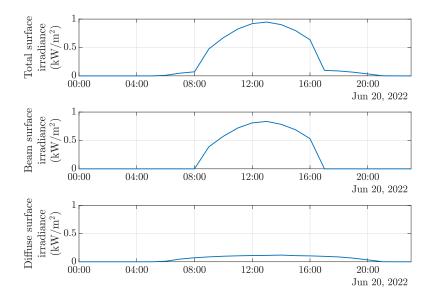
- on a clear day, \sim 75% of S_0 reaches earth's surface
 - ◇ ~70% transmitted through atmosphere (beam)
 - $\diamond~{\sim}5\%$ scattered to earth by air, dust, water vapor (diffuse)
 - $\diamond~{\sim}20\%$ absorbed by atmosphere
 - $\diamond~{\sim}5\%$ scattered back to space
- as cloud cover increases,
 - \diamond less of S_0 reaches surface (as little as ~10%)
 - $\diamond\,$ beam % of total surface sunlight falls, diffuse % rises


Sunlight measurements

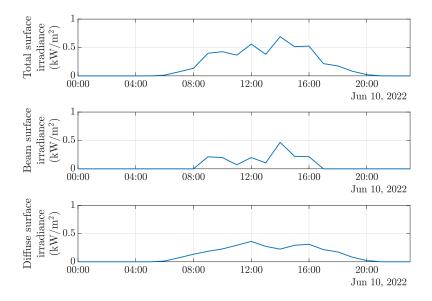
- weather data services often provide one or more of
 - \diamond beam irradiance $S_{\rm b}^{\perp}$ on surface \perp to sunbeam
 - $\diamond~$ diffuse irradiance $S_{\rm d}^-$ on horizontal surface
 - \diamond total irradiance S_{tot}^- on horizontal surface
 - \diamond beam irradiance $S_{\rm b}^-$ on horizontal surface

CSIRO: Perfect day for solar power

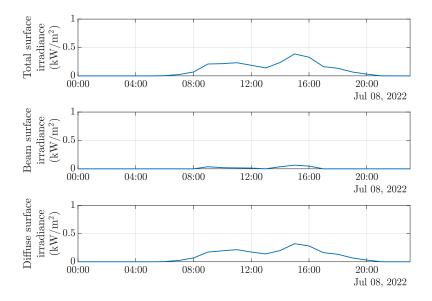
Surface tilt and azimuth

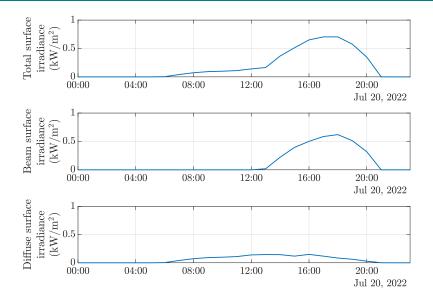

- surface tilt β and azimuth θ_0 define its orientation
- $\beta = 0^{\circ}$ for horizontal surfaces, 90° for vertical
- θ_0 follows same convention as sun's azimuth θ

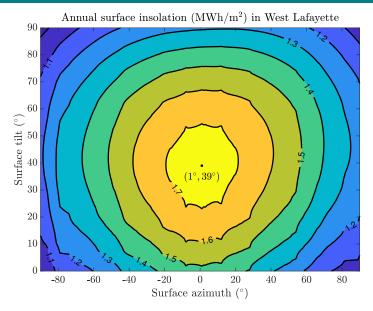
Irradiance on arbitrarily oriented surface


$$\begin{split} S_{\rm b} &= \begin{cases} 0 \text{ if } \alpha < 0^{\circ} \text{ or } 90^{\circ} < |\theta - \theta_0| < 270^{\circ} \\ S_{\rm b}^{\perp}[\cos(\alpha)\sin(\beta)\cos(\theta - \theta_0) + \sin(\alpha)\cos(\beta)] \text{ else} \\ S_{\rm d} &\approx S_{\rm d}^{-} \\ S_{\rm tot} &= S_{\rm b} + S_{\rm d} \end{cases} \end{split}$$

- $S_{\rm b}$ and $S_{\rm tot}$ are beam and total irradiance on surface
- $\alpha < 0^{\circ}$ means sun is down
- $90^{\circ} < | heta heta_0| < 270^{\circ}$ means sun is behind surface


Clear summer day with $\beta = \phi_0$, $\theta_0 = 0^\circ$


Partly cloudy summer day with $\beta = \phi_0$, $\theta_0 = 0^\circ$


Cloudy summer day with $\beta = \phi_0$, $\theta_0 = 0^\circ$

Clear summer day with $\beta = \theta_0 = 90^\circ$

$\beta pprox \phi_0$ and $\theta_0 pprox 0^\circ$ maximize annual incident energy

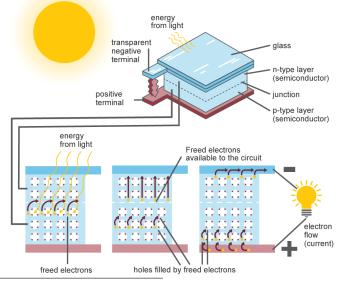
Sunlight and windows

- most windows are vertical: $\beta = 90^{\circ}$
- with $sin(\beta) = 1$ and $cos(\beta) = 0$, incident irradiance reduces to

$$S_{\text{tot}} pprox \begin{cases} S_{d}^{-} \text{ if } lpha < 0^{\circ} \text{ or } 90^{\circ} < | heta - heta_{0}| < 270^{\circ} \\ S_{d}^{-} + S_{b}^{\perp} \cos(lpha) \cos(heta - heta_{0}) \text{ else} \end{cases}$$

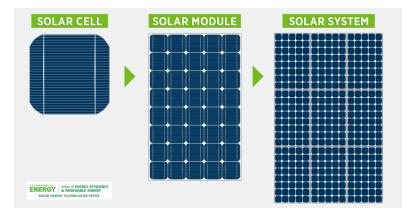
- a window of area A transmits solar power cAS_{tot}
- $c \in [0,1]$ is the window's solar heat gain coefficient (typically, $c \approx 0.25$ to 0.8)
- can simulate shading (from trees, blinds, ...) by adjusting c

Outline


The solar resource

The sun's position in the sky

Incident irradiance on surfaces


Solar photovoltaics

Solar photovoltaic cells

US Energy Information Administration: Photovoltaics and electricity

Solar photovoltaic modules and arrays

- typical cell size: ${\sim}6"{\,\times}6"$, ${\sim}0.023~m^2$, ${\sim}4.2~W$ peak
- typical module size: ${\sim}5'{\times}3'$, ${\sim}1.4~m^2$, ${\sim}250~W$ peak

US Department of Energy: PV Cells 101

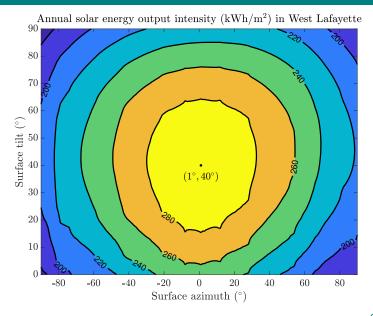
Solar photovoltaic efficiency

 $\eta = \frac{\text{electric power output}}{\text{radiative power input}}$

- whole-system efficiency includes cells, inverter, ...
- for typical solar arrays, $\eta\approx 15$ to 20%
- Shockley-Queisser limit: $\eta \leq \sim$ 33% for any single-junction cell

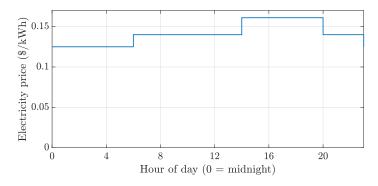
Efficiency and temperature

- efficiency scales ~linearly with cell temperature T_c

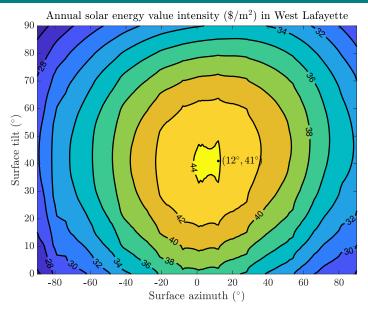

$$\eta \approx \tilde{\eta} \left(1 - \frac{T_c - \tilde{T}}{T_0 - \tilde{T}} \right)$$

- + $\tilde{\eta}$ is efficiency at rated cell temperature $\tilde{T}\approx$ 25 $^{\circ}\mathrm{C}$
- + $T_0 \approx 270~^\circ\text{C}$ is cell temperature at which generation stops
- cell temperature scales ~linearly with outdoor temperature T_a

$$T_c \approx T_a + (35 \ ^\circ \mathrm{Cm}^2/\mathrm{kW})S_\mathrm{tot}$$

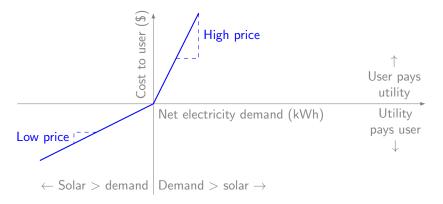

Dubey (2012): Temperature dependent photovoltaic efficiency; PV Education 24 / 28

$\beta pprox \phi_0$ and $heta_0 pprox 0^\circ$ maximize annual energy output



Time-varying electricity prices

- most people buy electricity at a constant price
- some see 'time-of-use' prices with 2 or 3 tiers
- a few see hourly prices tied to wholesale markets



Time-of-use pricing shifts optimal panel orientation west

Net metering

- sometimes, rooftop solar supply exceeds building demand
- some utilities buy excess power at their electricity sale price
- others pay a lower price; some pay nothing at all

