Solving convex optimization problems

Purdue ME 597, Distributed Energy Resources

Kevin J. Kircher

these slides draw on materials by Stephen Boyd at Stanford

Outline

Disciplined convex programming in CVX

Examples

Optimization algorithms

Disciplined convex programming

- is a framework for describing convex optimization problems
- uses a library of functions with curvature, monotonicity tags
- imposes a ruleset for compositions of functions
- is sufficient but not necessary for certifying convexity

Disciplined convex program structure

- (scalar) objective can be
\diamond minimize convex
\diamond maximize concave
\diamond omitted (for feasibility problems)
- constraints can be
\diamond convex <= concave
\diamond concave >= convex
\diamond affine $==$ affine
\diamond omitted (for unconstrained problems)
* recall that affine functions are both convex and concave
- implements disciplined convex programming in Matlab
- transforms user-specified convex programs into standard form
- passes standard-form problems to solvers
- interprets solver status (solved, infeasible, unbounded, ...)
- if solved, transforms solutions back to user-specified forms

CVX syntax

cvx_begin
variable $x(n, 1)$
minimize (norm(x, Inf))
subject to
$\mathrm{A} * \mathrm{x}==\mathrm{b}$
cvx_end

- constants $A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^{m}$ are defined above CVX scope
- within CVX scope, x is a variable
- after cvx_end, CVX populates
$\diamond c v x$ status with solver's exit status
$\diamond x$ with solution (if cvx_status is Solved)

CVX syntax (continued)

- indentation doesn't matter
- 'subject to' is unnecessary, but can improve readability
- equality constraints use $==$, not $=$ (assignment)
- CVX interprets inequalities like $\mathrm{x}>=0$ elementwise
- CVX does not require an initial guess or function derivatives

Infeasible problems

if problem instance is infeasible, CVX populates

- cvx_status with Infeasible
- each element of x with NaN

Unbounded problems

- if problem instance is unbounded, CVX populates
\diamond cvx_status with Unbounded
$\diamond x$ with a direction in which problem is unbounded
- x is likely not feasible, but for any feasible \tilde{x},
$\diamond \tilde{x}+\alpha x$ is feasible for all $\alpha \geq 0$
\diamond objective value of $\tilde{x}+\alpha x$ improves without bound as $\alpha \rightarrow \infty$
- to get an \tilde{x}, omit objective and re-solve as feasibility problem

Some example functions

function	$\operatorname{meaning}$	attributes		
$\max (\mathrm{x})$	$\max \left\{x_{1}, \ldots, x_{n}\right\}$	convex nondecreasing		
$\min (\mathrm{x})$	$\min \left\{x_{1}, \ldots, x_{n}\right\}$	concave nondecreasing		
pos (x)	$\max \{0, x\}$	convex nondecreasing		
square_pos (x)	$\max \{0, x\}^{2}$	convex nondecreasing		
inv_pos (x)	$1 / x($ for $x>0)$	convex nonincreasing		
sqrt (x)	$\sqrt{x}($ for $x \geq 0)$	concave nondecreasing		
norm(x,p)	$\\|x\\|_{p}$	convex		
sum_square(x)	$x_{1}^{2}+\cdots+x_{n}^{2}$	convex		

Quadratic forms

- for $P \in \mathbf{R}^{n \times n}, x^{\top} P x$ is a quadratic form in $x \in \mathbf{R}^{n}$
- can assume P is symmetric; if not, replace P by $\left(P+P^{\top}\right) / 2$:

$$
\begin{aligned}
x^{\top}\left(P+P^{\top}\right) x / 2 & =\left(x^{\top} P x+x^{\top} P^{\top} x\right) / 2 \\
& =\left(x^{\top} P x+\left(x^{\top} P^{\top} x\right)^{\top}\right) / 2 \\
& =\left(x^{\top} P x+x^{\top} P x\right) / 2 \\
& =x^{\top} P x
\end{aligned}
$$

- in CVX, $x^{\top} P x$ is quad_form (x, P)

Convexity and quadratic forms

- a symmetric $P \in \mathbf{R}^{n \times n}$ is positive semidefinite $(P \succeq 0)$ if

$$
x^{\top} P x \geq 0 \text { for all } x
$$

$\left(\Longleftrightarrow \operatorname{det} P \geq 0 \Longleftrightarrow \lambda_{i} \geq 0\right.$ for all eigenvalues λ_{i} of $\left.P\right)$

- a symmetric $P \in \mathbf{R}^{n \times n}$ is positive definite $(P \succ 0)$ if

$$
x^{\top} P x>0 \text { for all } x \neq 0
$$

$$
\left(\Longleftrightarrow \operatorname{det} P>0 \Longleftrightarrow \lambda_{i}>0 \text { for all eigenvalues } \lambda_{i} \text { of } P\right)
$$

- the quadratic form $x^{\top} P x$ is
\diamond convex if $P \succeq 0$
\diamond strictly convex (so has a unique global minimum) if $P \succ 0$

Quadratic forms in CVX

- quad_form and sum_square tend to be slow
- using norm instead can improve speed and accuracy
- for example, minimizing the least-squares objective

$$
\operatorname{sum}_{-} \operatorname{square}(\mathrm{A} * \mathrm{x}-\mathrm{b})=(A x-b)^{\top}(A x-b)=\|A x-b\|_{2}^{2}
$$

can typically be done faster by minimizing

$$
\operatorname{norm}(\mathrm{A} * \mathrm{x}-\mathrm{b})=\|A x-b\|_{2}=\sqrt{\|A x-b\|_{2}^{2}}
$$

- these problems are equivalent since
\diamond if g is increasing, minimize $g(f(x)) \Longleftrightarrow$ minimize $f(x)$
$\diamond \sqrt{ } \cdot$ with nonnegative arguments is increasing
$\diamond\|\cdot\|_{2}^{2}$ is nonnegative

Quadratic forms in CVX (continued)

- another example: (convex) constraint $x^{\top} P x \leq c$ with $x \in \mathbf{R}^{n}$
- if $P \succ 0$, it has a square root $R \in \mathbf{R}^{n \times n}$ with $R^{\top} R=P$ (in Matlab, $\mathrm{R}=\operatorname{chol}(\mathrm{P})$ computes an upper triangular R)
- since $\|y\|_{2}=\sqrt{y^{\top} y}$,

$$
\begin{aligned}
& x^{\top} P x \leq c \\
\Longleftrightarrow & x^{\top} R^{\top} R x \leq c \\
\Longleftrightarrow & \|R x\|_{2}^{2} \leq c \\
\Longleftrightarrow & \|R x\|_{2} \leq \sqrt{c}
\end{aligned}
$$

- in CVX, quad_form(x, P) <= c usually works
- but norm ($\operatorname{chol}(\mathrm{P}) * \mathrm{x})$ <= sqrt(c) is usually faster

Outline

Disciplined convex programming in CVX

Examples

Optimization algorithms

Least-squares

- choose x to minimize $\|A x-b\|_{2}^{2}$ given $A \in \mathbf{R}^{m \times n}, b$
- random problem instance:
$\diamond n=500, m=1000$
\diamond independent standard normal A and b
- computing the analytical solution

$$
x^{\star}=\left(A^{\top} A\right)^{-1} A^{\top} b=\mathrm{A} \backslash \mathrm{~b}
$$

takes 0.0145 s on a 2.7 GHz processor

Least-squares: CVX sum_square solution

```
cvx_begin
    variable x(n,1)
    minimize( sum_square(A*x - b) )
cvx_end
```

- solves in 2.32 s
- agrees with $\mathrm{A} \backslash \mathrm{b}$ to nine decimal places

Least-squares: CVX norm solution

```
cvx_begin
    variable x(n,1)
    minimize( norm(A*x - b) )
cvx_end
```

- solves in 1.35 s (42% less than sum_square)
- also agrees with $\mathrm{A} \backslash \mathrm{b}$ to nine decimal places

Least-squares: disciplined convex programming error

cvx_begin
variable $x(n, 1)$
minimize ($\operatorname{norm}(A * x-b){ }^{\wedge} 2$)
cvx_end
Disciplined convex programming error:
Illegal operation: \{convex $\}$.^ $\{2\}$
(Consider POW_P, POW_POS, or POW_ABS instead.)

- square of norm matches no composition rule (a convex function of a convex function may not be convex)
- but CVX would allow square_pos(norm (A*x - b)) since

$$
\text { square_pos }(z)=\max \{0, z\}^{2}
$$

is convex and nondecreasing

Outline

Disciplined convex programming in CVX

Examples

Optimization algorithms

Why learn about optimization algorithms?

- tools like CVX require no knowledge of how solvers work
- but knowing a bit can help with debugging, interpreting results
- also, optimization algorithms can be clever and beautiful
- we'll just scratch the surface; other classes go much deeper

Smooth unconstrained convex optimization

- choose $x \in \mathbf{R}^{n}$
- to minimize $f(x)$
- given smooth convex $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$
- optimality condition is $\nabla f\left(x^{\star}\right)=0$ (n equations, n unknowns)
- for example, if $f(x)=x^{\top} P x+q^{\top} x+r$, then

$$
\nabla f\left(x^{\star}\right)=2 P x^{\star}+q=0
$$

is a system of linear equations that can be solved efficiently (if P is invertible, then $x^{\star}=-P^{-1} q / 2$ is the unique solution)

- but general nonquadratic f require iterative methods

Iterative methods

iterative methods

- typically require an initial guess $x(0) \in \operatorname{dom} f$
- produce a sequence of iterates $x(1), x(2), \ldots \in \operatorname{dom} f$
- converge if $f(x(k)) \rightarrow f\left(x^{\star}\right)$ and $\nabla f(x(k)) \rightarrow 0$ as $k \rightarrow \infty$

Descent methods

- given initial guess $x(0) \in \operatorname{dom} f$, repeat:

1. find a descent direction $d(k)$
2. find a step size $\alpha(k)$
3. update $x(k+1)=x(k)+\alpha(k) d(k)$
4. increment k
until a stopping condition (such as $\|\nabla f(x(k))\|$ small) holds

- descent direction and step size should satisfy
$\diamond x(k)+\alpha(k) d(k) \in \operatorname{dom} f$
$\diamond f(x(k)+\alpha(k) d(k))<f(x(k))$
- finding a good step size is
\diamond called a line search
\diamond typically solved using a method called backtracking

Gradient descent

- $-\nabla f(x)$ points in the direction of steepest descent of f at x
- so gradient descent uses descent direction

$$
d(k)=-\nabla f(x(k))
$$

- typically requires $\sim 1 / \varepsilon$ iterations to get $f(x(k))-f\left(x^{\star}\right) \leq \varepsilon$ (for example, $\sim 10^{4}$ iterations to get $f(x(k))-f\left(x^{\star}\right) \leq 10^{-4}$)

Gradient descent illustration

Boyd and Vandenberghe (2004), Convex Optimization

Minimizing quadratic approximations

- Taylor's theorem: the quadratic approximation to f at \tilde{x} is

$$
\hat{f}(x)=f(\tilde{x})+\nabla f(\tilde{x})^{\top}(x-\tilde{x})+\frac{1}{2}(x-\tilde{x})^{\top} \nabla^{2} f(\tilde{x})(x-\tilde{x})
$$

- $\nabla^{2} f(\tilde{x}) \in \mathbf{R}^{n \times n}$ is the second derivative (Hessian) matrix:

$$
\nabla^{2} f(\tilde{x})_{i j}=\left.\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right|_{\tilde{x}}
$$

- some algebra shows that if the Hessian is invertible, then

$$
\hat{x}=\tilde{x}-\nabla^{2} f(\tilde{x})^{-1} \nabla f(\tilde{x})
$$

minimizes $\hat{f}(x)$

Quadratic approximation illustration

$24 / 31$

Newton's method

- Newton's method uses the descent direction

$$
d(k)=-\nabla^{2} f(x(k))^{-1} \nabla f(x(k))
$$

that minimizes the quadratic approximation to f at $x(k)$

- typically requires $\sim 1 / \sqrt{\varepsilon}$ iterations to get $f(x(k))-f\left(x^{\star}\right) \leq \varepsilon$ (for example, $\sim 10^{2}$ iterations to get $f(x(k))-f\left(x^{\star}\right) \leq 10^{-4}$)

Newton's method illustration

Boyd and Vandenberghe (2004), Convex Optimization

Smooth constrained convex optimization

- choose $x \in \mathbf{R}^{n}$
- to minimize $f_{0}(x)$
- subject to $f_{1}(x) \leq 0, \ldots, f_{m}(x) \leq 0$
- given smooth convex $f_{0}, \ldots, f_{m}: \mathbf{R}^{n} \rightarrow \mathbf{R}$

Logarithmic barrier

- equivalent problem: minimize $f_{0}(x)+\sum_{i=1}^{m} I_{-}\left(f_{i}(x)\right)$, where

$$
I_{-}(z)= \begin{cases}0 & \text { if } z \leq 0 \\ \infty & \text { otherwise }\end{cases}
$$

is the indicator function of $\{z \in \mathbf{R} \mid z \leq 0\}$

- idea: for a nondecreasing sequence of $t>0$, minimize

$$
f_{0}(x)-\frac{1}{t} \sum_{i=1}^{m} \log \left(-f_{i}(x)\right)
$$

- logarithmic barrier function $-\log (-z) / t$ approximates $I_{-}(z)$
- approximation improves as t increases

Logarithmic barrier approaches indicator as t increases

Barrier methods

- given $t(0)>0, \gamma>1$, initial guess $x(0) \in \operatorname{dom} f_{0}$, repeat:

1. set $x(k+1)$ by minimizing $f_{0}(x)-\frac{1}{t(k)} \sum_{i=1}^{m} \log \left(-f_{i}(x)\right)$
2. set $t(k+1)=\gamma t(k)$
until a stopping condition (such as t large) holds

- step 1 typically uses Newton's method, initialized at $x(k)$
- trade-off: $\gamma \uparrow \Longrightarrow$ outer iterations \downarrow but Newton iterations \uparrow
- barrier methods converge at a rate similar to Newton's method

Interior-point methods

- are used by most solvers that CVX calls
- are conceptually similar to barrier methods
- do not need user-specified initial guesses or derivatives
- have polynomial-time guarantees on worst-case complexity
- are often very fast in practice
- are typically faster for narrower problem classes:
\diamond linear programming (easiest)
\diamond quadratic programming
\diamond second-order cone programming
\diamond semidefinite programming (hardest)

