
Solving convex optimization problems
Purdue ME 597, Distributed Energy Resources

Kevin J. Kircher

these slides draw on materials by Stephen Boyd at Stanford

0 / 31

https://kevinjkircher.com
https://stanford.edu/~boyd/teaching.html

Outline

Disciplined convex programming in CVX

Examples

Optimization algorithms

Disciplined convex programming

• is a framework for describing convex optimization problems

• uses a library of functions with curvature, monotonicity tags

• imposes a ruleset for compositions of functions

• is sufficient but not necessary for certifying convexity

1 / 31

Disciplined convex program structure

• (scalar) objective can be

� minimize convex
� maximize concave
� omitted (for feasibility problems)

• constraints can be

� convex <= concave
� concave >= convex
� affine == affine
� omitted (for unconstrained problems)

? recall that affine functions are both convex and concave

2 / 31

CVX

• implements disciplined convex programming in Matlab

• transforms user-specified convex programs into standard form

• passes standard-form problems to solvers

• interprets solver status (solved, infeasible, unbounded, . . .)

• if solved, transforms solutions back to user-specified forms

3 / 31

CVX syntax

cvx_begin

variable x(n,1)

minimize(norm(x,Inf))

subject to

A*x == b

cvx_end

• constants A ∈ Rm×n, b ∈ Rm are defined above CVX scope

• within CVX scope, x is a variable

• after cvx_end, CVX populates

� cvx_status with solver’s exit status
� x with solution (if cvx_status is Solved)

4 / 31

CVX syntax (continued)

• indentation doesn’t matter

• ‘subject to’ is unnecessary, but can improve readability

• equality constraints use ==, not = (assignment)

• CVX interprets inequalities like x >= 0 elementwise

• CVX does not require an initial guess or function derivatives

5 / 31

Infeasible problems

if problem instance is infeasible, CVX populates

• cvx_status with Infeasible

• each element of x with NaN

6 / 31

Unbounded problems

• if problem instance is unbounded, CVX populates

� cvx_status with Unbounded

� x with a direction in which problem is unbounded

• x is likely not feasible, but for any feasible x̃ ,

� x̃ + αx is feasible for all α ≥ 0
� objective value of x̃ + αx improves without bound as α→∞

• to get an x̃ , omit objective and re-solve as feasibility problem

7 / 31

Some example functions

function meaning attributes

max(x) max {x1, . . . , xn} convex nondecreasing
min(x) min {x1, . . . , xn} concave nondecreasing
pos(x) max {0, x} convex nondecreasing

square_pos(x) max {0, x}2 convex nondecreasing
inv_pos(x) 1/x (for x > 0) convex nonincreasing
sqrt(x)

√
x (for x ≥ 0) concave nondecreasing

norm(x,p) ‖x‖p convex

sum_square(x) x21 + · · ·+ x2n convex

8 / 31

Quadratic forms

• for P ∈ Rn×n, x>Px is a quadratic form in x ∈ Rn

• can assume P is symmetric; if not, replace P by (P + P>)/2:

x>(P + P>)x/2 = (x>Px + x>P>x)/2

= (x>Px + (x>P>x)>)/2

= (x>Px + x>Px)/2

= x>Px

• in CVX, x>Px is quad_form(x,P)

9 / 31

Convexity and quadratic forms

• a symmetric P ∈ Rn×n is positive semidefinite (P � 0) if

x>Px ≥ 0 for all x

(⇐⇒ detP ≥ 0 ⇐⇒ λi ≥ 0 for all eigenvalues λi of P)

• a symmetric P ∈ Rn×n is positive definite (P � 0) if

x>Px > 0 for all x 6= 0

(⇐⇒ detP > 0 ⇐⇒ λi > 0 for all eigenvalues λi of P)

• the quadratic form x>Px is

� convex if P � 0
� strictly convex (so has a unique global minimum) if P � 0

10 / 31

Quadratic forms in CVX

• quad_form and sum_square tend to be slow

• using norm instead can improve speed and accuracy

• for example, minimizing the least-squares objective

sum_square(A*x - b) = (Ax − b)>(Ax − b) = ‖Ax − b‖22

can typically be done faster by minimizing

norm(A*x - b) = ‖Ax − b‖2 =

√
‖Ax − b‖22

• these problems are equivalent since

� if g is increasing, minimize g(f (x)) ⇐⇒ minimize f (x)
�
√
· with nonnegative arguments is increasing

� ‖·‖22 is nonnegative

11 / 31

Quadratic forms in CVX (continued)

• another example: (convex) constraint x>Px ≤ c with x ∈ Rn

• if P � 0, it has a square root R ∈ Rn×n with R>R = P
(in Matlab, R = chol(P) computes an upper triangular R)

• since ‖y‖2 =
√
y>y ,

x>Px ≤ c

⇐⇒ x>R>Rx ≤ c

⇐⇒ ‖Rx‖22 ≤ c

⇐⇒ ‖Rx‖2 ≤
√
c

• in CVX, quad_form(x,P) <= c usually works

• but norm(chol(P)*x) <= sqrt(c) is usually faster

12 / 31

Outline

Disciplined convex programming in CVX

Examples

Optimization algorithms

Least-squares

• choose x to minimize ‖Ax − b‖22 given A ∈ Rm×n, b

• random problem instance:

� n = 500, m = 1000
� independent standard normal A and b

• computing the analytical solution

x? = (A>A)−1A>b = A\b

takes 0.0145 s on a 2.7 GHz processor

13 / 31

Least-squares: CVX sum_square solution

cvx_begin

variable x(n,1)

minimize(sum_square(A*x - b))

cvx_end

• solves in 2.32 s

• agrees with A\b to nine decimal places

14 / 31

Least-squares: CVX norm solution

cvx_begin

variable x(n,1)

minimize(norm(A*x - b))

cvx_end

• solves in 1.35 s (42% less than sum_square)

• also agrees with A\b to nine decimal places

15 / 31

Least-squares: disciplined convex programming error

cvx_begin

variable x(n,1)

minimize(norm(A*x - b)^2)

cvx_end

Disciplined convex programming error:

Illegal operation: {convex} .^ {2}
(Consider POW_P, POW_POS, or POW_ABS instead.)

• square of norm matches no composition rule
(a convex function of a convex function may not be convex)

• but CVX would allow square_pos(norm(A*x - b)) since

square_pos(z) = max {0, z}2

is convex and nondecreasing

16 / 31

Outline

Disciplined convex programming in CVX

Examples

Optimization algorithms

Why learn about optimization algorithms?

• tools like CVX require no knowledge of how solvers work

• but knowing a bit can help with debugging, interpreting results

• also, optimization algorithms can be clever and beautiful

• we’ll just scratch the surface; other classes go much deeper

17 / 31

Smooth unconstrained convex optimization

• choose x ∈ Rn

• to minimize f (x)

• given smooth convex f : Rn → R

• optimality condition is ∇f (x?) = 0 (n equations, n unknowns)

• for example, if f (x) = x>Px + q>x + r , then

∇f (x?) = 2Px? + q = 0

is a system of linear equations that can be solved efficiently
(if P is invertible, then x? = −P−1q/2 is the unique solution)

• but general nonquadratic f require iterative methods

18 / 31

Iterative methods

iterative methods

• typically require an initial guess x(0) ∈ dom f

• produce a sequence of iterates x(1), x(2), . . .∈ dom f

• converge if f (x(k))→ f (x?) and ∇f (x(k))→ 0 as k →∞

19 / 31

Descent methods

• given initial guess x(0) ∈ dom f , repeat:

1. find a descent direction d(k)
2. find a step size α(k)
3. update x(k + 1) = x(k) + α(k)d(k)
4. increment k

until a stopping condition (such as ‖∇f (x(k))‖ small) holds

• descent direction and step size should satisfy

� x(k) + α(k)d(k) ∈ dom f
� f (x(k) + α(k)d(k)) < f (x(k))

• finding a good step size is

� called a line search
� typically solved using a method called backtracking

20 / 31

Gradient descent

• −∇f (x) points in the direction of steepest descent of f at x

• so gradient descent uses descent direction

d(k) = −∇f (x(k))

• typically requires ∼1/ε iterations to get f (x(k))− f (x?) ≤ ε
(for example, ∼104 iterations to get f (x(k))− f (x?) ≤ 10−4)

21 / 31

Gradient descent illustration

Boyd and Vandenberghe (2004), Convex Optimization

22 / 31

https://web.stanford.edu/~boyd/cvxbook/

Minimizing quadratic approximations

• Taylor’s theorem: the quadratic approximation to f at x̃ is

f̂ (x) = f (x̃) +∇f (x̃)>(x − x̃) +
1

2
(x − x̃)>∇2f (x̃)(x − x̃)

• ∇2f (x̃) ∈ Rn×n is the second derivative (Hessian) matrix:

∇2f (x̃)ij =
∂2f

∂xi∂xj

∣∣∣∣
x̃

• some algebra shows that if the Hessian is invertible, then

x̂ = x̃ −∇2f (x̃)−1∇f (x̃)

minimizes f̂ (x)

23 / 31

Quadratic approximation illustration

x

f (x)

f̂ (x)

x̃ x̂

24 / 31

Newton’s method

• Newton’s method uses the descent direction

d(k) = −∇2f (x(k))−1∇f (x(k))

that minimizes the quadratic approximation to f at x(k)

• typically requires ∼1/
√
ε iterations to get f (x(k))− f (x?) ≤ ε

(for example, ∼102 iterations to get f (x(k))− f (x?) ≤ 10−4)

25 / 31

Newton’s method illustration

Boyd and Vandenberghe (2004), Convex Optimization

26 / 31

https://web.stanford.edu/~boyd/cvxbook/

Smooth constrained convex optimization

• choose x ∈ Rn

• to minimize f0(x)

• subject to f1(x) ≤ 0, . . . , fm(x) ≤ 0

• given smooth convex f0, . . . , fm : Rn → R

27 / 31

Logarithmic barrier

• equivalent problem: minimize f0(x) +
∑m

i=1 I−(fi (x)), where

I−(z) =

{
0 if z ≤ 0

∞ otherwise

is the indicator function of {z ∈ R | z ≤ 0}
• idea: for a nondecreasing sequence of t > 0, minimize

f0(x)− 1

t

m∑
i=1

log(−fi (x))

• logarithmic barrier function − log(−z)/t approximates I−(z)

• approximation improves as t increases

28 / 31

Logarithmic barrier approaches indicator as t increases

z

− log(−z)/t with t = 1

t = 2

t = 10

I−(z)

29 / 31

Barrier methods

• given t(0) > 0, γ > 1, initial guess x(0) ∈ dom f0, repeat:

1. set x(k + 1) by minimizing f0(x)− 1
t(k)

∑m
i=1 log(−fi (x))

2. set t(k + 1) = γt(k)

until a stopping condition (such as t large) holds

• step 1 typically uses Newton’s method, initialized at x(k)

• trade-off: γ ↑ =⇒ outer iterations ↓ but Newton iterations ↑
• barrier methods converge at a rate similar to Newton’s method

30 / 31

Interior-point methods

• are used by most solvers that CVX calls

• are conceptually similar to barrier methods

• do not need user-specified initial guesses or derivatives

• have polynomial-time guarantees on worst-case complexity

• are often very fast in practice

• are typically faster for narrower problem classes:

� linear programming (easiest)
� quadratic programming
� second-order cone programming
� semidefinite programming (hardest)

31 / 31

	Disciplined convex programming in CVX
	Examples
	Optimization algorithms

