Convex sets and functions

Purdue ME 597, Distributed Energy Resources

Kevin J. Kircher

these slides draw on materials by Stephen Boyd at Stanford

Outline

Convex sets

Convex functions

Composition rules

Example functions

Line segments in \mathbb{R}^n

for x,
$$y \in \mathbf{R}^n$$
,
$$\{\theta x + (1-\theta)y \mid \theta \in [0,1]\}$$

is the line segment connecting x and y

Line segments in \mathbb{R}^n (continued)

$\theta x + (1 - \theta)y$ with $\theta = 0$

$$0x + (1-0)y = y$$

$\theta x + (1 - \theta)y$ with $\theta = 0.1$

$$0.1x + (1 - 0.1)y = y + 0.1(x - y)$$

$\theta x + (1 - \theta)y$ with $\theta = 0.5$

$$0.5x + (1 - 0.5)y = y + 0.5(x - y)$$

$\theta x + (1 - \theta)y$ with $\theta = 0.9$

$$0.9x + (1 - 0.9)y = y + 0.9(x - y)$$

$\theta x + (1 - \theta)y$ with $\theta = 1$

$$1x + (1-1)y = x$$

Convex sets

• a set $C \subseteq \mathbb{R}^n$ is **convex** if for all x, $y \in C$ and $\theta \in [0,1]$,

$$\theta x + (1 - \theta)y \in C$$

• C contains the line segment connecting any two points in C

Nonconvex subsets of R

Hyperplanes

• any $b \in \mathbf{R}$ and nonzero $a \in \mathbf{R}^n$ define a hyperplane,

$$\left\{ x \in \mathbf{R}^n \mid a^{\top} x = b \right\}$$

• equivalent representation for any \tilde{x} satisfying $a^{\top}\tilde{x} = b$:

$$\left\{x \in \mathbf{R}^n \mid a^\top(x - \tilde{x}) = 0\right\}$$

Hyperplanes

• any $b \in \mathbf{R}$ and nonzero $a \in \mathbf{R}^n$ define a hyperplane,

$$\left\{ x \in \mathbf{R}^n \mid a^{\top} x = b \right\}$$

• equivalent representation for any \tilde{x} satisfying $a^{\top}\tilde{x} = b$:

$$\left\{x \in \mathbf{R}^n \mid a^\top(x - \tilde{x}) = 0\right\}$$

Halfspaces

any $a \neq 0$ and b (or \tilde{x} with $a^{\top}\tilde{x} = b$) define a halfspace,

$$\left\{ x \in \mathbf{R}^n \mid a^\top x \le b \right\} = \left\{ x \in \mathbf{R}^n \mid a^\top (x - \tilde{x}) \le 0 \right\}$$

Hyperplanes and halfspaces are convex

if
$$a^{\top}x \leq b$$
 and $a^{\top}y \leq b$, then for any $\theta \in [0,1]$,
$$a^{\top}(\theta x + (1-\theta)y) = \theta a^{\top}x + (1-\theta)a^{\top}y$$
$$\leq \theta b + (1-\theta)b$$
$$= b$$

Intersections of convex sets are convex

- suppose sets $C_i \subseteq \mathbb{R}^n$ are convex for i = 1, 2, ...
- take any $x, y \in \bigcap_i C_i$ (this just means that for all i, both x and y are in C_i)
- each C_i is convex, so for any $\theta \in [0,1]$,

$$\theta x + (1 - \theta)y \in C_i$$

• since $\theta x + (1 - \theta)y \in C_i$ for all i, $\theta x + (1 - \theta)y \in \bigcap_i C_i$

Polyhedra

• a polyhedron is a set

$$\left\{ x \in \mathbf{R}^n \middle| \begin{array}{l} a_i^\top x \le b_i \text{ for } i = 1, \dots, m \\ c_j^\top x = d_j \text{ for } j = 1, \dots, p \end{array} \right\}$$

of solutions to finitely many linear inequalities and equations

• a polyhedron can be written as

$$\left(\bigcap_{i=1}^{m} \left\{ x \in \mathbf{R}^{n} \mid a_{i}^{\top} x \leq b_{i} \right\} \right) \bigcap \left(\bigcap_{j=1}^{p} \left\{ x \in \mathbf{R}^{n} \mid c_{j}^{\top} x = b_{j} \right\} \right),$$

the intersection of m halfspaces and p hyperplanes

⇒ polyhedra are convex

Polyhedra (continued)

Outline

Convex sets

Convex functions

Composition rules

Example functions

Domain

• the **domain** of $f: \mathbb{R}^n \to \mathbb{R}$ is

$$\mathbf{dom}\, f = \{x \in \mathbf{R}^n \mid f(x) \text{ is defined}\}$$

• example: for log : $\mathbf{R} \to \mathbf{R}$, dom log = $\{x \in \mathbf{R} \mid x > 0\}$

Epigraph

• the **epigraph** of $f: \mathbb{R}^n \to \mathbb{R}$ is

$$epi f = \{(x, y) \in \mathbf{R}^{n+1} \mid x \in \mathbf{dom} f, \ y \ge f(x)\}$$

• example: $f(x) = x^2$, $\operatorname{dom} f = \{x \in \mathbf{R} \mid |x| \ge 1\}$

Convex functions

- $f: \mathbf{R}^n \to \mathbf{R}$ is **convex** if **epi** f is convex
- equivalently,
 - \diamond **dom** f is convex
 - \diamond for all $x, y \in \operatorname{dom} f$ and $\theta \in [0, 1]$,

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

Concave functions

 $f: \mathbb{R}^n \to \mathbb{R}$ is **concave** if -f is convex

Affine functions are convex (and concave)

- $f: \mathbf{R}^n \to \mathbf{R}$ is affine if $f(x) = a^{\top}x + b$ for some a and b
- if f is affine, then f is convex (and concave):

$$f(\theta x + (1 - \theta)y) = a^{\top}(\theta x + (1 - \theta)y) + b$$
$$= \theta a^{\top} x + (1 - \theta)a^{\top} y + b$$
$$= \theta (a^{\top} x + b) + (1 - \theta)(a^{\top} y + b)$$
$$= \theta f(x) + (1 - \theta)f(y)$$

conversely, any function that's convex and concave is affine

Outline

Convex sets

Convex functions

Composition rules

Example functions

Increasing and decreasing functions

• $f: \mathbf{R} \to \mathbf{R}$ is nondecreasing if

$$x \ge y \implies f(x) \ge f(y)$$

(and **increasing** if $x > y \implies f(x) > f(y)$)

• similarly, f is nonincreasing if

$$x \ge y \implies f(x) \le f(y)$$

(and **decreasing** if $x > y \implies f(x) < f(y)$)

f(x) convex nondec. \iff -f(x) concave noninc.

f(x) convex nondec. $\iff f(-x)$ convex noninc.

The fundamental composition rule

- consider $h_1, \ldots, h_m : \mathbf{R}^n \to \mathbf{R}$ and convex $g : \mathbf{R}^m \to \mathbf{R}$
- define $f: \mathbf{R}^n \to \mathbf{R}$ by $f(x) = g(h_1(x), \dots, h_m(x))$
- f is convex if for each $i = 1, \ldots, m$,
 - \diamond h_i is affine, or
 - \diamond g is nondecreasing in argument i and h_i is convex, or
 - \diamond g is nonincreasing in argument i and h_i is concave
- less precisely but perhaps more memorably,
 - \diamond CVX(AFF) = CVX
 - \diamond CVXND(CVX) = CVX
 - \diamond CVXNI(CCV) = CVX

Composition rules for concave functions

- consider $h_1, \ldots, h_m : \mathbf{R}^n \to \mathbf{R}$ and concave $g : \mathbf{R}^m \to \mathbf{R}$
- define $f: \mathbf{R}^n \to \mathbf{R}$ by $f(x) = g(h_1(x), \dots, h_m(x))$
- f is concave if for each $i = 1, \ldots, m$,
 - \diamond h_i is affine, or
 - \diamond g is nondecreasing in argument i and h_i is concave, or
 - \diamond g is nonincreasing in argument i and h_i is convex

Useful special cases

- h_1 , h_2 convex $\implies h_1 + h_2$ convex
- h_1 convex, h_2 concave $\implies h_1 h_2$ convex
- h convex, $\alpha \ge 0 \implies \alpha h$ convex
- h concave, $\alpha \ge 0 \implies \alpha h$ concave
- h_i convex, $\alpha_i \geq 0 \implies \alpha_1 h_1 + \cdots + \alpha_m h_m$ convex
- h_1, \ldots, h_m convex \implies max $\{h_1, \ldots, h_m\}$ convex

Composition rules for monotonicity

- consider $g, h : \mathbf{R} \to \mathbf{R}$
- define $f: \mathbf{R} \to \mathbf{R}$ by f(x) = g(h(x))
- if g and h are nondecreasing, then f is nondecreasing:

$$x \le y \implies h(x) \le h(y) \implies g(h(x)) \le g(h(y))$$

• if g and h are nonincreasing, then f is nondecreasing:

$$x \le y \implies h(x) \ge h(y) \implies g(h(x)) \le g(h(y))$$

if g is NI and h is ND, then f is NI:

$$x \le y \implies h(x) \le h(y) \implies g(h(x)) \ge g(h(y))$$

• if g is ND and h is NI, then f is NI:

$$x \le y \implies h(x) \ge h(y) \implies g(h(x)) \ge g(h(y))$$

Outline

Convex sets

Convex functions

Composition rules

Example functions

$f(x) = |x| \text{ with } x \in \mathbf{R}$

$f(x) = \overline{\max\{0, x\} \text{ with } x \in \mathbf{R}}$

$f(x) = x^p$ with $x \in \mathbf{R}$ and even, positive p

$f(x) = x^p$ with $x \ge 0$ and p > 1

$f(x) = x^p$ with $x \ge 0$ and $p \in (0,1)$

$f(x) = x^p$ with x > 0 and p < 0

$f(x) = e^{\alpha x}$ with $x \in \mathbb{R}$, $\alpha \ge 0$

$f(x) = e^{\alpha x}$ with $x \in \mathbb{R}$, $\alpha < 0$

$f(x) = \log(\alpha x)$ with x > 0, $\alpha > 0$

$f(x) = \max\{x_1, \dots, x_n\} \text{ with } x \in \mathbf{R}^n$

convex, nondecreasing

$f(x) = \min\{x_1, \dots, x_n\} \text{ with } x \in \mathbf{R}^n$

concave, nondecreasing

Norms

- $\| \ \| : \mathbf{R}^n \to \mathbf{R}$ is a **norm** if
 - 1. $||x|| \ge 0$ for all $x \in \mathbf{R}^n$
 - 2. $||x|| = 0 \iff x = 0$
 - 3. $\|\alpha x\| = |\alpha| \|x\|$ for all $x \in \mathbb{R}^n$, $\alpha \in \mathbb{R}$
 - 4. $||x + y|| \le ||x|| + ||y||$ for all $x, y \in \mathbb{R}^n$
- all norms ||x||
 - \diamond generalize the absolute value |x| of $x \in \mathbf{R}$
 - ⋄ provide different measures of the length of x ∈ Rⁿ (or the distance ||x y|| between x and y)
 - ⋄ are convex

Norm examples

- taxicab or ℓ_1 norm: $||x||_1 = |x_1| + \cdots + |x_n|$
- Euclidean or ℓ_2 norm: $||x||_2 = \sqrt{x_1^2 + \dots + x_n^2}$
- Chebyshev or ℓ_{∞} norm: $||x||_{\infty} = \max\{|x_1|, \dots, |x_n|\}$

