Convex sets and functions
 Purdue ME 597, Distributed Energy Resources

Kevin J. Kircher

these slides draw on materials by Stephen Boyd at Stanford

Outline

Convex sets

Convex functions

Composition rules

Example functions

Line segments in \mathbf{R}^{n}

for $x, y \in \mathbf{R}^{n}$,

$$
\{\theta x+(1-\theta) y \mid \theta \in[0,1]\}
$$

is the line segment connecting x and y

Line segments in \mathbf{R}^{n} (continued)

$\theta x+(1-\theta) y$ with $\theta=0$

$$
0 x+(1-0) y=y
$$

$\theta x+(1-\theta) y$ with $\theta=0.1$

$$
0.1 x+(1-0.1) y=y+0.1(x-y)
$$

$\theta x+(1-\theta) y$ with $\theta=0.5$

$$
0.5 x+(1-0.5) y=y+0.5(x-y)
$$

$\theta x+(1-\theta) y$ with $\theta=0.9$

$$
0.9 x+(1-0.9) y=y+0.9(x-y)
$$

$\theta x+(1-\theta) y$ with $\theta=1$

$$
1 x+(1-1) y=x
$$

Convex sets

- a set $C \subseteq \mathbf{R}^{n}$ is convex if for all $x, y \in C$ and $\theta \in[0,1]$,

$$
\theta x+(1-\theta) y \in C
$$

- C contains the line segment connecting any two points in C

Boyd and Vandenberghe (2004), Convex Optimization

Nonconvex subsets of \mathbf{R}

Hyperplanes

- any $b \in \mathbf{R}$ and nonzero $a \in \mathbf{R}^{n}$ define a hyperplane,

$$
\left\{x \in \mathbf{R}^{n} \mid a^{\top} x=b\right\}
$$

- equivalent representation for any \tilde{x} satisfying $a^{\top} \tilde{x}=b$:

$$
\left\{x \in \mathbf{R}^{n} \mid a^{\top}(x-\tilde{x})=0\right\}
$$

Hyperplanes

- any $b \in \mathbf{R}$ and nonzero $a \in \mathbf{R}^{n}$ define a hyperplane,

$$
\left\{x \in \mathbf{R}^{n} \mid a^{\top} x=b\right\}
$$

- equivalent representation for any \tilde{x} satisfying $a^{\top} \tilde{x}=b$:

$$
\left\{x \in \mathbf{R}^{n} \mid a^{\top}(x-\tilde{x})=0\right\}
$$

Halfspaces

any $a \neq 0$ and b (or \tilde{x} with $a^{\top} \tilde{x}=b$) define a halfspace,

$$
\left\{x \in \mathbf{R}^{n} \mid a^{\top} x \leq b\right\}=\left\{x \in \mathbf{R}^{n} \mid a^{\top}(x-\tilde{x}) \leq 0\right\}
$$

Hyperplanes and halfspaces are convex

if $a^{\top} x \leq b$ and $a^{\top} y \leq b$, then for any $\theta \in[0,1]$,

$$
\begin{aligned}
a^{\top}(\theta x+(1-\theta) y) & =\theta a^{\top} x+(1-\theta) a^{\top} y \\
& \leq \theta b+(1-\theta) b \\
& =b
\end{aligned}
$$

Intersections of convex sets are convex

- suppose sets $C_{i} \subseteq \mathbf{R}^{n}$ are convex for $i=1,2, \ldots$
- take any $x, y \in \bigcap_{i} C_{i}$
(this just means that for all i, both x and y are in C_{i})
- each C_{i} is convex, so for any $\theta \in[0,1]$,

$$
\theta x+(1-\theta) y \in C_{i}
$$

- since $\theta x+(1-\theta) y \in C_{i}$ for all $i, \theta x+(1-\theta) y \in \bigcap_{i} C_{i}$

Polyhedra

- a polyhedron is a set

$$
\left\{\begin{array}{l|l}
x \in \mathbf{R}^{n} & \begin{array}{l}
a_{i}^{\top} x \leq b_{i} \text { for } i=1, \ldots, m \\
c_{j}^{\top} x=d_{j} \text { for } j=1, \ldots, p
\end{array}
\end{array}\right\}
$$

of solutions to finitely many linear inequalities and equations

- a polyhedron can be written as

$$
\left(\bigcap_{i=1}^{m}\left\{x \in \mathbf{R}^{n} \mid a_{i}^{\top} x \leq b_{i}\right\}\right) \bigcap\left(\bigcap_{j=1}^{p}\left\{x \in \mathbf{R}^{n} \mid c_{j}^{\top} x=b_{j}\right\}\right),
$$

the intersection of m halfspaces and p hyperplanes
\Longrightarrow polyhedra are convex

Polyhedra (continued)

Outline

Convex sets

Convex functions

Composition rules

Example functions

Domain

- the domain of $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is

$$
\operatorname{dom} f=\left\{x \in \mathbf{R}^{n} \mid f(x) \text { is defined }\right\}
$$

- example: for $\log : \mathbf{R} \rightarrow \mathbf{R}$, dom $\log =\{x \in \mathbf{R} \mid x>0\}$

Epigraph

- the epigraph of $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is

$$
\text { epi } f=\left\{(x, y) \in \mathbf{R}^{n+1} \mid x \in \operatorname{dom} f, y \geq f(x)\right\}
$$

- example: $f(x)=x^{2}$, $\boldsymbol{\operatorname { d o m }} f=\{x \in \mathbf{R}| | x \mid \geq 1\}$

Convex functions

- $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is convex if epi f is convex
- equivalently,
$\diamond \operatorname{dom} f$ is convex
\diamond for all $x, y \in \operatorname{dom} f$ and $\theta \in[0,1]$,

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

$\theta=0.1$

14 / 36

$\theta=0.5$

$14 / 36$

$\theta=0.9$

14 / 36

Concave functions

$f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is concave if $-f$ is convex

Affine functions are convex (and concave)

- $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is affine if $f(x)=a^{\top} x+b$ for some a and b
- if f is affine, then f is convex (and concave):

$$
\begin{aligned}
f(\theta x+(1-\theta) y) & =a^{\top}(\theta x+(1-\theta) y)+b \\
& =\theta a^{\top} x+(1-\theta) a^{\top} y+b \\
& =\theta\left(a^{\top} x+b\right)+(1-\theta)\left(a^{\top} y+b\right) \\
& =\theta f(x)+(1-\theta) f(y)
\end{aligned}
$$

- conversely, any function that's convex and concave is affine

Outline

Convex sets

Convex functions

Composition rules

Example functions

Increasing and decreasing functions

- $f: \mathbf{R} \rightarrow \mathbf{R}$ is nondecreasing if

$$
x \geq y \Longrightarrow f(x) \geq f(y)
$$

(and increasing if $x>y \Longrightarrow f(x)>f(y)$)

- similarly, f is nonincreasing if

$$
x \geq y \Longrightarrow f(x) \leq f(y)
$$

(and decreasing if $x>y \Longrightarrow f(x)<f(y)$)
$f(x)$ convex nondec. $\Longleftrightarrow-f(x)$ concave noninc.

$f(x)$ convex nondec. $\Longleftrightarrow f(-x)$ convex noninc.

19 / 36

The fundamental composition rule

- consider $h_{1}, \ldots, h_{m}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ and convex $g: \mathbf{R}^{m} \rightarrow \mathbf{R}$
- define $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ by $f(x)=g\left(h_{1}(x), \ldots, h_{m}(x)\right)$
- f is convex if for each $i=1, \ldots, m$,
$\diamond h_{i}$ is affine, or
$\diamond g$ is nondecreasing in argument i and h_{i} is convex, or
$\diamond g$ is nonincreasing in argument i and h_{i} is concave
- less precisely but perhaps more memorably,
$\diamond C V X(A F F)=C V X$
$\diamond \operatorname{CVXND}(\mathrm{CVX})=\mathrm{CVX}$
$\diamond \mathrm{CVXNI}_{(C C V)}=\mathrm{CVX}$

Composition rules for concave functions

- consider $h_{1}, \ldots, h_{m}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ and concave $g: \mathbf{R}^{m} \rightarrow \mathbf{R}$
- define $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ by $f(x)=g\left(h_{1}(x), \ldots, h_{m}(x)\right)$
- f is concave if for each $i=1, \ldots, m$,
$\diamond h_{i}$ is affine, or
$\diamond g$ is nondecreasing in argument i and h_{i} is concave, or
$\diamond g$ is nonincreasing in argument i and h_{i} is convex

Useful special cases

- h_{1}, h_{2} convex $\Longrightarrow h_{1}+h_{2}$ convex
- h_{1} convex, h_{2} concave $\Longrightarrow h_{1}-h_{2}$ convex
- h convex, $\alpha \geq 0 \Longrightarrow \alpha h$ convex
- h concave, $\alpha \geq 0 \Longrightarrow \alpha h$ concave
- h_{i} convex, $\alpha_{i} \geq 0 \Longrightarrow \alpha_{1} h_{1}+\cdots+\alpha_{m} h_{m}$ convex
- h_{1}, \ldots, h_{m} convex $\Longrightarrow \max \left\{h_{1}, \ldots, h_{m}\right\}$ convex

Composition rules for monotonicity

- consider $g, h: \mathbf{R} \rightarrow \mathbf{R}$
- define $f: \mathbf{R} \rightarrow \mathbf{R}$ by $f(x)=g(h(x))$
- if g and h are nondecreasing, then f is nondecreasing:

$$
x \leq y \Longrightarrow h(x) \leq h(y) \Longrightarrow g(h(x)) \leq g(h(y))
$$

- if g and h are nonincreasing, then f is nondecreasing:

$$
x \leq y \Longrightarrow h(x) \geq h(y) \Longrightarrow g(h(x)) \leq g(h(y))
$$

- if g is NI and h is ND, then f is NI :

$$
x \leq y \Longrightarrow h(x) \leq h(y) \Longrightarrow g(h(x)) \geq g(h(y))
$$

- if g is ND and h is NI, then f is NI:

$$
x \leq y \Longrightarrow h(x) \geq h(y) \Longrightarrow g(h(x)) \geq g(h(y))
$$

Outline

Convex sets

Convex functions

Composition rules

Example functions
$f(x)=|x|$ with $x \in \mathbf{R}$

24 / 36
$f(x)=\max \{0, x\}$ with $x \in \mathbf{R}$

$f(x)=x^{p}$ with $x \in \mathbf{R}$ and even, positive p

$26 / 36$
$f(x)=x^{p}$ with $x \geq 0$ and $p>1$

$27 / 36$
$f(x)=x^{p}$ with $x \geq 0$ and $p \in(0,1)$

$f(x)=x^{p}$ with $x>0$ and $p<0$

$f(x)=\log (\alpha x)$ with $x>0, \alpha>0$

concave, nondecreasing

$f(x)=\max \left\{x_{1}, \ldots, x_{n}\right\}$ with $x \in \mathbf{R}^{n}$

$f(x)=\min \left\{x_{1}, \ldots, x_{n}\right\}$ with $x \in \mathbf{R}^{n}$

concave, nondecreasing

Norms

- $\left\|\|: \mathbf{R}^{n} \rightarrow \mathbf{R}\right.$ is a norm if

1. $\|x\| \geq 0$ for all $x \in \mathbf{R}^{n}$
2. $\|x\|=0 \Longleftrightarrow x=0$
3. $\|\alpha x\|=|\alpha|\|x\|$ for all $x \in \mathbf{R}^{n}, \alpha \in \mathbf{R}$
4. $\|x+y\| \leq\|x\|+\|y\|$ for all $x, y \in \mathbf{R}^{n}$

- all norms $\|x\|$
\diamond generalize the absolute value $|x|$ of $x \in \mathbf{R}$
\diamond provide different measures of the length of $x \in \mathbf{R}^{n}$ (or the distance $\|x-y\|$ between x and y)
\diamond are convex

Norm examples

- taxicab or ℓ_{1} norm: $\|x\|_{1}=\left|x_{1}\right|+\cdots+\left|x_{n}\right|$
- Euclidean or ℓ_{2} norm: $\|x\|_{2}=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$
- Chebyshev or ℓ_{∞} norm: $\|x\|_{\infty}=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}$

