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US Independent system operators (ISOs)

Sustainable FERC project: ISO RTO operating regions
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https://sustainableferc.org


Wholesale and retail electricity prices

US Energy Information Administration: New England’s competitive electricity
markets
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https://www.eia.gov/todayinenergy/detail.php?id=37415
https://www.eia.gov/todayinenergy/detail.php?id=37415


Retail customer classes

US Energy Information Administration: New England’s competitive electricity
markets
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Affine functions in optimization

• f : Rn → R is

� linear if f (x) = a>x for some a ∈ Rn

� affine if f (x) = a>x + b for some a ∈ Rn, b ∈ R

• all linear functions are affine (with b = 0), but not vice versa

• affine functions are both convex and concave

• f (x) = a>x + b is nondecreasing in xi if ai ≥ 0
(and nonincreasing in xi if ai ≤ 0)

• minimizing a>x + b is equivalent to minimizing a>x
(additive constants in objectives don’t influence solutions)
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Composition rules

curvature:

• CVX(AFF) = CVX

• CVXND(CVX) = CVX

• CVXNI(CCV) = CVX

• CCV(AFF) = CCV

• CCVND(CCV) = CCV

• CCVNI(CVX) = CCV

monotonicity:

• ND(ND) = ND

• NI(NI) = ND

• NI(ND) = NI

• ND(NI) = NI
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CVX(CVX) 6= CVX in general

• consider g , h : R→ R with g(y) = −y , h(x) = x2

• h is convex

• g is affine (hence convex) but nonincreasing

• define f : R→ R by f (x) = g(h(x)) = −x2

• f is not convex
(need g nondecreasing)
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DER modeling

• most DERs can be modeled via

x(k + 1) = ax(k) + b(u(k) + w(k))

x(k) ≤ x(k) ≤ x(k)

u(k) ≤ u(k) ≤ u(k)

p(k) = g(k , x(k), u(k))

• state x(k) (kWh) is stored energy

• action u(k) (kW) is controlled charging power

• disturbance w(k) (kW) is uncontrolled charging power

• a (-) and b (h) are discrete-time dynamics parameters

• x(k) and x(k) (kWh) are energy capacity limits

• u(k) and u(k) (kW) are power capacity limits

• g is affine in x(k), u(k) for some DERs, convex for others
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A generic DER optimization problem

• choose

� x(0), . . . , x(K )
� u(0), . . . , u(K − 1)
� p(0), . . . , p(K − 1)

• to minimize a function of p(0), . . . , p(K − 1)

• subject to x(0) = x0 and for k = 0, . . . , K − 1,

� x(k + 1) = ax(k) + b(u(k) + w(k))
� x(k + 1) ≤ x(k + 1) ≤ x(k + 1)
� u(k) ≤ u(k) ≤ u(k)
� p(k) = g(k , x(k), u(k))

• given x0, a, b, and the w(k), x(k), x(k), u(k), u(k), g(k , , )

• for affine g , any objective that’s convex in p is convex in x , u

• for convex g , we want convex nondecreasing objectives in p
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Energy and energy cost

• electrical energy: ∆tp(k)

• electrical energy cost: ∆tπe(k)p(k)

• πe(k) ($/kWh) is electrical energy price

• energy and energy cost are linear in p(k)

• energy is nondecreasing in p(k)

• energy cost is nondecreasing in p(k) if πe(k) ≥ 0
(but can be nonincreasing if price goes negative)
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Flat energy price
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Time-of-use energy price
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Critical peak price (normal day)
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Critical peak price (event day)
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Today’s MISO wholesale energy price (note y-axis limits)

MISO market reports: Day-ahead pricing
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https://www.misoenergy.org/markets-and-operations/real-time--market-data/market-reports/#nt=%2FMarketReportType%3ADay-Ahead%2FMarketReportName%3ADay-Ahead%20Pricing%20(xls)&t=10&p=0&s=MarketReportPublished&sd=desc


Pollution and pollution cost

• pollution (CO2, CH4, NOx , SOx , . . . ): ∆tµ(k)p(k)

• µ(k) (kg/kWh) is pollutant intensity of electricity

• pollution cost: ∆tπg (k)µ(k)p(k)

• πg (k) ($/kg) is pollutant price

• pollution and pollution cost are linear and nondecreasing in p
(both µ(k) and πg (k) are ∼always nonnegative)
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Demand flexibility

• flexibility is the capacity to adjust electrical power on call

• grid operators may pay DERs to plan and/or use flexibility

� day-ahead, plan a baseline power trajectory
� in real time, adjust power away from baseline if needed
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Upward and downward flexibility

p(k) p(k)p(k)

p(k)− p(k) p(k)− p(k)

• power typically has limits: p(k) ∈ [p(k), p(k)]

• upward flexibility: p(k)− p(k)

• downward flexibility: p(k)− p(k)

• upward and downward flexibility are both affine in p(k)

• upward flexibility is nonincreasing in p(k)

• downward flexibility is nondecreasing in p(k)

• multiplying by nonnegative prices preserves monotonicity
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Sums of linear objectives

• a sum of linear objectives is linear with a new price

• example: sum of energy and pollution costs,

∆tπe(k)p(k) + ∆tπg (k)µ(k)p(k)

= ∆tπ(k)p(k)

with new price π(k) = πe(k) + πg (k)µ(k)
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Aggregate objectives

• suppose DERs i = 1, . . . , n each use power pi (k)

• define the aggregate power

p(k) = p1(k) + · · ·+ pn(k) + v(k),

where v(k) is power to/from uncontrolled devices

• aggregate power is affine and nondecreasing in the pi (k)

=⇒ curvature, monotonicity attributes in p(k) extend to the pi (k)
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Cumulative objectives

• discounted cost: γk∆tπ(k)p(k) for discount rate γ ∈ [0, 1]
(undiscounted if γ = 1)

• cumulative discounted cost is linear in p:

∆t
[
γ0π(0)p(0) + · · ·+ γK−1π(K − 1)p(K − 1)

]
= a>p

where

p =

 p(0)
...

p(K − 1)

 , a = ∆t

 γ0π(0)
...

γK−1π(K − 1)


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Energy cost with reduced net metering

Net energy demand (kWh)
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(High) buy price,
πb(k)

(Low) sell price,
πs(k)

• p(k) is net power demand (demand − supply)

• energy cost with reduced net metering (πb(k) < πs(k)) is

∆t max {πb(k)p(k), πs(k)p(k)}

• convex, nondecreasing
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Symmetric demand flexibility

p(k) p(k)p(k)

p(k)− p(k) p(k)− p(k)

min
{
p(k)− p(k), p(k)− p(k)

}
• some grid operators separate upward and downward flexibility

• others pay for symmetric capacity to adjust power up or down

• symmetric flexibility is concave:

� min is concave
� CCV(AFF) = CCV
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Peak demand
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• demand peaks drive sizing of electricity infrastructure

• peak demand cost: πd max(p) with price πd ($/kW)

• convex nondecreasing in p if πd ≥ 0 since max(·) = CVXND

• price πd is typically ∼10 to 50 $/kW for monthly peaks

• per day, that’s ∼(10 to 50)/30 = 0.33 to 1.67 $/kW
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Peak demand with target demand limit
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• penalize excess of peak max(p) above target demand limit `

• no penalty if max(p) ≤ `: minimize

πd max {0,max(p)− `}

• convex nondecreasing in p if πd ≥ 0
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Coincident peak demand
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• most peak demand charges penalize the user’s peak

• what matters for infrastructure sizing is the system peak

• coincident peak demand charges

� attempt to remedy this disconnect
� penalize user’s peak demand over system peak hours
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Coincident peak demand charge

• coincident peak demand charge is

πd max(Cp)

• C ∈ RK×K picks out system peak hours:

C =

c0 . . .

cK−1

 with ck =

{
1 if tk is a peak time

0 otherwise

• convex nondecreasing in p if πd ≥ 0
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Load reduction
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• reduce load p(k) below baseline p̂(k) during window?
earn revenue ∆tπ̂(k)(p̂(k)− p(k))

• no revenue or penalty if p(k) ≥ p̂(k)

=⇒ maximize ∆tπ̂(k) max {0, p̂(k)− p(k)}
? price π̂(k) is 2 $/kWh in California

California Public Utilities Commission: Emergency Load Reduction Program
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https://www.cpuc.ca.gov/industries-and-topics/electrical-energy/electric-costs/demand-response-dr/emergency-load-reduction-program


Maximizing load reduction revenue is nonconvex

• to maximize load reduction revenue, minimize

−∆tπ̂(k) max {0, p̂(k)− p(k)}

• max {0, p̂(k)− p(k)} = CVX(AFF) = CVX

• so −∆tπ̂(k) max {0, p̂(k)− p(k)} = −CVX = CCV

• minimizing a concave function yields a nonconvex problem
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Load reduction: Convex approximation

p
p̂

• instead of minimizing the concave function

−∆tπ̂(k) max {0, p̂(k)− p(k)},

minimize ‘nearest’ convex function, ∆tπ̂(k)(p(k)− p̂(k))

• approximation is affine in p(k) and, if π̂(k) ≥ 0, nondecreasing

• approximation adds fictitious penalty if p(k) > p̂(k)
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Reference tracking

• r = (r(0), . . . , r(K − 1)) ∈ RK is a reference or target to track

• mean absolute tracking error:

1

K

K−1∑
k=0

|p(k)− r(k)| =
‖p − r‖1

K

• root mean square tracking error:√√√√ 1

K

K−1∑
k=0

(p(k)− r(k))2 =
‖p − r‖2√

K

• maximum absolute tracking error:

max
k=0,...,K−1

|p(k)− r(k)| = ‖p − r‖∞

• all convex since norms are convex
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Linear reformulations

• most nonlinearities in these slides come from max, min, or | |
• CVX can reformulate these with linear objectives/constraints

� minimize max {x , y} ⇐⇒ minimize z subject to x ≤ z , y ≤ z
� maximize min {x , y} ⇐⇒ maximize z subject to x ≥ z , y ≥ z
� minimize |x | ⇐⇒ minimize y subject to x ≤ y , −x ≤ y

• so linear programming can solve most DER problems
(great news; linear programming solvers are fast and robust)

• the only ‘truly’ nonlinear objective in these slides is ‖p − r‖2
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Summary: DER objectives to minimize over p

objective curvature monotonicity

energy AFF ND
energy cost AFF ND
energy cost (negative price) AFF NI
energy cost (reduced net metering) CVX ND
pollution AFF ND
pollution cost AFF ND
reference tracking error CVX not monotone
peak demand CVX ND
−(upward flexibility) AFF ND
−(downward flexibility) AFF NI
−(symmetric flexibility) CVX not monotone
−(load reduction) CCV ND
−(load reduction approximation) AFF ND
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Problem setup

• stationary battery with 5 kW, 13.5 kWh capacities

• one-day horizon, 15-minute time step

• 1-norm objective: minimize ∆tπ>e p + πt ‖p − r‖1 /K
• 0.2 $/kWh energy price from 4 to 9 PM; 0.1 otherwise

• tracking error price πt hand-tuned to 0.2 $/kW

• in 2-norm and ∞-norm examples,

� energy cost constrained to equal 1-norm energy cost
� objective: minimize ‖p − r‖2 or ‖p − r‖∞

• in all examples, final energy constrained to equal initial energy
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1-norm results
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2-norm results
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∞-norm results
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Reference tracking error histograms
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