Batteries and electric vehicles

Purdue ME 597, Distributed Energy Resources

Kevin J. Kircher

Outline

Modeling stationary batteries

Stationary battery model parameters

Modeling electric vehicles

Simple EV charging policies

Battery basics

batteries

- $\diamond\,$ convert between electrical and chemical potential energy
- $\diamond\,$ are also called electrochemical energy storage
- most batteries today are lithium-ion
 - ◊ personal electronics (phones, laptops, tablets, headphones, ...)
 - \diamond electric vehicles (cars, trucks, bikes, scooters, skateboards, ...)
 - \diamond stationary applications (home batteries, grid-scale storage, ...)
 - * invented 1980s, commercialized 1991, Nobel Prize 2019

- **anode** emits electrons and ions during discharge (typically graphite in lithium-ion batteries)
- **cathode** absorbs electrons and ions during discharge (lithium/metal oxides)
- electrolyte allows movement of ions but not electrons (polymer gels or mixes of salts, solvents, additives)
- **separator** blocks electrons, prevents anode-cathode contact (plastics such as polyethylene or polypropylene)

Discharging a battery

Australian Academy of Science: How a battery works

Charging a battery

Australian Academy of Science: How a battery works

University of Michigan: Tips for extending the lifetime of lithium-ion batteries

A simple battery model

• a simple model of a battery's energy dynamics is

$$rac{{\mathsf{d}} x(t)}{{\mathsf{d}} t} = -rac{x(t)}{ au} + {p}^{\mathsf{chem}}(t)$$

- $x(t) \in \mathbf{R}$ (kWh) is the stored chemical potential energy
- $\tau > 0$ (h) is the self-dissipation time constant (for an ideal battery with no self-dissipation, $\frac{dx(t)}{dt} = p^{chem}(t)$)
- p^{chem}(t) ∈ R (kW) is the chemical charging power (or discharging if p^{chem}(t) < 0)

Energy evolution with constant p^{chem}

• the electrical charging (or discharging) power is

$$p(t) = \begin{cases} p^{\text{chem}}(t)/\eta_c & \text{if } p^{\text{chem}}(t) \ge 0\\ \eta_d p^{\text{chem}}(t) & \text{if } p^{\text{chem}}(t) < 0 \end{cases}$$
$$= \max \left\{ p^{\text{chem}}(t)/\eta_c, \eta_d p^{\text{chem}}(t) \right\}$$

• $\eta_{\textit{c}},~\eta_{\textit{d}} \in (0,1]$ are the charging and discharging efficiencies

Chemical and electrical power (continued)

• with uniform time step Δt and piecewise constant $p^{\text{chem}}(t)$,

$$x(k+1) = ax(k) + (1-a)\tau p^{\mathsf{chem}}(k),$$

where

$$a = e^{-\Delta t/ au}$$

• homework: show this

• batteries have energy and power constraints:

 $0 \le x(k) \le \overline{x} \\ -\overline{p}_d \le p(k) \le \overline{p}_c$

- $\overline{x} \ge 0$ (kWh) is the chemical energy capacity
- + $\overline{p}_{c} \geq 0$ (kW) is the electrical charging power capacity
- $\overline{p}_d \ge 0$ (kW) is the electrical discharging power capacity
- in terms of p^{chem} , the power constraints are

$$-\frac{\overline{p}_d}{\eta_d} \leq p^{\mathsf{chem}}(k) \leq \eta_c \overline{p}_c$$

Outline

Modeling stationary batteries

Stationary battery model parameters

Modeling electric vehicles

Simple EV charging policies

the stationary battery model has six parameters:

- 1. chemical energy capacity $\overline{x} \ge 0$ (kWh)
- 2. electrical charging power capacity $\overline{p}_{c}\geq 0~(\text{kW})$
- 3. electrical discharging power capacity $\overline{p}_d \ge 0$ (kW)
- 4. self-dissipation time constant au > 0 (h)
- 5. charging efficiency $\eta_c \in [0, 1]$
- 6. discharging efficiency $\eta_d \in [0, 1]$

- unused, a typical battery might lose ${\sim}1$ to 3% energy per day
- if $p^{\text{chem}}(t) = 0$ for all t and $x(0) = x_0$, then $x(t) = e^{-t/\tau}x_0$
- after one day, t=24 h and $x(t)/x_0pprox 0.97$ to 0.99
- so a typical time constant is

$$au = rac{-t}{\ln(x(t)/x_0)} = rac{-24 \text{ h}}{\ln(0.97 \text{ to } 0.99)} \approx 800 \text{ to } 2400 \text{ h}$$

Typical values of the energy and power capacities

- choosing appropriate capacities is a design problem
- sometimes, hardware limitations impose constraints
- for example, stationary lithium-ion batteries typically have
 - \diamond similar charging and discharging power capacities ($\overline{p}_c \approx \overline{p}_d$)
 - $\diamond~$ one to four hours of storage ($\overline{x}/\overline{p}_{c} \approx$ 1 to 4 h)
- also, a building's wiring may limit current or voltage:

$$p_c = IV pprox$$
 (15 to 25 A)(240 V) = 3.6 to 6 kW

one popular home battery has

$$\begin{array}{l} \diamond \ \, \overline{p}_c = \overline{p}_d = 5 \ \, \text{kW} \\ \diamond \ \, \overline{x} = 13.5 \ \, \text{kWh} \ \, (\text{so} \ \, \overline{x}/\overline{p}_c = 2.7 \ \, \text{h}) \end{array}$$

Round-trip efficiency

- consider a battery with no self-dissipation $(au=\infty)$
- if we charge at electrical power $p_{in} > 0$ at time k, then

$$x(k+1) = x(k) + \Delta t \eta_c p_{in}$$

• suppose we then return the battery to its initial state x(k):

$$\begin{aligned} x(k+2) &= x(k) \\ \iff x(k+1) - \Delta t p_{\text{out}} / \eta_d = x(k) \\ \iff x(k) + \Delta t \eta_c p_{\text{in}} - \Delta t p_{\text{out}} / \eta_d = x(k) \\ \iff \eta_c p_{\text{in}} = p_{\text{out}} / \eta_d \end{aligned}$$

- so we get electrical power $p_{\rm out} = \eta_c \eta_d p_{\rm in}$ back out
- the product $\eta_c \eta_d$ is called the **round-trip efficiency**

- a typical battery has round-trip efficiency $\eta_c\eta_d\approx 0.9$
- usually, charging and discharging efficiencies are similar
- so $\eta_c \approx \eta_d \approx \sqrt{0.9} \approx 0.95$

Summary: Instantiating a stationary battery model

- set $\tau \approx$ 800 to 2400 h
- set $\eta_c \approx \eta_d \approx 0.95$
- either
 - \diamond choose an appropriate energy capacity \overline{x} for the application

$$\diamond~~{
m set}~\overline{p}_{c}pprox\overline{p}_{d}pprox\overline{x}/(1~{
m to}~4~{
m h})$$

or

♦ set $\overline{p}_c \approx \overline{p}_d = IV$ with appropriate *I*, *V* for building's wiring
♦ set $\overline{x} \approx (1 \text{ to } 4 \text{ h})\overline{p}_c$

Outline

Modeling stationary batteries

Stationary battery model parameters

Modeling electric vehicles

Simple EV charging policies

EV battery dynamics

- for modeling purposes, EVs are just batteries that move
- they have the same energy dynamics as stationary batteries:

$$x(k+1) = ax(k) + (1-a)\tau p^{\text{chem}}(k)$$

• if an EV drives d(k) km between t_k and $t_{k+1} = t_k + \Delta t$, then

$$p^{\mathsf{chem}}(k) = -rac{lpha(k)d(k)}{\Delta t}$$

• $\alpha(k)$ (kWh/km) is the energy intensity of driving

The energy intensity of driving an EV

- the energy intensity $\alpha(k)$ (kWh/km) depends on the vehicle's
 - $\diamond \ \mathsf{speed}$
 - \diamond weight
 - $\diamond \ \mathsf{shape}$
 - $\diamond \ \ drivetrain \ \ efficiency$
 - as well as the
 - ◊ terrain (hills)
 - $\diamond\,$ weather (cabin heating/cooling, battery thermal management)
- a typical EV energy intensity is 0.15 to 0.4 kWh/km
- $\star\,$ electric bikes use ${\sim}0.005~kWh/km$

EVs use more energy when it's cold or hot outside

Yuksel and Michalek (2015): Effects of Regional Temperature on Electric Vehicle Efficiency, Range, and Emissions in the United States

An energy intensity model

$$\alpha(k) = c_0 + c_1 T(k) + \cdots + c_5 T(k)^5$$

- $\alpha(k)$ is the energy intensity at time k, in kWh/km
- T(k) is the outdoor temperature at time k, in °F
- the coefficients (in the corresponding units) are

Yuksel and Michalek (2015): Effects of Regional Temperature on Electric Vehicle Efficiency, Range, and Emissions in the United States

EV charging and discharging constraints

- when unplugged, EVs
 - ◊ can't charge
 - $\diamond\,$ functionally, have no discharge power limit (400+ kW)
- when plugged in,
 - $\diamond~$ most EVs can charge but not discharge
 - $\diamond~{\sf EVs}$ with bidirectional charging can do both
- define the indicator variable

$$z(k) = \begin{cases} 1 & \text{if the EV is plugged in over time step } k \\ 0 & \text{otherwise} \end{cases}$$

• then the charging and discharging constraints become

$$\begin{cases} -\overline{p}_d \le p(k) \le \overline{p}_c & \text{if } z(k) = 1\\ p(k) \le 0 & \text{if } z(k) = 0 \end{cases}$$

with $\overline{p}_d = 0$ for EVs without bidirectional charging

- τ , η_c , and η_d are typically similar to stationary batteries
- typical values of \overline{x} are 55, 80, 100, or 130 kWh
- for Level 1 charging (~120 V/15 A), $\overline{p}_{c}\approx 1.8$ kW
- + for Level 2 charging (~240 V/48 A), $\overline{p}_c\approx 11.5$ kW
- for EVs without bidirectional charging, $\overline{p}_d=0$
- for EVs with bidirectional charging, $\overline{p}_d\approx\overline{p}_c$

Typical US driving patterns

- the average household has 1.9 private vehicles (cars, pickup trucks, SUVs, or vans)
- the average private vehicle
 - ◊ drives 26 miles (41.6 km) per day
 - ◊ drives 7.9 miles (12.6 km) per trip (one way, not round trip)
 - $\diamond~$ so takes about 3.3 trips per day
- most trips happen between 6 AM and 8 PM

One-way trip distance distribution for private vehicles

US DOT (2017): National Household Travel Survey

Trip start time distribution for private vehicles

US DOT (2017): National Household Travel Survey

Outline

Modeling stationary batteries

Stationary battery model parameters

Modeling electric vehicles

Simple EV charging policies

• if z(k) = 1 (meaning the EV is plugged in), set

$$p^{\mathsf{chem}}(k) = \min\left\{\eta_c \overline{p}_c, \frac{\overline{x} - ax(k)}{(1-a)\tau}
ight\}$$

• if the battery is nearly full, this places x(k+1) at \overline{x} :

$$x(k+1) = ax(k) + (1-a) au rac{\overline{x} - ax(k)}{(1-a) au} = \overline{x}$$

- define the minimum acceptable energy \underline{x} (kWh)
- initialize y(k), an indicator of 'charging mode,' at y(k-1)

• if
$$z(k) = 0$$
 or $x(k) = \overline{x}$, set $y(k) = 0$

- if z(k) = 1 and $x(k) < \underline{x}$, set y(k) = 1
- if y(k) = 1, set

$$p^{\mathsf{chem}}(k) = \min\left\{\eta_c \overline{p}_c, rac{\overline{x} - \mathsf{ax}(k)}{(1-\mathsf{a}) au}
ight\}$$

3. When energy gets low, charge steadily to meet deadline

- suppose the user wants energy x^* stored by deadline $k^* > k$
- charging at constant power p_0^{chem} from time k to k^* gives

$$\begin{aligned} x(k+1) &= ax(k) + (1-a)\tau p_0^{\text{chem}} \\ x(k+2) &= ax(k+1) + (1-a)\tau p_0^{\text{chem}} \\ &= a[ax(k) + (1-a)\tau p_0^{\text{chem}}] + (1-a)\tau p_0^{\text{chem}} \\ &= a^2 x(k) + (1+a)(1-a)\tau p_0^{\text{chem}} \\ &\vdots \\ x(k^*) &= a^{k^*-k}x(k) + (1+a+\dots+a^{k^*-k-1})(1-a)\tau p_0^{\text{chem}} \end{aligned}$$

• so if y(k) = 1, set

$$p^{\mathsf{chem}}(k) = \min\left\{\eta_c \overline{p}_c, \frac{x^* - a^{k^* - k} x(k)}{(1 + a + \dots + a^{k^* - k - 1})(1 - a)\tau}\right\}$$

Example

- + EV with 80 kWh battery over 7 days, $\alpha = {\rm 0.3~kWh/km}$
- EV is plugged in during shaded periods
- short trips are at 40 km/h, long trips at 90

Policy 1 tops off battery every night

31/33

Policy 2 charges full blast when $x < \underline{x}$

32/33

Policy 3 spreads charging out over whole night

33/33