Thermal modeling of buildings: Part 1

Purdue ME 597, Distributed Energy Resources

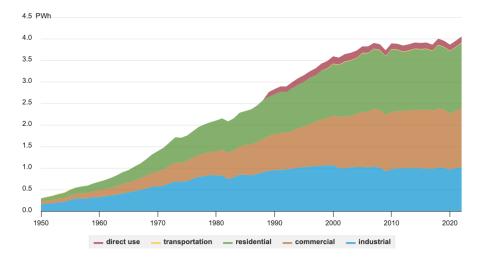
Kevin J. Kircher

Background

First-order thermal circuits

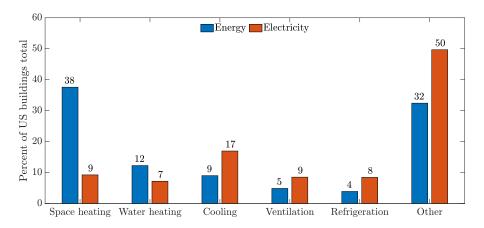
Thermal circuit model parameters

Buildings dominate US electricity use

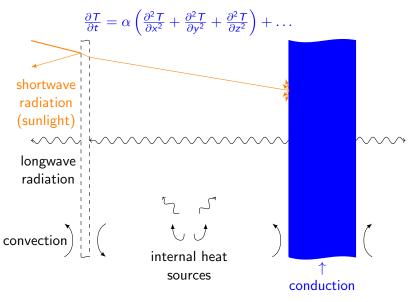


Energy Information Administration: Use of electricity

HVAC&R dominates building energy and electricity use



Detailed thermal modeling is hard



Software for detailed thermal modeling

- EnergyPlus (US DOE, open source)
- TRNSYS (Transient System Simulation, commercial)
- Modelica buildings library (US DOE, open source)
- these programs are broad and powerful, but can
 - or require many parameters, some hard to specify or fit
 - ◊ be slow (numerical solution of coupled nonlinear PDEs)
 - $\diamond~$ be difficult to integrate with other software
- our focus: simpler models for DER design and control

Background

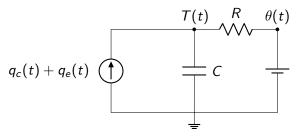
First-order thermal circuits

Thermal circuit model parameters

Thermal circuit models capture dominant physics

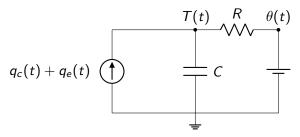
- thermal circuits work by analogy to electrical circuits
 - $\diamond \ \ \text{temperature} \ \leftrightarrow \ \ \text{voltage}$
 - $\diamond \ \text{heat} \leftrightarrow \text{charge}$
 - $\diamond\,$ thermal resistance $\leftrightarrow\,$ electrical resistance
 - $\diamond\,$ thermal capacitance \leftrightarrow electrical capacitance
- basic idea: temperature differences drive heat flow (like voltage differences drive charge flow [current])

Simplest thermal circuit: 1R1C



- T(t) (°C) is indoor temperature
- $\theta(t)$ (°C) is boundary (often outdoor air) temperature
- R (°C/kW) is thermal resistance between T and θ
- C (kWh/°C) is indoor thermal capacitance
- $q_c(t)$ (kW) is thermal power from controlled equipment
- q_e(t) (kW) is thermal power from exogenous sources (sunlight, body heat, plug loads, ...)

1R1C continuous-time dynamics



- Ohm's law: current through resistor is $(T(t) \theta(t))/R$
- rate of charge accumulation on capacitor is CdT(t)/dt
- Kirchhoff's Current Law (KCL) at node labeled T(t):

current inflow = current outflow

$$q_c(t) + q_e(t) = \frac{T(t) - \theta(t)}{R} + C \frac{dT(t)}{dt}$$

• rearranging continuous-time dynamics gives

$$\frac{\mathrm{d}T(t)}{\mathrm{d}t} = \frac{1}{RC} \left[-T(t) + \theta(t) + R\left(q_c(t) + q_e(t)\right) \right],$$

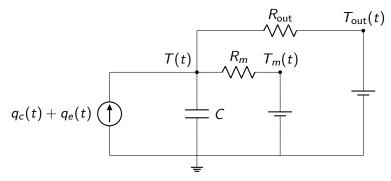
a first-order linear ODE

• with uniform time step Δt and piecewise constant θ , q_c , q_e ,

 $T(k+1) = aT(k) + (1-a)R(q_c(k) + w(k))$

where $a = e^{-\Delta t/(RC)}$ and $w(k) = q_e(k) + \theta(k)/R$

A 2R1C thermal circuit



- $T_m(t)$ (°C) is thermal mass temperature
- $T_{out}(t)$ (°C) is outdoor air temperature
- R_m (°C/kW) is thermal resistance between T and T_m
- $\textit{R}_{out}~(^{\circ}C/kW)$ is thermal resistance between T and \textit{T}_{out}

Reducing a 2R1C thermal circuit to 1R1C

• KCL at node labeled T(t) gives 2R1C dynamics:

$$C\frac{\mathrm{d}T(t)}{\mathrm{d}t} = \frac{T_m(t) - T(t)}{R_m} + \frac{T_{\mathrm{out}}(t) - T(t)}{R_{\mathrm{out}}} + q_c(t) + q_e(t)$$

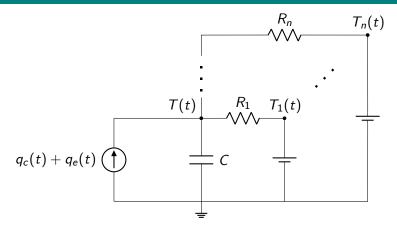
• a bit of algebra shows this is equivalent to the 1R1C model

$$C\frac{\mathsf{d}T(t)}{\mathsf{d}t} = \frac{\theta(t) - T(t)}{R} + q_c(t) + q_e(t)$$

with

$$R = \frac{R_m R_{out}}{R_m + R_{out}}$$
$$\theta(t) = \frac{R_{out} T_m(t) + R_m T_{out}(t)}{R_m + R_{out}}$$

An *n*R1C thermal circuit



$$\mathsf{KCL} \implies C \frac{\mathsf{d} T(t)}{\mathsf{d} t} = \sum_{i=1}^{n} \frac{T_i(t) - T(t)}{R_i} + q_c(t) + q_e(t)$$

11/27

can show that the nR1C model is equivalent to the 1R1C model

$$C\frac{\mathsf{d}T(t)}{\mathsf{d}t} = \frac{\theta(t) - T(t)}{R} + q_c(t) + q_e(t)$$

with

$$R = \frac{R_1 \cdots R_n}{R_2 \cdots R_n + \cdots + R_1 \cdots R_{n-1}}$$
$$\theta(t) = \frac{R_2 \cdots R_n T_1(t) + \cdots + R_1 \cdots R_{n-1} T_n(t)}{R_2 \cdots R_n + \cdots + R_1 \cdots R_{n-1}}$$

Background

First-order thermal circuits

Thermal circuit model parameters

thermal circuit models have three types of parameter:

- 1. thermal capacitance C > 0 (kWh/°C)
- 2. thermal resistance R > 0 (°C/kW)
- 3. exogenous thermal power $q_e(t)$ (kW, a time series)

Typical thermal capacitance values

- can model thermal capacitance as $C = \rho c_p V$, where
 - $\diamond \
 ho = 1.293 \ \mathrm{kg/m^3}$

$$\diamond~c_{
m p}=2.792 imes10^{-4}~{
m kWh/(kg~^\circ C)}$$

 $\diamond \ V = A_f h \text{ is enclosed volume}$

 $(A_f \text{ is total floor area on all stories; } h \text{ is height of one story})$

- this models air at standard temperature and pressure
- often, 'shallow' thermal mass couples tightly to indoor air

 $\implies C \approx (10 \text{ to } 15)\rho c_p A_f h$ $= (0.0036 \text{ to } 0.0054 \text{ kWh}/[^{\circ} \text{Cm}^3])A_f h$

 $\bullet\,$ example: for a ${\sim}200\ m^2$ house with ceiling heights of ${\sim}3\ m,$

 $C \approx 2.2$ to 3.2 kWh/°C

Thermal resistance from weather and energy data

• if ${\cal T}(t)pprox \hat{\cal T}$ and $q_e(t)pprox \hat{q}_e$ are ~constant over some period, then

$$C \frac{\mathrm{d}T(t)}{\mathrm{d}t} \approx \frac{\theta(t) - \hat{T}}{R} + q_c(t) + \hat{q}_e \implies q_c(t) \approx \frac{\hat{T} - \theta(t)}{R} - \hat{q}_e$$

- suppose we guess a δ (°C) such that if $\hat{T} \theta(t) \approx \delta$, then $q_c(t) \approx 0$
- this gives an estimate of \hat{q}_e :

$$\hat{T} - heta(t) pprox \delta \implies q_c(t) pprox rac{\delta}{R} - \hat{q}_e pprox 0 \implies \hat{q}_e pprox rac{\delta}{R}$$

• it also gives a simplified expression for $q_c(t)$:

$$q_c(t)pprox rac{\hat{T}-\delta- heta(t)}{R}=rac{ heta_h- heta(t)}{R}$$

• $\theta_h = \hat{T} - \delta$ is the heating balance outdoor temperature

R from weather and energy data (continued)

- define the cumulative heat demand $H = \int \max\left\{0, q_c(t)\right\} \mathrm{d}t$
- with $q_c(t) \approx \frac{\theta_h \theta(t)}{R}$,

$$H \approx \int \max\left\{0, \frac{\theta_h - \theta(t)}{R}\right\} \mathrm{d}t = \frac{\Theta_h}{R}$$

• Θ_h (°Ch) is the number of heating degree-hours at HBOT θ_h :

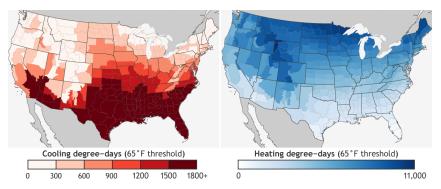
$$\Theta_h = \int \max\left\{0, heta_h - heta(t)
ight\} \mathsf{d}t$$

- with heater efficiency $\eta,$ the heater input energy is ${\it E}={\it H}/\eta$ and

$$R \approx \frac{\Theta_h}{\eta E}$$

Heating and cooling degree-days

$$\begin{split} \mathsf{HDD}(\theta_h) &= \left(\frac{1 \text{ day}}{24 \text{ h}}\right) \int \max\left\{0, \theta_h - \theta(t)\right\} \mathsf{d}t = \left(\frac{1 \text{ day}}{24 \text{ h}}\right) \Theta_h \\ \mathsf{CDD}(\theta_c) &= \left(\frac{1 \text{ day}}{24 \text{ h}}\right) \int \max\left\{0, \theta(t) - \theta_c\right\} \mathsf{d}t = \left(\frac{1 \text{ day}}{24 \text{ h}}\right) \Theta_c \end{split}$$



Climate.gov: Annual average cooling and heating degree-days (1901-2000)

17 / 27

Summary: R from weather and energy data

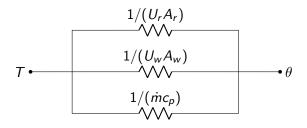
- 1. get typical heating temperature setpoint \hat{T}
- 2. estimate indoor-outdoor temperature difference δ where $q_c \approx 0$ (typically 6 to 10 °C for badly- to well-insulated detached houses)
- 3. define heating balance outdoor temperature $\theta_h = \hat{T} \delta$
- 4. get historical HDD(θ_h) (°C·day) over a heating period
- 5. get historical heater input energy E (kWh) over the same period
- 6. estimate heater efficiency η

7. set

$$R \approx \left(rac{24 \text{ h}}{1 \text{ day}}
ight) rac{\text{HDD}(\theta_h)}{\eta E}$$

- \star can find benchmark E data in RECS and CBECS
- \star bonus: time-average of $q_e(t)$ should be ${\sim}\delta/R$

Thermal resistance from first principles



- can model thermal resistance as $R = 1/(U_r A_r + U_w A_w + \dot{m}c_p)$
- $U (kW/[^{\circ}Cm^{2}])$ is thermal transmittance
- A (m²) is outward-facing surface area
- subscript r means roof, w means vertical wall/window assemblies
- \dot{m} (kg/h) is mass flow rate of outdoor air infiltration

A typical wall assembly

The Gold Hive: How (and why) to install rockwool insulation

20 / 27

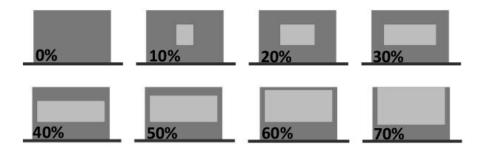
Thermal transmittance

- typical thermal transmittances (note units of W, not kW) are
 ~1, 2.5, or 5 W/(°Cm²) for windows with 3, 2, or 1 pane(s)
 ~0.2 to 0.8 W/(°Cm²) for framed, insulated, opaque walls
 ~0.2 to 0.5 W/(°Cm²) for framed, insulated, opaque roofs
- for a wall assembly whose surface area is $100\lambda\%$ windows,

$$U_{w} = \lambda U_{ ext{window}} + (1-\lambda) U_{ ext{wall}}$$

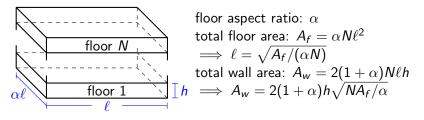
- a typical wall assembly has $\lambda \approx 0.1$ to 0.3
- \implies overall $U_w \approx 0.7$ to 1.3 $\mathbf{W}/(^{\circ} \mathrm{Cm}^2)$

Window-to-wall ratio λ



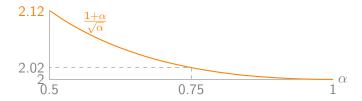
El-Deeb (2013): Combined effect of window-to-wall ratio and wall composition on energy consumption

Wall area



• roof area is
$$A_r = A_f/N$$

•
$$(1+\alpha)/\sqrt{\alpha} \approx 2$$
, so $A_w \approx 4h\sqrt{NA_f}$



Infiltration of outdoor air

$$\dot{m}, \theta \longrightarrow$$
 building \dot{m}, T

- outdoor air enters through gaps in doors, windows, etc.
- indoor air exits at \sim same mass flow rate \dot{m}
- this mass transfer entails heat transfer at rate $\dot{m}c_p(\theta T)$
- with ν (1/h) air changes per hour, $\dot{m} = \nu \rho A_f h$ (1 air change = outdoor air fills building's volume $A_f h$ once)
- + typically, u pprox 0.3 to 0.9 per hour

Handley (1973): Home ventilation rates: A literature study, Younes (2011): Air infiltration through building envelopes: A review

• with total floor area A_f and N stories, each of height h,

$$\begin{split} 1/R &\approx (2 \text{ to } 5 \times 10^{-4} \text{ kW}/[^{\circ}\text{Cm}^{2}])A_{f}/N \\ &+ (2.8 \text{ to } 5.2 \times 10^{-3} \text{ kW}/[^{\circ}\text{Cm}^{2}])h\sqrt{NA_{f}} \\ &+ (1.5 \text{ to } 2.9 \times 10^{-4} \text{ kW}/[^{\circ}\text{Cm}^{3}])A_{f}h \end{split}$$

 \bullet example: for a ${\sim}200~m^2$ house with 2 stories and ${\sim}3$ m ceilings,

$$R \approx 2.5 \ ^{\circ}\text{C/kW}$$

- can decompose $q_e(t)$ into heat transfer from
 - 1. sun
 - 2. plugged-in devices (lights, electronics, electric cooking, ...)
 - 3. other (body heat, fossil-fueled cooking, wood fireplaces, ...)
- #2 may be measured (typical time-average $\approx 250 \text{ W} + (2.65 \text{ W/m}^2)A_f$)
- #3 is often small (e.g., \sim 100 W per body)
- check: from HDD analysis, time-average of $q_e(t)$ should be ${\sim}\delta/R$

• can approximate the total solar thermal power from all windows as

$$q_{
m sun}(t) pprox \left(1.5 ext{ to } 1.7 extsf{ } \sqrt{
m kW}/
m m
ight) c \lambda h \sqrt{NA_f S_{
m tot}^-(t)}.$$

- + $S_{tot}^{-}(t)$ (kW/m²) is the total solar irradiance on a horizontal surface
- c ∈ [0, 1] (typically 0.25 to 0.8) is the solar heat gain coefficient (the fraction of incident solar irradiance that a window transmits)
- $\star\,$ can simulate shading from blinds, trees, etc. by reducing c
- more on this when we learn about solar